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MoS, nanopore identifies single amino acids
with sub-1 Dalton resolution
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The sequencing of single protein molecules using nanopores is faced with a
huge challenge due to the lack of resolution needed to resolve single amino
acids. Here we report the direct experimental identification of single amino
acids in nanopores. With atomically engineered regions of sensitivity com-
parable to the size of single amino acids, MoS, nanopores provide a sub-1
Dalton resolution for discriminating the chemical group difference of single
amino acids, including recognizing the amino acid isomers. This ultra-confined
nanopore system is further used to detect the phosphorylation of individual
amino acids, demonstrating its capability for reading post-translational mod-
ifications. Our study suggests that a sub-nanometer engineered pore has the
potential to be applied in future chemical recognition and de novo protein

sequencing at the single-molecule level.

Due to the lack of techniques that fully account for the complexity of
proteomes, proteomics has yet to reach the power of genomics and
transcriptomics. The development of protein sequencing technologies
can provide transformative information for proteomics that may
revolutionize biological research and precision medicine applications'.
Edman degradation and mass spectrometry®?, as current mainstream
approaches for protein sequencing, have deficiencies in their detec-
tion speed, read length or achieving routine, complete proteome
quantification at low abundance. To overcome these issues, several
disruptive single-molecule approaches*’® have been proposed to
potentially sequence and identify individual proteins. A strong
impetus for extending the successful nanopore DNA sequencing to
potential protein sequencing stands on the long-read length and the
portability’.

Although the detection of proteins'® and short peptides
has already been realized in nanopores, compared with DNA sequen-
cing, nanopore sequencing of proteins remains elusive mainly due
to the two extra challenges faced for the read of permutations
of 20 amino acids instead of four nucleobases and the translocation
control of heterogeneously charged peptides. Similar to the enzyme-
based stepping control of DNA translocation, molecular motors, such
as CIpX" and proteasome'®, were employed to unfold and pull
proteins through nanopores. Peptides linked to DNA could also be

pulled through nanopores by DNA helicase'” or polymerase'®, which
enabled the discrimination of single-amino acid substitutions.
This approach offers an effective route to meet the temporal resolu-
tion requirement for nanopore protein sequencing, although the
use of the enzyme limits the reading speed. In terms of the spatial
resolution, many efforts have been made to improve the sensitivity
of nanopore for reading proteins, achieving the discrimination of
amino acid substitutions in a carrier polymer”, different sizes
of short uniformly charged homopeptides?®, and post-translational
modifications?. However, for directly resolving the tiny differences
among the 20 natural amino acids, the spatial resolution remains
the main bottleneck that restricts the development of nanopore pro-
tein sequencing. For potential de novo protein sequencing using a
similar approach to DNA sequencing?, as noted by Brinkerhoff et al., a
MspA nanopore simultaneously measures ~8 amino acids within
its region of sensitivity, and the number of required signals to resolve
single amino acid will be around eight power of twenty that is
impractically large”. However, if the region of sensitivity of the
nanopore can be shortened to the size level of a single amino acid,
then the task will be greatly simplified to identifying only 20 amino
acids. This calls for developing nanopores with single amino acid
region of sensitivity, including sub-nanometer length and molecular
scale orifice.

TLaboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027 Hangzhou, China. 2Research Center for Quantum

Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, 311121 Hangzhou, China.

e-mail: jiandong.feng@zju.edu.cn

Nature Communications | (2023)14:2895


http://orcid.org/0000-0001-9028-5916
http://orcid.org/0000-0001-9028-5916
http://orcid.org/0000-0001-9028-5916
http://orcid.org/0000-0001-9028-5916
http://orcid.org/0000-0001-9028-5916
http://orcid.org/0000-0002-2143-3986
http://orcid.org/0000-0002-2143-3986
http://orcid.org/0000-0002-2143-3986
http://orcid.org/0000-0002-2143-3986
http://orcid.org/0000-0002-2143-3986
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38627-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38627-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38627-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38627-x&domain=pdf
mailto:jiandong.feng@zju.edu.cn

