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Multi-neuron connection using multi-
terminal floating–gate memristor for
unsupervised learning

Ui YeonWon1,2,7, QuocAnVu3,7, SungBumPark1,7, Mi Hyang Park1,7, VanDamDo1,
Hyun Jun Park4, Heejun Yang 5, Young Hee Lee 3,6 & Woo Jong Yu 1

Multi-terminal memristor and memtransistor (MT-MEMs) has successfully
performed complex functions of heterosynaptic plasticity in synapse. How-
ever, theses MT-MEMs lack the ability to emulate membrane potential of
neuron inmultiple neuronal connections. Here, we demonstrate multi-neuron
connection using a multi-terminal floating-gate memristor (MT-FGMEM). The
variable Fermi level (EF) in graphene allows charging and discharging of MT-
FGMEM using horizontally distant multiple electrodes. Our MT-FGMEM
demonstrates high on/off ratio over 105 at 1000 s retention about ~10,000
times higher than other MT-MEMs. The linear behavior between current (ID)
and floating gate potential (VFG) in triode region of MT-FGMEM allows for
accurate spike integration at the neuron membrane. The MT-FGMEM fully
mimics the temporal and spatial summation of multi-neuron connections
based on leaky-integrate-and-fire (LIF) functionality. Our artificial neuron (150
pJ) significantly reduces the energy consumption by 100,000 times compared
to conventional neurons based on silicon integrated circuits (11.7 μJ). By
integrating neurons and synapses usingMT-FGMEMs, a spiking neurosynaptic
training and classification of directional lines functioned in visual area one (V1)
is successfully emulated based on neuron’s LIF and synapse’s spike-timing-
dependent plasticity (STDP) functions. Simulation of unsupervised learning
based on our artificial neuron and synapse achieves a learning accuracy of
83.08% on the unlabeled MNIST handwritten dataset.

Artificial intelligence and neural network algorithms form the core of
future technology and are increasingly important in perception and
learning tasks. Recently, analog memory devices––i.e., “memristors
(memory + resistor),” including resistive memory (ReM)1–4, phase
change memory (PCM)5,6, and floating-gate memory (FGM)7–13 have
been proposed to realize functionalities of neurons and synapses.
Neuromorphic research using such memristors is mainly categorized

into two fields, supervised learning and unsupervised learning. In
supervised learning, thememristors areused formulti-levelmemories,
and software processes sigmoid/hyperbolic-tangent at forward-
propagation and differential weight at back-propagation
computing11–14. Supervised learning exhibits high accuracy because
its performance depends on the labeled data. In the unsupervised
learning, the memristors fully mimic the learning rules of biological
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neurons and synapses in the brain, such as LIF of neurons and STDP of
synapses14–20, allowing data to be learned without labels. This is a
strong advantage that can learn unidentified data including most of
the natural data. Ultimately, the system itself can learn and analyze
things without human intervention.

Two-terminal memristors have demonstrated neuron functions
for unsupervised learning. The PCM and Mott memristor implement
partial LIF, such as the integrate function by PCM conductance
change21 and fire function by interaction between two Mott
memristors22. The full LIF function was demonstrated by a capacitive
neural network23, where the capacitor and volatile (diffusive) mem-
ristor perform the functions of charge integration and leaky fire,
respectively. However, insufficient nodes of memristors24 (two nodes:
source and drain) and memtransistors24–28 (three nodes: source, drain
and gate) failed the entire implementation of multi-connections
between numerous neurons in the human brain. Recently, MT-MEMs
are demonstrated using polycrystalline transition metal dichalcogen-
ides (TMDs) by increasing the terminals from two to six29, and 2H–1 T′
phase transitions of MoS2 with five terminals30. The MT-MEMs suc-
cessfully performed complex functions of heterosynaptic plasticity of
synapse by controlling the multiple channel conductance using a sin-
gle drain electrode. However, current MT-MEMs cannot be imple-
mented to multi-connected artificial neurons because they have no
capacitor that can charge or discharge electrical potential like the
membrane of a neuron.

In this study, we demonstrate the multi-connected artificial neu-
rons using a multi-terminal floating gate memristor (MT-FGMEM) by
increasing the terminals from two7–10 and three11–13 to five (single cell)
and nine (neurosynaptic network). The unique property of metallic
graphene, which can shift the Fermi level (EF)31,32, provides additional
band bending in the graphene/insulator/metal heterostructures;
therefore, horizontally distant multiple electrodes can charge and
discharge the shared graphene FG. Our MT-FGMEM shows an ideally
linear conductance change to the voltage spikes (nonlinearity factor

β = 0) because of the triode operation in thememristor, allowing linear
weight change at the synapse and accurate spike integrate at the
neuron membrane. The configuration of the multi-electrode MT-
FGMEM and comparator emulates the temporal and spatial summa-
tion based on LIF functionality of multiple neuronal connections. The
assembly of 9 × 3 neuron and synapse array successfully demonstrates
spiking neurosynaptic network (SNN) for training and classification of
directional lines functioned in visual area one (V1). At the simulation of
unsupervised learning, our artificial neuron and synapse achieve an
ideal learning accuracy of 83.08 % on no labeled input data.