Article

https://doi.org/10.1038/s41467-023-38627-x

Unlike biological nanopores made by the assembly of proteins in
which the region of sensitivity is still limited by the constituting amino
acids, atomically constructed synthetic nanopores, such as molybde-
num disulfide (MoS,) nanopores®?*, offer a direct solution toward
meeting these goals. Here we designed a MoS, nanopore system in
which the dimension of the pore is comparable to that of single amino
acids. This pore architecture empowered the direct identification of
single amino acids in nanopores.

Results

Identifying single amino acids in MoS, nanopores

Nanopore experiments were performed for translocating amino acids
in a typical electrophoretically driven configuration, as shown in
Fig. 1a. Information from relative current blockade (Al/lp) and dwell
time (At) are used for characterizations, and the error for Al/ly is cal-
culated by the standard deviation (Fig. 1b-g, Supplementary Figs. 1 and
2). Initially, we translocated homopeptides of different lengths and
found for glycine (G), Gly-Gly (GG), and Gly-Gly-Gly (GGG), the induced
current blockades were 0.129+0.021nA, 0.127+0.016 nA, and
0.127 +£ 0.021 nA, respectively (Fig. 1d). The comparable values of the

Ag/AgCl 4
cis electrode

current blockade from homopeptides with different lengths imply that
for the current MoS; nanopore, the region of sensitivity is equal to or
shorter than the size of a single amino acid (Supplementary Fig. 3),
which is in sharp contrast to the length-dependent blockade with a
biological pore®. The ultrathin region of sensitivity observed in our
experiments is comparable with the MoS, nanopore sensitivity ana-
lyzed in molecular dynamics simulations®*® (Supplementary Note 2).
Further experiments under different voltages were performed to
confirm that the observed events indeed came from single amino acid
translocations (Supplementary Figs. 4 and 5), as the amplitudes of the
current blockade (Al) increased with the increase of the potential from
200 to 300 mV.

Considering the heterogeneity of MoS, nanopore devices, we
carried out a series of amino acid identification experiments in 41
different MoS, nanopores (Supplementary Figs. 6-10) to ensure
the reproducibility of our experimental system. The effective
diameters of nanopores were controlled to range from sub-
nanometer to 1.6 nm, and we found that the appropriate size
(Supplementary Figs. 8-10) is critical to the sensitivity of the pore
(Supplementary Figs. 11-13). For a nanopore size comparable to
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Fig. 1| Detection of single amino acids in MoS, nanopores. a Schematic of the
experimental setup (not to scale). Amino acids are electrophoretically driven
through a MoS, nanopore. b An example trace recorded with the addition of 2 pM E
in a -1.1 nm nanopore (Device #1) and a typical current blockade selected from the
trace (marked by pentagram). ¢ An example trace recorded with the addition of
2 pM Ain a -0.5 nm nanopore (Device #2) with the current histogram. The bimodal
distribution is from the baseline current and the blockade current. d Heatmap of

dwell time versus current blockade of G, GG, and GGG, respectively (Device #3).
Mean peak values: G, 0.129 + 0.021 nA; GG, 0.127 + 0.016 nA; GGG, 0.127 + 0.021 nA.
e A flow diagram of amino acids identification using SAAINet. f Histograms of Al/lo
obtained from nanopore experiments of G and A (Device #4) displayed as their
fitting curves. Mean peak values: G, 0.229 + 0.016; A, 0.295 + 0.021. The average
identification accuracy is 88.41%. g Graphical summary of precision, recall, and