Results and discussion
Electrical performance of multi-terminal floating gate
memristor
A schematic and an optical image of our MT-FGMEM are illustrated in
Fig. 1a and b, respectively (other devices are shown in Supplementary
Fig. S1). Fabrication details are shown in method and Supplementary
Fig. S2. Our MT-FGMEM is formed of a van der Waals heterostructures
(vdWHs) of 2D layers: monolayer MoS2 as a semiconductor channel,
5.5 nm h-BN as a tunneling insulator layer, andmonolayer graphene as
a FG (Fig. 1c and Supplementary Fig. S3). Five metal electrodes (V1, V2,
V3, V4, and V5) are formed onto the MoS2. Typical memristive
current–voltage (I–V) characteristics and FG potential profile of MT-
FGMEMbetween the V1 and V2 electrodes are shown in Supplementary
Fig. S4. It is noted that the memristive behavior is largely observed at
the graphene MT-FGMEM, while the metal MT-FGMEM shows a small
memristivememory window (Supplementary Fig. S5a). This is because
the positive (negative) charges in graphene FG attracted by the nega-
tive (positive) drain bias shift the EF of graphene downward (upward),
resulting in higher band bending at h-BN than fixed EF metal FG
(Supplementary Fig. S5b, d). Although theon/off ratio ofmetal FGMEM
can be increased from 5 to 100 by applying gate voltage (Vg = −10 V) to
shift memory window into high transconductance region of the MoS2
channel32 (memtransistor behavior), it is still significantly lower than

Graphene
h-BN

MoS2

VFG V1

V2

V3
V4

V5

(d)(c)

V5
V4

V3
V2

Graphene

h-BN

MoS2

VFG V1

(b)(a)

-0.4 -0.2 0.0 0.2 0.4
10-13

10-11

10-9

10-7

10-5

I ds
 (V

)

Vds (V)

h-BN

Gr
VFG

V5V4V3V2V1

Diffuse

Spike

MoS2

V1 V2 V3

Ch

Fig. 1 | Structure and electrical characteristics of the multi-terminal floating-
gate memristor (MT-FGMEM). a, b Schematic and optical images of the MT-
FGMEM comprises monolayer MoS2/h-BN/graphene heterostructures as a semi-
conducting channel, a tunneling insulator, and a floating gate, respectively. Mul-
tiple electrodes V1, V2, V3, V4, and V5 are located on MoS2. VFG is connected to

graphene to measure the FG potential. Scale bar is 10 µm. c Cross-sectional sche-
matics, and operation principle of MT-FGMEM. d Electrical behaviors of V4-V5

channel before (dashed line) and after charging shared graphene floating gate byV1

(black line), V2 (red line) and V3 (blue line).
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108 on/off ratio of graphene-FG. Furthermore, graphene-FGMEM also
operates as memtransistor, enhancing the on/off ratio to 109 by
applying Vg = −40V (Supplementary Fig. S5c).

Our new structural concept, multiple electrodes, and multiple
channels on a shared FG, allows controlling the conductance of
channels by multi-electrode charging and discharging of a FG (Fig. 1c).
By applying a positive (negative) voltage at the V1 ~V5 electrode, hole
(electron) charges tunnel from electrode to FG and then diffuse
through the whole graphene layer. The hole (electron) charges at the
graphene layer generate a positive (negative) gate field, indicating an
increasing (decreasing) the conductance of all MoS2 channels on the
shared graphene FG. Figure 1d shows the current changes in MoS2
channel (V4-V5) after applying +6V atV1 (black line),V2 (red line) andV3

(blue line) electrodes. The current levels of MoS2 channel are changed
from initial OFF-state (10−11 A) to ON-state (10−6–10−5 A). More explains
are shown in Supplementary Fig. S6a, b (current change of V4–V5
channel by V1 = 4 V, V2 = 5 V and V3 = 6 V spikes) and Supplementary

Fig. S7 (energy band diagrams of V1 ~V3/h-BN/graphene FG/h-BN/V5(S)
and V4/MoS2/V5(S)). This unique characteristic of our MT-FGMEM
allows a multi-connection neuron, which will be discussed later.

Figure 2 shows the voltage-spike-based multi-level memory
behavior in our MT-FGMEM. We initially apply continuous −6 V on the
V1 electrode until the FG is fully charged by negative electrons;
therefore, the negative FG voltage shifts the MoS2 conduction band
upward (Fig. 2a-i). As a result, the electron carriers at the source are
completely blocked by the MoS2 energy barrier at the reading bias
(Vds = 10mV). By applying a 6 V spike (0.01 s) on the V2 electrode, a
certain number of positive holes are tunneled from V2 to FG (Fig. 2a-ii).
The trapped holes generate a positive FG voltage, reducing the MoS2
channel barrier height by downshifting the MoS2 conduction band
(Fig. 2a-ii, bottom image). At the reading bias (Vds = 10mV), a few
electrons can cross the slightly lowered MoS2 energy barrier. By
applying additional sequential 6 V spikes to theV2 electrode (Fig. 2a-iii-
iv), the number of positive holes in FG gradually increases, while the

Fig. 2 | Spike-basedmultilevelmemory behavior ofMT-FGMEM. a Schematics of
operation of spike-based multilevel memory in MT-FGMEM. (i) Full erasing by
continuous negative bias onV1, (ii–iv) programmingbypositive-spike voltageonV2.
Energy band diagram of the MoS2 channel between V2-S. b Typical electrical mul-
tilevel behavior of MT-FGMEM under the sequential spikes. Spikes (6V, 0.1 s) are
applied between V2-S electrodes (top panel-navy line), and FG potential (VFG,
middle panel-olive line) and MoS2 channel current (Ids, bottom panel-orange line)

are measured simultaneously. c Spike amplitude (Va) dependency on multilevel
behavior. d Spike duration (tW) dependency onmultilevel behavior. e Retention of
multilevel in MT-FGMEM. f, g Multilevel potentiation, and depression of MT-
FGMEM under 50 sequential spikes. h Representative current at each of the 50
levels in f and g. i Transfer characteristics of same device under gate voltage
applicationongraphene.The dashed line indicates the theoretical simulationof the
triode region in FET.
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corresponding MoS2 energy barrier height gradually decreases. As a
result, the number of electrons across the MoS2 barrier also increases
stepwise with the number of spikes.