F1 score from SAAINet for the data in (f).
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Fig. 2 | Identification of single amino acids. a-h Histograms of Al/l, obtained
from nanopore experiments performed for 20 amino acids, and the results are
displayed in the following groups: electrically charged amino acids (a, b), hydro-
phobic nonaromatic amino acids (c, d), polar uncharged amino acids (e, f),
hydrophobic aromatic amino acids (g), and special group consists of G, C, and P (h).
The distributions of histograms were fitted into curves. Mean peak values are as
follows, K: 0.127 + 0.028, R: 0.154 + 0.023 (Device #5); D: 0.273+0.035, E:
0.252+0.042; H: 0.298 + 0.026 and 0.389 + 0.068 (Device #6); A: 0.058 + 0.009, V:
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0.065 +0.009 (Device #7); L: 0.230 + 0.076, I: 0.284 + 0.065, M: 0.329 + 0.069
(Device #8); S: 0.228 + 0.033, T: 0.327 + 0.048 (Device #9); N: 0.241+0.031, Q:
0.268 + 0.024 (Device #10); F: 0.212+0.052, Y: 0.241+ 0.054, W: 0.284 + 0.047
(Device #11); G: 0.257 + 0.019 and 0.356 + 0.077, C: 0.326 + 0.053, P: 0.349 + 0.060
(Device #12). Confusion matrixes are attached to each histogram. The results of K
and R were acquired under —200 mV applied to the trans compartment due to their
positive charges at pH 7.8, and that of the remaining 18 amino acids were obtained
under +200 mV due to their negative charges at pH 7.8.

the amino acids being detected, the resulting histogram of the
current trace is bimodal (Fig. 1c, Supplementary Fig. 14), and the
ionic current can be nearly blocked to 0 nA. The MoS, nanopores
can work continuously for dozens of hours and allow the
recording of more than 70,000 events. To facilitate the com-
parisons and discussions, the 20 natural amino acids are grouped
into five groups: electrically charged amino acids (Fig. 2a, b),
hydrophobic nonaromatic amino acids (Fig. 2c, d), polar
uncharged amino acids (Fig. 2e, f), hydrophobic aromatic amino
acids (Fig. 2g), and the other special amino acids (Fig. 2h).

For each group of data, the peaks of histograms of relative current
blockades are separated despite the overlaps. We performed a z-test
on all data which show P-values all less than 0.0001, indicating the high
statistical significance of the observed difference. To call the specific
type of an amino acid from a single event, we introduced a deep
learning network, SAAINet (see Supplementary Note 4), to identify the
individual events (Fig. 1e, Supplementary Figs. 15-20), as shown in the
confusion matrix results attached to each histogram. Different from
the conventional machine learning approaches applied to
nanopores*, our SAAINet not only extracts the specified features but

Nature Communications | (2023)14:2895



Article

https://doi.org/10.1038/s41467-023-38627-x

a b c
Device #13 Device #14 Device #10
60 16 10
D IR 73.76 o E BEEREN 40.27 N AR 96.67
50 Qo a Fe]
© © 8 Ko}
N - 12 © 3
40 ] E g )
- =N 88.65 o = 23.49 W(EY > 6 EL 95.00
2 30 5N s 8 E & N L
o 20 Predicted label a Predicted label 04 Predicted label
4
10 2
g
0 0 0
0.06 0.08 0.10 0.12 0.14 0.16 0.30 0.40 0.50 0.60 0.20 0.40 0.60 0.80
A/l A/, I/,
d e f
Device #13 Device #14 Device #10
5 o0 o o o
HO NOH 5 HOWOH 5 Lo HN NOH
I [ I i
4 O NH, 4 NH, 4 v O NH,
3 Asp (D) 3 Glu (E) 3 P Asn (N)
2 2 2 e
. el 25
6 25 e 4
1 HA 1 n15 1 s nm
2 ' 5 %3 5
0 i 0 dadaany 0 -
g 1 1 1 1 " " " " " 1 1 1 1
o 0.06 0.10 0.14 0.18 0.30 0.40 0.50 0.60 0.20 0.40 0.60 0.80
£
E 5 ' 0 5 ? ? 5 T i
a b HN NOH H;"‘WOH H3CMOH
4 ! O NH, 4 NH, 4 CH, NH,
3 A Asn (N) 3 Gin (Q) 3 ; Leu (L)
2 o 2 2 ]
' 16 '
et 8 : 8
1 04t nj 1 Hlf 1 ; Hj
0 ?: E ’ 0 ) 0 - ’
0.06 0.10 0.14 0.18 0.30 0.40 0.50 0.60 0.20 0.40 0.60 0.80
Al Al Al