Figure 2b shows the experimental results of the multi-level
memristive behavior of our MT-FGMEM under sequential voltage
spikes. At each 6 V spike, the FG potential (VFG) andmemristor current
(Ids) are increased stepwise. The step size of each level can be con-
trolled by modifying the spike amplitude (Va in Fig. 2c) and duration
(tW in Fig. 2d). The step size shows an exponential relation with Va and
tW (insets of Fig. 2c, d). It is noted that the capacitance (C) and charges
(Q) of FG are calculated to C = 1.3 pF,Q = 66.5 fC by C = εrε0A

d = Q
V, where

εr is relative permittivity of h-BN, ε0 is absolute permittivity, A is area of
MT-FGMEM, d is thickness of h-BN (7 nm) and V is voltage across the
capacitor (ΔVFG = 0.05 V at each spike in Fig. 2b). The charging energy
(E =QV) at each spike is 3.3 fJ. With effective charge trapping in the
graphene FG, multi-current levels maintain stably over 1000 s with
high on/off ratio over 105 (Fig. 2e), which is about ~10,000 times higher
than other MT-MEMs29,30 at the same 1000 s retention. Our FGMEM
also shows good stability in 10,000 s retention (Supplementary
Fig. S8) and 10,000 cycles 2-level endurance and 2000 spikes multi-
level endurance.

Figure 2f, g shows real-time measurement of 50 levels potentia-
tion and depression, respectively. The reading voltage (Vds = 10mV) is
appliedbetween the voltage spikes tomeasure the current through the
MoS2 channel. The representative current at each level is plotted in
Fig. 2h and fitted to synaptic conductance (G) equation:20

4G=αe�β
G�Gmin

Gmax�Gmin

where the parameters α and β indicate the conductance change
amount and nonlinearity, respectively. The potentiation of MT-
FGMEM shows ideal linearity (β =0 in Supplementary Fig. S9a). Ideal
linearity of synapses promotes learning accuracy in neural network33.
Our MT-FGMEM exhibits the best linearity among MT-MEMs (β = 429,
630 in Supplementary Table S1), implying that our MT-FGMEM is the
most suitable device for multi-connected artificial neuron.

To investigate the high linearity of our MT-FGMEM, we measure
the transfer characteristics of the MoS2/h-BN/graphene hetero-
structure by applying a gate voltage to the graphene electrode and
measuring the current on the MoS2 channel (Fig. 2i). The current
increases (decreases) linearlywith the gate voltage (VG) atVG above the
threshold voltage (VG >Vt = −0.3 V). There are two distinct current
equations for a field-effect transistor (FET) depending on the drain
voltage (VDS) and VG. In the triode region (VDS <VG −Vt), the FET cur-
rent is expressed as ID =μCox

W
L

�
VG � Vt

� �
VDS � 1

2VDS
2�, where μ, Cox,

W, and L indicate the mobility, capacitance of the gate oxide, channel
width, and channel length, respectively. In this region, the current (ID)
linearly increases with VG at a fixed VDS (ID∝ VG). In contrast, the FET
current in the saturation region (VDS > VG −Vt) is expressed as
ID =μCox

W
2L VG � Vt

� �2. The current (ID) in this saturation region shows
a parabolic increase with VG (ID∝VG

2). In our device, VG, VDS, and Vt

have values of −1 to 3 V, 0.01 V, and −0.3 V, respectively. Therefore, the
triode (linear) and saturation (parabolic) regions are VG = −0.29 to 3 V
(VG > VDS +Vt) and −1 to −0.29 V (VG < VDS + Vt), respectively. The
measured current (blue and red circles) and theoretical current (black
dashed line) clearly match in Fig. 2i. By using the triode region, where
VG >VDS +Vt, the linear behavior between ID and VG can be obtained.
The spike dependency of our MT-FGMEM also follows the trend of
transfer behavior of the MoS2 transistor. A regular amount of charge
constantly occurs at the FG through sequential spikes, resulting in a
linear change in the FG potential. In the saturation region (0–7 spikes),
a parabolic increase in current is observed along the number of spikes,
while a linear increase is observed at 8–50 spikes in the triode region
(Fig. 2h). The measured current (blue and red circles) clearly matches
the theoretical transfer curveof theMoS2 transistor (blackdashed line)

shown in Fig. 2h. It is noted that the high linearity of MT-FGMEM is
used for accurate spike integration in neuron’s membrane potential
(Fig. 3) and linear synaptic weight changes between a pre- and post-
neurons (Fig. 4). It also be noted that Fig. 2 shows multi-level behavior
MT-FGMEM under series of single-spike application. The multi-level
behavior of synapse between a pre- and post-spike is shown in Fig. 4.