Fig. 3 | Ultrahigh resolution of MoS, nanopores for identifying chemical
groups. a-c Histograms of Al/l, values for D and N (Device #13), E and Q (Device
#14), and N and L (Device #10), respectively. The distributions of histograms were
fitted into curves. Mean peak values: D, 0.072 + 0.006; N, 0.083 + 0.006; E,

0.300+0.037; Q, 0.314 + 0.03L; N, 0.218 + 0.042; L, 0.360 + 0.078. The average
identification accuracy is 81.21%, 68.12%, and 95.83%, respectively. d-f Heatmaps
for D and N (Device #13), E and Q (Device #14), and N and L (Device #10), respec-
tively. The width of the box in figure (d-f) represents the standard deviation.

also directly converts the ionic current into vectors, showing a high
universality for analysis of nanopore data (Supplementary Figs. 17-20).

The electric charge amino acids carry varies widely. At pH 7.8
(buffer: 1M KCI, 10 mM Tris-HCI, 1 mM EDTA), aspartic (D, 133.11 Da),
glutamic (E, 147.13 Da), and histidine (H, 155.15Da) are negatively
charged, while lysine (K, 146.19 Da) and arginine (R, 174.20 Da) are
positively charged. This charge contrary requires inverting the bias
direction for electrophoretically driving the related amino acids to
translocate through the pore (Supplementary Fig. 21), and thus these
five amino acids (D, E, H, K, R) are divided into two subgroups. Read-
ings of these five amino acids have been reproduced in five different
MoS, nanopore devices (Fig. 2a, b, Supplementary Fig. 22). For Kand R,
the mean values of Al/ly are 0.127 + 0.028 and 0.154 + 0.023, and the
average identification accuracy of K and R reaches 82.18% (Fig. 2a). The
peaks of D and E (0.273 + 0.035 and 0.252 + 0.042) are too close to be
distinguished directly (Fig. 2b). However, the histogram of H shows an
obvious difference from the other two amino acids, featuring two
adjacent peaks with mean Al/ly values of 0.298+0.026 and
0.389 +0.068, which can be caused by the different pore entering
orientations of H (Supplementary Fig. 23). With SAAINet that accounts
for more characters of the nanopore signal, D, E, and H can be clearly
identified with an overall accuracy of 82.08%.

Among the five amino acids in the hydrophobic nonaromatic
group (Fig. 2c, d), methionine (M, 149.21Da) has a chance to

induce a relatively large current blockade because of the mole-
cular interaction between the sulfur atom of M and the MoS, pore
edge. In this set of experiments, we also found that the isomeric
amino acids leucine (L, 131.18 Da) and isoleucine (I, 131.18 Da) can
induce distinguishable current blockades (Fig. 2d). In seven MoS,
nanopore devices (pore size ranging from 0.5-1.4nm), we
observed that | showed a higher value of Al/lp than L in five
devices (Fig. 2d, Supplementary Fig. 24a), but the results were
reversed in the other two devices (Supplementary Fig. 24b). The
latter case happened in the nanopores with 0.6 nm diameter. We
attribute this change to the possibility that the sizes of nanopores
can influence the pore entering orientation of amino acids. With
SAAINet, the average identification accuracy of these two iso-
meric amino acids improves to 87.25% (Supplementary Fig. 24a).

For polar uncharged amino acids, serine (S, 105.09 Da),
threonine (T, 119.10 Da), asparagine (N, 132.12 Da), and glutamine
(Q, 146.15Da), the relative current blockades are positively cor-
related with the volumes of the molecules (Fig. 2e, f, Supple-
mentary Fig. 25). It is worth noting that the difference is only one
methyl group for S and T, and one methylene group for N and Q.
The ability to identify this group of amino acids indicates that
MoS, nanopores can recognize single chemical group with
molecular weight as low as 14.01Da (Fig. 2e). Five nanopore
devices used for the experiments of S and T showed reproducible
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discriminations of this chemical group difference in the relative
current blockades (Supplementary Fig. 25a), and SAAINet brings
the overall accuracy to 84.94% (Fig. 2e).

The results for phenylalanine (F, 165.20 Da), tyrosine (Y,
181.19 Da), and tryptophan (W, 204.20 Da) are in line with the expec-
tations based on their volumes (Fig. 2g), W >Y > F in the values of Al/lo,
and the overall identification accuracy reaches 72.59%. Note that there
is only one hydroxyl group difference between F and Y; however, their
Al/ly still reveals a clear difference (Fig. 2g). This result was reproduced
in five devices (Supplementary Figs. 11 and 26) and proved again that
MoS, nanopores have superior sensitivity for revealing chemical group
difference.

Among the remaining three amino acids, glycine (G, 75.07 Da),
cysteine (C, 121.16 Da), and proline (P, 115.13 Da), P produced the lar-
gest Al/lp value of 0.349 + 0.060, due to the five-membered ring in its
structure that makes it the largest of the three amino acids in volume
(Fig. 2h, Supplementary Fig. 27). Similar with M, C also has a chance of
blocking the nanopores due to the contained sulfur atom?. Overall,
the relative current blockade was found to be a robust feature (Sup-
plementary Note 3, Supplementary Figs. 28 and 29) for identifying
single amino acids which increases with the increase of the volume of
amino acids. Our conclusion is consistent with the molecular dynamics
simulation results obtained by Barati Farimani et al.**, which model a
similar MoS, nanopore system.

The identification accuracy depends on the interaction
between the type of amino acid and the nanopore. For identifying
amino acids with clear structural differences, our accuracy of
identification exceeds 90%, such as distinguishing H from D, E
(90.62%) and distinguishing P from G, C (92.66%) (Fig. 2b, h).
Note that for amino acids with very similar structures (F and Y),
our approach can still reach 85.63% (Supplementary Fig. 26a). The
accuracy can be potentially improved by optimizing the nanopore
geometry because the size and the thickness of nanopore influ-
ence the sensitivity, and by reducing the nanopore noise®. In
addition, the accuracy can be computationally improved by
increasing the training dataset.

To prove that the majority of natural amino acids can be dis-
criminated in MoS, nanopores, the experiments of 16 amino acids
were carried out in the same nanopore (Supplementary Fig. 2). In the
buffer with pH=7.8, K and R carry opposite charge to the other 18
amino acids (Supplementary Fig. 21). We thus excluded K and R for
making the comparison, that is, up to 18 amino acids can be compared
simultaneously. We managed to compare the signals of 16 out of 18
amino acids in the same nanopore (Device #15). Moreover, the current
MoS, nanopore system is able to identify one specific amino acid
within a mixture (Supplementary Fig. 30).