Artificial neuron using MT-FGMEM and comparator
configuration
Figure 3a shows a typical multi-connection of neurons where the
central neuron (post-neuron) is connected to four pre-neurons. Fig-
ure 3b, c shows the neuron functions based on their membrane
potential. The series of neuron processes are called LIF functions
(details are shown in method)34. We demonstrated LIF function based
on multi-connection neurons by using 5 terminals MT-FGMEM inte-
grated with a comparator (Fig. 3d–f, and Supplementary Fig. S10). The
FG-potential (VFG) emulates the temporal integration of pre-synaptic
spikes by charge tunneling and trapping (Integration). As shown in
Fig. 3e, f, VFG increases with positive spikes from V1, V2, and V4 ((i) in
Fig. 3e, f) and decreases with negative spike from V3 ((ii) in Fig. 3e, f).
The neuron threshold is emulatedby applying a threshold voltage (Vth)
to the reference electrode of the comparator. The FG is connected to
the input electrode of the comparator to compare theVFGwithVth. The
output voltage of the comparator (Vout) is 0.01 V (VCC in Supplemen-
tary Fig. S10) while the VFG is below Vth (Fig. 3e). Once the VFG exceeds
Vth (>0 V) by signal integration ((iii) in Fig. 3e, f), the Vout of the com-
parator abruptly switches from VCC (0.01 V) to VEE (−7 V). The negative
VEE is fed back to the V5 electrode on FG (Fig. 3d), releasing the FG
potential to the initial state (−1.2 V). By reducing the VFG below Vth

(<0 V), the Vout of the comparator returns to VCC ((iv) in Fig. 3e, f).
These series of processes generate a post-spike (Fire). A highly reliable
LIF profile is also observed in other FG-com neurons (Supplementary
Fig. S11). The number of integrated spikes until the VFG exceeds Vth can
be increased by adjusting the Va or tW of the spikes (Supplementary
Fig. S11b). It is noted that the refractoryperiod in our artificial neuron is
about 1μs, a propagation delay of comparator.

The leaky profile of the neuronmembrane is an important process
for naturally initializing the neuronal system without any external
force. We emulate the neuronal leaky profile by decreasing the h-BN
thickness. At a 7-nm-thick h-BN layer (left panel in Fig. 3g), once the
charges are trapped at the FG, they cannot be released because the
h-BN layer is thick enough to block the charge re-tunneling. Therefore,
VFG shows a stepwise increase with the number of spikes. In contrast,
the 4-nm-thick h-BN layer (right panel in Fig. 3g) is thin enough to
tunnel out the trapped charges; therefore, the FG potential exponen-
tially reduces over time by releasing the trapped charges. The leakage
profile of charges in the FG is similar to the leakage ofNa+ in theneuron
membrane, allowing the imitation of the neuronal leaky process. The
signal integration in this leaky FG can be performed by applying a
series of spikes in a short period before the trap charges are fully
released (Leaky-Integrate).

Figure 3h–k shows complete emulation of the neuron’s LIF pro-
cess using our leaky-FG and comparator configuration: Fig. 3h, i for a
temporal summation and Fig. 3j, k for a spatial summation. Temporal
summation is the summing spikes generated by single pre-neuron at
short intervals. Spatial summation is the summing spikes generated
simultaneously by many different pre-neurons. At the temporal sum-
mation (Fig. 3h, i), a series of spikes with short intervals (0.1 s) are
applied from single pre-neuron to neuron-FG for the integration pro-
cess, which is initialized by separating each spike series with a long
interval time (2.5 s). The maximum VFG gradually increases with the
number of spikes in series, and finally, exceeds the Vth at five-series
spikes (>0.7 V). Then, a post-spike (Vout) is generated using the same
rule as that shown in Fig. 3e, f; these series of processes function as
neuronal LIF. It is noted that the leaky profile of floating gate follows
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capacitor discharge (Supplementary Fig. S12). At the spatial summa-
tion (Fig. 3j, k), synchronized spikes from three different input neurons
are applied to neuronal FGwith a long interval time (0.5 s) between the
spikes for leaky initialization. With increase the number of synchro-
nized spikes, themaximumVFGgradually increases andexceeds theVth

at three synchronized spikes (>1 V). Then, a post-spike (Vout) is gener-
ated using the same rule as that shown in Fig. 3e, f. Spatial summation
was performed using neurosynaptic network in Fig. 5. In nature, neu-
ron performs LIF based on receiving unsynchronized spikes from

multiple pre-neurons; described as stochastic spike arrival21,34. In real
biological spiking neural network (SNN), temporal and spatial sum-
mation function simultaneously due to the unsynchronized spike
timing. In our artificial SNN (Fig. 5), however, learning can function
only with spatial summation due to the synchronized input spikes.
Note that our MT-FGMEM based artificial neuron shows similar firing
energy consumptions (250 pJ, Supplementary Fig. S13) with conven-
tional neuron based on silicon integrated circuit (Si-IC, 286 pJ)19, while
integration energy consumption dramatically reduces from 11.7 μJ (Si-
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Fig. 3 | Imitation of multiple connections in biological neurons by configura-
tion of multi-terminal FG and comparator. a Illustration of five connections in
biological neurons. Pre-spikes of pre-neurons (V1, V2, V3, and V4) are integrated at
the membrane potential of post-neuron (VFG), and then generate post-spikes (Vp).
b Membrane potential for typical neuronal spike process. c Schematics of ion
movement through the membrane gates at (i) EPSP, (ii) IPSP, (iii) depolarization,
and (iv) repolarization. d Schematics of five connections in artificial neurons
formed of multi-terminal FG and comparator configuration. Pre-spikes (V1, V2, V3,