The resolution of MoS, nanopores for identifying chemical
groups

The ultimate resolution of nanopores for the detection of peptides has
been continuously updated in recent years. Discrimination among
peptides differed by one amino acid substitution has been demon-
strated using the engineered FraC nanopores®, in which the resolution
reached 44 Da. The distinction of amino acids carried in a polycationic
polymer in aerolysin nanopores has shown remarkable sensitivity".
However, these measurements distinguished single amino acids in
indirect ways that measure the changes by substitutions. To further
explore the ultimate resolution of the current MoS, nanopore system,
we carried out three groups of experiments for discriminating amino
acids with sub-1 Da mass difference (Fig. 3). For Dand N, or Eand Q, the
mass difference between the pairs in each group is only 0.99 Da, and
the molecular skeleton is the same except for the end chemical group,
where the electrically charged amino acids (D, E) have -OH (17.01 Da),
polar uncharged amino acids (N, Q) have -NH, (16.02 Da). Though each
pair of amino acids has a very close molecular weight or volume, the
difference in their functional groups creates a difference in their
molecular configuration and carried charges, which leads to distin-
guishable current blockades in MoS; nanopores (Fig. 3a, b, d, e, Sup-
plementary Fig. 31a, b). For L and N with a molecular weight difference
of 0.94 Da, their structures differ a lot, and their relative current
blockades can also be distinguished (Fig. 3¢, f, Supplementary Fig. 31c).
To the best of our knowledge, this is the highest resolution in nano-
pores (discriminating sub-1 Da molecular weight difference) that has
been reported experimentally.

Discriminating amino acid phosphorylation

In principle, sub-1 Da nanopore resolution can provide sufficient spa-
tial resolution for protein sequencing with an ultra-confined nanopore
sensing region. However, de novo protein sequencing still requires a
way to precisely control the stepping of the peptide through the pore.
The introduction of enzymes" to biological nanopores for controlling
the motion of peptides brings enlightenment, considering the com-
patibility of DNA polymerases with solid-state nanopore systems is
shown feasible®. Thanks to the single amino acid discrimination with
sub-1 Da resolution in the MoS, nanopore system, we can apply the
current methodology to identify post-translational modifications of
amino acids. The phosphorylation of tyrosine (Y) plays a key reg-
ulatory role in cell activity, and the abnormal Y phosphorylation is
closely related to cancerization®. We analyzed tyrosine (Y) and phos-
phorylated tyrosine (p-Y) using a MoS, nanopore (Fig. 4a—c, Supple-
mentary Fig. 32). As shown in Fig. 4b, the mean values of Al/l, for Y and
p-Y are 0.106 + 0.012, 0.128 + 0.019, and the identification accuracy is
80.67%. This demonstration indicates that MoS, nanopores have the
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potential to recognize phosphorylated amino acids and should not be
only limited to detecting phosphorylation but also generally apply to
detecting any functional group change of a single amino acid.

Discussion

To summarize, we have shown that a sub-nanometer engineered MoS,
nanopore can be used to directly identify single amino acids and
recognize the chemical modifications. When the physical dimension of
the nanopore system is rationally designed, the nanopore resolution
could be greatly improved to a level of sub-1 Dalton. With our MoS,
nanopore, 16 out of 20 types of natural amino acids can be identified
due to the present discrimination capability of MoS, nanopores, which
could potentially be further improved by optimizing the pore struc-
ture, as well as the fact that two types of amino acids (K and R) are
positively charged in the current voltage driven experimental system
in contrast to the other 18 amino acids, which can be potentially
addressed by further implementation of the enzyme-based peptide
driven approach®™ Y. The advance in nanopore resolution, in a future
combination with such precise peptide stepping control methods, may
pave the way to single-molecule peptide sequencing. Finally, we
believe this understanding should not only limit to the MoS, pores
explored in this work but also illuminate that the atomic engineering of
chemically modified biological nanopores, ultrathin solid-state nano-
pores, or de novo designed molecular nanopores® with sub-
nanometer sensing region is required for promoting protein sequen-
cing and ultrasensitive chemical analysis with nanopores.