and V4) are integrated at the FG potential (VFG), and then generate post-spike (Vp).
e FG potential for neuronal spike process. f Schematics of FG charging and dis-
charging at (i) EPSP, (ii) IPSP, (iii) depolarization, and (iv) repolarization.
g Retention behavior of 7 nm h-BN (left panel) and 4 nm h-BN (right panel).
h Schematics of temporal summation in biological neurons. iTemporal summation
LIF process of MT-FGMEM and comparator configuration. j Schematics of spatial
summation in biological neurons. k Spatial summation LIF process of MT-FGMEM
and comparator configuration.

Article https://doi.org/10.1038/s41467-023-38667-3

Nature Communications |         (2023) 14:3070 5



IC) to 150 pJ (MT-FGMEM). The energy consumption of our artificial
neuron is calculated by Δ(Vpre −Vpost) × tW × Ipost35. The energy con-
sumption can be further lowered by reducing spike amplitude
Δ(Vpre −Vpost) and duration (tW) with improved tunneling insulator
properties, or reducing Ipost by increasing channel resistance.

Spiking neurosynaptic single cell
Figure 4 shows the learning in neurosynaptic single cell by synapse
STDP and neuron LIF functions. In Fig. 4a–b, the functionality of the
proposed neuron and synapse is measured in a neural unit circuit
where the synapse is connectedwith theoutput post-neuron. Itmimics
a biological neural unit (Fig. 4a), where the synapse receives input
spikes from the pre-neuron and propagates to the post-neuron
according to their synaptic strength (Weighting). The post-neuron
generates output spikes based on LIF. The synapse strength is then
modulated according to the relative timing of the pre- and post-spikes,
called STDP36. In our neural unit circuit, the input spike (Vpre) is applied
between VS2 and VS3 of the synapse and converted into current
(Imem = Vpre ×G) according to the MoS2 conductance (G, Weighting,
Supplementary Fig. S14). Imem flows to VN1 and charges the neuron-FG
(n-FG) (Integration). We apply Vpre = 3.5 V, which is weak for tunneling
electrons to 7 nm h-BN in synapse-FG (s-FG) but strong enough for

tunneling electrons to 4 nm h-BN in n-FG. Once the integration
potential in n-FG exceeds Vth, the output voltage of the comparator
switches from VCC (0.01 V) to VEE (Vpost = −2 V). Then, the negative Vo
(-Vpost) is not only applied to n-FG (VN2) to initialize the membrane
potential (or for the winner-take-all (WTA) function) but also to s-FG
(VS1) to update the synaptic weight according to the STDP rule.

Figure 4b and 4c shows the typical STDP behavior of our synapse.
Vpre = 3.5 V and Vpost = −2 V spikes are applied at VS1 and VS2, respec-
tively, for charging of s-FG. After the spiking, Vpre = 10mV is applied
between VS2 and VS3 to measure Imem. Vnet is the relative voltage
between Vpre and Vpost at VS2. At a long timing difference (Fig. 4b), the
separately applied Vpre and Vpost spikes generate a low Vnet (<3.5 V),
causing no tunneling to s-FG and no change in Imem. In contrast, at a
short timing difference (Fig. 4c), Vpre and Vpost spikes overlap and
generate a highVnet = 5.5 V, causing charge tunneling to s-FG. Positively
charged s-FG increases the G of the MoS2 channel, increasing the Imem.
The change in synaptic weight (G of MoS2) gradually increases with a
decrease in the timing difference between Vpre and Vpost because an
increase in Vnet width charges more carriers to s-FG (Fig. 4d and Sup-
plementary Fig. S15).

The evolution of synapse’s weight in neurosynaptic single cell by
synapse STDP and neuron LIF functions is shown in Fig. 4e. The

Fig. 4 | Unsupervised learning in artificial neuron and synapse based on MT-
FGMEM. a Schematics of basic synapse-neuron assembly for unsupervised learning
process by synaptic STDP and neuronal LIF functions. b, c STDP by correlation
between pre-spike and post-spike. Only potentiation is used for our unsupervised
learning simulation. d STDP based spike current change along the time difference

between pre-spike and post-spike. e The unsupervised STDP weight change along
the epoch (post-spike generation) in synapse (MT-FGMEM) and neuron (FG-com)
unit cell. With (Δt ~ 0 s) or without feedback (Δt ~ ) of post-spike is controlled by
connect and disconnect of feedback line, respectively.
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synaptic weight (normalized Imem) is plotted along the number of Vpost
spikes generated (epoch). At each Vpost spike generation (epoch), the
synaptic weight is gradually increased by STDP of Vpre and Vpost feed-
back (Δt ~ 0 s, red dots in Fig. 4e). In contrast, with no Vpost feedback
(disconnected feedback line), the synaptic weight shows no change
because of no overlapping of Vpre and Vpost (Δt ~ , blue dots in Fig. 4e).
The STDP learning in neuron-synaptic integration cell is the crucial
element to demonstrate unsupervised learning.

Realization of spiking neurosynaptic network
The brain’s visual system is organized into a hierarchical structure of
areas:37 visual area one (V1) initially perceives a line orientation in the
small localized visual field (Fig. 5a)38, then inferotemporal visual cortex
(V2 and V4) perceives increasingly larger and more complex object
based on the V1 results obtained from several locals of visual field.
Here, we experimentally emulate early-stage training and classification
of V1 using our SNN. Figure 5 shows the experimental implementation
of proposed SNN, consisting of 3 neurons with 9 synapses each, for
training and classification of 3 × 3 binary image. Figure 5b-c shows

optical image of our SNN. For large scale integration, monolayer MoS2
and monolayer graphene grown by chemical vapor deposition (CVD)
are used as channel and floating gate, respectively, andAl2O3 grownby
atomic layer deposition (ALD) is used as tunneling insulator (8 nm for
synapse and 4 nm for neuron). Our artificial neurons show reliable
spatial summation based on LIF function (Supplementary Figure S16).
More details of fabrication are explained inmethod section. It is noted
that the elongation RC delay (0.5 ps/μm2 in monolayer graphene39) of
graphene FG by increasing the array size is negligible at our mea-
surement rate (~ms).

Figure 5d shows circuit schematic of our SNN. It is noted that the
training and recognition of line orientation is performed in colla-
boration between photoreceptors and visual area one (V1). At the
beginning of training, the photoreceptors transform the light-signal to
spike-signal. Based on spike-signals from photoreceptor array, the V1
trains and recognizes the line orientation by SNN training rule. In our
experiment, we applied electrical spikes (3V and 50ms) instead of
photoreceptor’s light to spike transform. In more precisely, the pho-
toreceptor transforms edge-signal to spike-signal by using on-center-

Neuron1 (‘|’ trained) Neuron2 (‘ ’ trained) Neuron3 (‘\’ trained)

Fig. 5 | Single-layer spiking neurosynaptic network. a, b Optical images of neu-
rosynaptic array with neuron-FG and synapse. c Monitoring the responses of
orientation-selective neurons in visual cortex V1 to various directional stimuli.
d 3 × 3 binary input images that represent the directions |, –, \ and circuit schematic

of 3 output neurons, each with 9 synapses. e–g Real-time synaptic weight changes
under 40 sequential input spikes (epoch). h–j Pattern classification by evolution of
synapse conductance along the training epoch.
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off-surround structure, but it is not considered in our SNNbecauseour
work focused on visual area one. At the training process, 40 sequential
input spikes (3 V and 50ms) of 3 × 3 binary image (vertical ‘|’, parallel ‘–’
and orthogonal ‘\’) are applied to input electrodes (V1 ~V9). Three
directional lines are selectively trained on three neurons (N1, N2 and
N3) by controlling Vth of each neuron (Vth = 1 V for training neuron and
Vth = 1.5 V for untraining neuron). The example of training vertical line
‘|’ on N1 neuron is shown in supplementary Figure S17. During training
vertical line ‘|’ (Fig. 5e), the selected N1 neuron generates output spikes
(Vo = −2 V), and then synapses W4-6 are weighted by large net voltage
(Vnet = 5 V) with overlapping pre- (Vin) and post-spikes (Vo), while other
synapses retain their weight due to small net voltage (Vnet = 2 V) only
with post-spikes (Vo). It is noted that synaptic weight changes are
observed when input and feedback spikes are applied together, while
negligible weight changes are observed when input or feedback spikes
are applied alone (Supplementary Figure S18). In the same way, the
synapses of N2 (Fig. 5f) and N3 neurons (Fig. 5g) are weighted with
parallel ‘–’ and orthogonal ‘\’ lines, respectively. At the classification
process, feedback line is connected to an ammeter (Fig. 5d) tomeasure
the conductance of 9 synapses of each neuron at the input voltages of
the three binary images. The synapse conductance for the trained
direction is clearly distinct from other untrained directions (Fig. 5h-j).
Furthermore, the conductance difference between trained direction
and other untrained directions increases as the number of epoch
increases.

It is noted that learning algorithm of our current platform is
supervised learning, where the selection of learning neuron is selected
by controlling threshold voltage (Figure S17), Vth = 1 V for selected
neuron and 1.5 V for unselected neuron. The fully unsupervised
learning algorithm can be achieved by demonstrating the homeostatic
plasticity of neuron - slight increase of Vth of firing neuron - as
demonstrated in unsupervised learning SNN simulation (Fig. 6).

Spikingneurosynaptic network simulationbasedonMT-FGMEM
We estimated the unsupervised-learning-accuracy of our MT-FGMEM
based SNN from the SNN simulation using MNIST date sets with no
labels (Fig. 6). The learningmechanism in this SNN simulation is similar
to experimental SNN in Fig. 5. In the schematics of the simulation
(Fig. 6a), 784 pre-neurons (rows) and n-FGs of 10–100 post-neurons
(columns) are connected by the MT-FGMEM synapse. The system self-
learns MNIST handwritten datasets without labels by using function-
alities of the synapse’s STDP and neuron’s LIF and WTA lateral inhibi-
tion. The details of the simulation are provided in the Method section.
Figure 6b shows the final accuracy of the MNIST test datasets at the
various potentiation nonlinearities of the synapse (β = 0–10, Fig. 6c).
The accuracy is highest at ideal linearity (β =0) and gradually decrea-
ses as the nonlinearity increases (β > 0). Supplementary Fig. S19 shows
the visualized synaptic weights. At the ideal linearity (β =0), the
boundary of the visualized digit is very clear, allowing an accurate
classification of the MNIST test digits. However, the increasing