Methods

Nanopore fabrication

The procedure for the fabrication of MoS, nanopore devices refersto a
previously published method® ™. In brief, single-layer MoS, films
grown by chemical vapor deposition were transferred from SiO,/Si
substrates and suspended on micro/nano fabricated SiN, membranes
with a supporting hole of 40-80 nm. Using the electrochemical etch-
ing method*, MoS, nanopores were drilled under 0.8-1V voltages.
Flow cells were assembled by two polymethylmethacrylate chambers
which sealed the chips with nanopores using two rubber O-rings.
H,0:ethanol solution (1:1, vol:vol) was injected into each chamber, and
the nanopore chips were wetted for at least 30 min before performing
ionic current measurements. A pair of Ag/AgCl electrodes connected
to patch clamp amplifier was used to apply voltages and measure ionic
current. An external voltage is applied on the trans side of the cham-
ber, and the cis side is electrically grounded®. The bias direction of the
voltage depends on the charged nature of the amino acids in the buffer
solution (Supplementary Fig. 21).

Nanopore measurement

An Axopatch 200B patch clamp amplifier (Molecular Devices, USA)
was used to record the ionic current. An NI PXI-4461 card was used for
data digitalization and data acquisition. Data recording was filtered
through a 10-kHz low-pass Bessel filter, and the sampling frequency
was fixed to 100 kHz.

Amino acids identification

1M KClI solution buffered with 10 mM Tris-HCI and 1 mM EDTA at pH
7.8 was used as the buffer solution unless otherwise specified. Amino
acids (Sangon Biotech Co., Ltd., Shanghai, China) were dissolved in the
buffer solution and diluted to 2 uM for nanopore experiments. Before
each experiment, the two chambers of devices were flushed at least
three times to ensure the absence of the analyte residuals from the
previous round of the experiment.

Data analysis
Experimental data were analyzed using Igor Pro 6.12 software (Wave-
Metrics) and MATLAB R2019a software (MathWorks). The current

traces displayed in the figures were downsampled to 10 kHz. The trace
in Fig. 1b was processed with a window-based FIR filter (filter order:
1000, frequency constraints: 2000, type: highpass). Event detection
was performed using an open-source Matlab code package,
Transalyzer®. For the parameter setting, we chose the Butter 2™ type
with 10 kHz for the filter, and the baseline was calculated by a moving
average window of 300 ms. Each type of single amino acid was trans-
located in at least two different devices, and representative and
reproduced results are presented in Supplementary Figs. 22, 24-27.
The function in Distribution Fitting Tool (Matlab) was used for gen-
erating histograms of relative current blockades and fitting them into
curves (Display type: Density, Distribution fit: Normal Kernel).

Deep neural network

To classify different kinds of amino acids, a deep learning net-
work, called Single Amino Acids Identification Network (SAAINet,
Supplementary Software provided), with long short-term memory
(LSTM)*’ units, is developed to model the sequential information
effectively. LSTM is a special kind of neural network, which is
improved by a recurrent neural network (RNN) to mitigate the
long learning dependencies problems. With the ability to effi-
ciently capture long-term information with different sequence
lengths, deep neural networks with LSTM are widely used in
natural language process (NLP)®, speech recognition®’, and
action recognition®’. The overall structure of our SAAINet model
is shown in Supplementary Fig. 16, which consists of the LSTM,
the pooling layer, four fully connected layers, and the output
layer (refer to Supplementary Note 4 for more details).

Statistics and reproducibility

Representative reproduced results of single amino acids identification
experiments are provided in Supplementary Materials. At least 300
data points were collected for each experimental measurement, and
the majority of results include more than 1000 data points. P-values of
the z-test on all the data are less than 0.0001. Data was filtered through
a10-kHz filter, and the events were excluded when the dwell time was
less than 0.1 ms. All the experiments were performed independently
under comparable experimental conditions. No randomization or
blinding was used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The main data generated in this study are available within the Article,
the Supplementary Information file, and the Source Data file. Source
data are provided with this paper.

Code availability
The codes of the Single Amino Acids Identification Network (SAAINet)
are available within the Supplementary Software.
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