Fig. 6 | Unsupervised learning capability of neural network constructed based
on artificial neuron and synapse. a Schematics of neuron (FG-com) and synapse
(MT-FGMEM) array for unsupervised learning simulation of MNIST data sets with-
out labels.b Accuracy variation along the nonlinearity factor (β) and the number of
post-neurons. c Conductance potentiation of synapse along the number of spikes

atdifferent nonlinearity factors (β =0 ~ 10).dVisualized synaptic conductance after
60,000 MNIST (no labels) training. The number of post-neurons is 10 (top panel)
and 30 (bottom panel). e The number of neuronal fires in 10, 20, 30 and 100 post-
neurons for the test label.
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nonlinearity blurs the boundaries of the visualized digit, resulting in an
inaccurate classification of the ambiguous MNIST test digits.

We investigate the accuracy over the number of post-neurons.
The accuracy of 10 post-neurons is as low as 47.88% (Fig. 6b). Because
our system uses unlabeled MNIST training sets, learning only depends
on the bright pixel position of the digit images. Therefore, the same
digits with very different pixel positions can be classified into different
digits in unsupervised learning. The top panel of Fig. 6d shows trained
synaptic Gs (weights) with 10 post-neurons. The synaptic Gs at the 2nd

and 10th neurons, or the 3rd and 5th neurons, are classified into different
digits in the system, even though they appear in human vision as
similar numbers of 0or 3, respectively. These samedigits, but different
pixel positions, occupy neurons at the beginning of unsupervised
leaning; therefore, the remaining digits (such as 2 or 5) suffer the lack
of neurons and fail to occupy it. The lack of neurons can be overcome
by introducing additional post-neurons. The bottom panel of Fig. 6d
shows trained synaptic Gs (or weights) with 30 post-neurons. All digits
from 0 to 9 are completely occupied by a sufficient number of post-
neurons. Figure 6e shows the number of selected labels of the 10,000
MNIST test set by post-neurons. For 20–100 neurons, we combine
selections of multiple neurons representing the same digit (Supple-
mentary Fig. S20). At 10 post-neurons, no post-neuron represents digit
5, while the 5th and 7th post-neurons represent digit 7. Furthermore,
each post-neuron chooses many other digits besides their own. At 20
post-neurons, the post-neurons evenly represent all 10 digits (0–9),
but the 4th and 8th post-neurons are closer to digit 9 rather than their
own digit. At 30 neurons, the neurons clearly classify all digits from 0
to 9. As a result, the accuracy is significantly improved from 47.88% to
68.08% with an increase in the number of post-neurons from 10 to 30
(inset of Fig. 6b). The accuracy still shows a gentle improvement over
30 post-neurons because additional post-neurons cooperate with the
recognition of various handwriting shapes. The maximum accuracy is
83.08% at 100 post-neurons (Fig. 6b).

In conclusion, we mimic the unsupervised learning capability of
the human brain by using artificial neurons and synapses based on the
MT-FGMEMs. The shiftable graphene EF allows the multi-terminal
modulation of a memristor using horizontally distant electrodes. The
linear FG potential change along the input spikes in our MT-FGMEM
allows successful emulation of the synaptic STDP with ideal linearity
and neuronal LIF with accurate spike integration. In the realization of
the spiking neurosynaptic network by integration of synapse-neuron
array, our device successfully performed classification of directional
lines functioned in visual area one (V1). Our artificial neurons and
synapses showed unsupervised learning capabilities with high learning
accuracy on unlabeled input data. This sheds light on the foundation
for global artificial intelligence technology roadmap via the multi-
terminal memristor in van der Waals heterostructures.

Methods
Fabrication of MT-FGMEM devices based on graphene/h-BN/
MoS2 heterostructures
The graphene/h-BN/MoS2 stacks were fabricated using a bottom-up
assembly method including multiple wet and dry transfers. First,
monolayer graphenewas synthesized using chemical vapor deposition
(CVD) on a copper substrate. The graphene was then transferred onto
a Si substrate with a 300-nm-thick SiO2 coating by the wet bubble
transfer method using NaOH (0.1M) solution. Next, we prepared poly
(methyl methacrylate) (PMMA)/poly (vinyl alcohol) (PVA)/300nm
SiO2/Si substrates and separately exfoliated h-BN andMoS2 flakes onto
them through mechanical exfoliation with a scotch tape. The exfo-
liated h-BN flakes with thicknesses in the range of 4–8 nmwas selected
by optical contrast for deposition on top of graphene. The h-BN
thicknesses were further confirmed by AFM after electrical measure-
ments. After PVA dissolution in hot water, the h-BN/PMMA film was
detached from the substrate and floated on thewater surface.We used

a holder with a hole to pull out the h-BN/PMMA film and load it onto a
micromanipulator in a reverse manner. Then, the desired h-BN flake
was aligned with the target graphene on a 300nm SiO2/Si substrate
and held in contact for 15min at 100 °C to ensure that the PMMA film
was entirely isolated from the holder. A similar process was employed
to transfer the MoS2 monolayer flake on top of h-BN. The electrodes
were fabricated using a combination of e-beam lithography followed
by the deposition ofCr/Au (10/50 nm). In the last step, all sampleswere
annealed at 300 °C for 3 h in a H2/Ar atmosphere (H2/Ar ratio of 50/
200 sccm) to reduce the contaminants and air bubbles at the hetero-
interfaces. The complete sequenceof the entire fabrication, alongwith
the optical microscope images, is illustrated in Supplementary Fig. S2.

Fabrication of neurosynaptic network array
Parallel electrodes were patterned by photolithography and followed
by the deposition of Cr/Au (10/50 nm) by e-beam evaporator. 10 nm
of Al2O3 was grown by atomic layer deposition (ALD) as a spacer
between parallel and vertical electrodes. Monolayer graphene layer
was transferred and patterned by O2 plasma as a synapse floating
gate. 1 nmAl layer was deposited by e-beam evaporator and naturally
oxidized, which used as seeding layer for ALD of 3 nm Al2O3 on gra-
phene surface. Another monolayer graphene layer was transferred
and patterned by O2 plasma as a neuron floating gate, and then
seeding layer of 1 nm Al and 3 nm Al2O3 layer were deposited. Total
thicknesses of tunneling layers are 8 nm for synapse FG and 4 nm for
neuron FG. TheCVDgrownMoS2 layerwas transferred andpatterned
by O2 plasma as a channel in synapse and load-resistance between
synapse and ground. For the interconnection between parallel elec-
trodes and vertical electrodes, Al2O3 layer in interconnection area
was etched by reactive ion etcher (RIE) with SF6 gas. Finally, vertical
electrodes and MoS2 contact electrodes are patterned by photo-
lithography and followed by the deposition of Cr/Au (10/30 nm) by
e-beam evaporator.

Device characterization
The AFM images of the samples were recorded using an SPA400
atomic force microscope (SEIKO). Raman spectra were measured
using the Witec system (532 nm wavelength). Electrical transport
measurements were performed with a probe station and source/
measure units (Keithley 4200, Agilent B1500, and Agilent B2902a) and
a commercial voltage comparator (595-TLC393cP, Texas Instruments).
The neuron FG of neurosynaptic network array is connected to com-
parator on breadboard. The output line of comparator is connected to
feedback line of neurosynaptic network array. Orientation line infor-
mation is applied to the input lines of the neurosynaptic network array
with Vpre spikes (3 V and 50ms) using Agilent B1500. The conductance
change of synapses STDP rule is measured by Agilent B1500.

LIF function of neuron
The multiple spikes from the four pre-neurons are propagated to the
post-neuron by ion transport through the synapse. The excitatory
postsynaptic potential (EPSP) signal enhances themembrane potential
by transporting Na+ ((i) in Fig. 3b, c), while the inhibitory postsynaptic
potential (IPSP) signal reduces the membrane potential by transport-
ing Cl- ((ii) in Fig. 3c). The transported ions in the post-neuron gradu-
ally leak out over time, and then, the membrane potential finally
returns to the resting potential (Leaky). If several pre-synaptic spikes
propagate to the post-neuron in a short period, temporal signal inte-
gration is performed at the membrane potential (Integration). Once
themembranepotential exceeds the thresholdpotential (Vth) by signal
integration, leading to a fast inward flow of Na+, there is a substantial
increase in the membrane potential ((iii) in Fig. 3c). At the maximum
membrane potential (action potential), the neuron inactivates the Na+

channels and opens the K+ channels, releasing themembrane potential
to the resting state ((iv) in Fig. 3b, c). As a result, a post-spike is
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generated (Fire). After firing, neuron takes recovery time for one mil-
lisecond (refractory period).

Simulation of spiking neurosynaptic network
The G of the synapses (normalized to 0–1) are initially set to small
random values between 1 × 10−5 and 1 × 10−4. Once the pre-spikes
(Vpre) of 784MNIST pixel data (converted to 0 or 1) are fed to the pre-
neurons, Imem (Vpre ×G) flow and are added to post-neuron mem-
brane (n-FG) according to its synaptic strength (G). Because of the
randomly set initial synaptic Gs, each post-neuron has a different
n-FG potential (sum of 784 input Imem). Due to this n-FG difference,
only a single post-neuron with highest n-FG out of 10–100 post-
neurons generates a post-spike (Vpost) when its n-FG (sum of 784
input Imem) overcome Vth. The Vpost is fed to the winner-take-all
(WTA) line to initialize the n-FGs of all post-neurons (lateral inhibi-
tion); therefore, other post-neurons are not able to generate addi-
tional spike, which is a reminiscent of the WTA topology. The Vpost is
also fed to its own feedback line to potentiate the synapse G
according to the STDP rule, where Vpre and Vpost overlap each other.
The potentiation of synapse G is modeled by equation20

4G=αe�β
G�Gmin

Gmax�Gmin . The Vth of firing neuron is slightly increased for
homeostatic plasticity.We used 60,000MNIST training sets (without
labels) for unsupervised learning. At each MNIST image,
1000 sequential Vpre (0 or 1) are emitted to input pre-neurons. When
MNIST image is changed after 1000 sequential Vpre, n-FG of all post-
neurons are initialized. The network is then tested on 10,000 MNIST
test sets that are not presented during training. The labels of these
test sets are used to quantitatively evaluate the recognition rate.

Data availability
The data that support thefindings of this study are providedwithin the
main text and Supplementary Information. Additional data related to
this study are available from the corresponding authors upon rea-
sonable request.

Code availability
Codes can be available from the corresponding authors upon rea-
sonable request.
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