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Learning how network structure shapes
decision-making for bio-inspired computing

Michael Schirner 1,2,3,4,5 , Gustavo Deco 6,7,8,9 & Petra Ritter 1,2,3,4,5

To better understand how network structure shapes intelligent behavior, we
developed a learning algorithm that we used to build personalized brain net-
work models for 650 Human Connectome Project participants. We found that
participants with higher intelligence scores took more time to solve difficult
problems, and that slower solvers had higher average functional connectivity.
With simulations we identified a mechanistic link between functional con-
nectivity, intelligence, processing speed and brain synchrony for trading
accuracy with speed in dependence of excitation-inhibition balance. Reduced
synchrony led decision-making circuits to quickly jump to conclusions, while
higher synchrony allowed for better integration of evidence and more robust
working memory. Strict tests were applied to ensure reproducibility and
generality of the obtained results. Here, we identify links between brain
structure and function that enable to learn connectome topology from non-
invasive recordings and map it to inter-individual differences in behavior,
suggesting broad utility for research and clinical applications.

Do intelligent people think faster? Strong correlations between
reaction times and intellectual performance support this idea, pro-
viding a cornerstone for intelligence research for over one century1–6.
Here, we show an important exception in empirical data and provide
an explanation based on brain simulation (Supplementary Movie 1).
Participants with higher intelligence were only faster when the test
was simple. Conversely, in hard tests that required problem solving
over several seconds or minutes without time limit, participants with
higher intelligence used more, not less time to arrive at correct
solutions. We reproduced this link between reaction time and per-
formance in personalizedmulti-scale brain networkmodels7,8 (BNMs)
that couple each participant’s structural white-matter connectivity
(SC) with a generic neural circuit for decision-making (DM) and
working memory (WM). Simulation results indicate that decision-
making speed is tradedwith accuracy, resembling influential theories

from the fields of economy and psychology on fast and slow
thinking9.

Intelligence is here defined as the performance in psychometric
tests in cognitive domains like verbal comprehension, perceptual
reasoning or working memory. A consistent finding is that individuals
who perform well in one domain tend to perform well in the others,
which led to the derivation of a general factor of intelligence called g-
factor10.While the g-factor also targets learned skills like verbalfluency,
the term fluid intelligence (FI) refers to abilities related to solving new
problems independently of acquired knowledge11. Reaction time (RT)
as a measure of cognitive processing speed provides strong evidence
in support of the idea that people are more intelligent because they
have faster brains2. A meta-analysis over 172 studies and 53,542 parti-
cipants reported strong negative correlations between general intel-
ligenceanddiversemeasures ofRT6. RT and intelligenceare also linked
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over the lifespan: RT increases with age and is strongly correlated with
decline in other domains5,12. Intriguingly, RT is a more powerful pre-
dictor of death thanwell-known risk factors like hypertension, obesity,
or resting heart rate: RT is the second most important predictor of
death after smoking13 and explains two-thirds of the relationship
between general intelligence and death14. After adjusting for smoking,
education, and social class, RTwas an even stronger predictor of death
than intelligence. However, these results do not imply that PS is the
causal factor underlying intelligence: an important counterargument is
that training and improving PS does not transfer to untrained
measures15.

We found that participants with higher intelligence were only
quicker when responding to simple questions, while they took more
time to solve hard questions. This became apparent in the PennMatrix
Reasoning Test (PMAT), which consists of a series of increasingly dif-
ficult pattern matching tasks for quantifying FI11. While PS tests are
typically so simple that people would not make any errors if given
enough time, FI tests like PMAT can be unsolvable even without time
limit. PMAT requires to infer hidden rules that govern the figure, which
involves a recursive decomposition of complex problems into easier
subproblems, forming a hierarchy of DM processes11. To solve the
problem, it is required to make decisions about tentative solution
paths while storing previous progress inWM. Sub-problems higher up
in the hierarchy need to be held longer in WM as evidence from lower
in the hierarchy needs to be integrated later in time11. Therefore, taking
decisions on higher-level problems must be held out until evidence
from sub-problems was integrated to not prematurely jump to a
conclusion. This form of cognition can be contrasted with the flex-
ibility required by PS tests where it is actually advantageous if deci-
sions donot rely on extensive accumulationof evidence andmemories
can be flexibly overwritten.

Here, by closely fitting brain models to each subject’s functional
connectivity (FC), we identify a fast mode of cognition for rapid
decision-making and flexible working memory and contrast it with a
slow mode of cognition that supports prolonged integration of
information and more stable working memory. Importantly, by iden-
tifying a smooth andmonotonous relationship between structural and
functional neural network architecture it was possible to devise a

network fitting algorithm that allows to simultaneously and precisely
control the state of synchronization between every pair of network
nodes, allowing to tune each connection from full antisynchronization
to full synchronization, enabling a close reproduction of whole-brain
subject-specific FC. In the following, we first provide behavioral find-
ings that link intelligence test results with processing speed and FC
(Fig. 1 and Table 1). Then we demonstrate a computational framework
for closely fitting BNMs to personal FC (Figs. 2 and 3), and subse-
quently explain the empirical data based on the in silico identified
biological candidate mechanisms (Figs. 4–6 and Supplementary Fig-
ures). For the fitting we created a parameter learning algorithm that
makes use of our observation that FC and synchronization between
two simulated brain areas can be smoothly and monotonically tuned
via their long-range excitation-inhibition balance (E/I-ratio). We then
show that the internal dynamics of the fitted models correlated with
the empirical cognitive performance of the subjects (Fig. 4a, b). In
addition, E/I-balancemodulated the amplitude and synchrony of large-
scale synaptic currents in a way that modulated DM winner-take-all
races and WM persistent activity in accordance with the empirical
observations (Figs. 5 and 6 and Supplementary Fig. 4). Phase space
analysis of the resultingmodel dynamics allowed to frame the trade-off
between speed and accuracy in terms of generic dynamical systems
behavior in dependenceof the E/I-balance of long-range brain network
topology, which may jointly explain individual variability in FC, intel-
ligence, and processing speed (Supplementary Figs. 5 and 6 and Sup-
plementary Movie 1).

Results
Higher intelligence: taking complex decisions slowly
We analyzed correlations between g-factor, FI (PMAT24_A_CR), RT for
correct responses in the FI test (PMAT24_A_RTCR), and processing
speed for 1176 participants of the Human Connectome Project (HCP)
Young Adult study (Table 1)16. FI was measured by the number of
correct responses in PMAT (PMAT24_A_CR)11,17. Processing speed was
measured by the NIH Toolbox tests Dimensional Change Card Sort18

and Pattern Completion Processing Speed19 (CardSort_Unadj and
ProcSpeed_Unadj). For findability we use the same abbreviations for
the cognitive tests as used in the HCP (Table 2).

Fig. 1 | Correlations between intelligence, RTs and FC. a, b Group-average g-
factor (30 groups, based on g-factor, N = 650 subjects) versus RT for correct
responses in PMAT questions #1 (very easy, p =4:0× 10�6) and #24 (very hard,
p= 3:0× 10�6). c, d Group-average and subject-level correlations between g/PMA-
T24_A_CR and the RT for correct responses in each individual PMAT question.
Subjects with higher g/PMAT24_A_CR were quicker to correctly answer easy ques-
tions, but they took more time to correctly answer hard questions (questions
sorted according to increasing difficulty; sign of correlation flips at question #9).
e Group-average g-factor versus mean FC (20 groups, based on g-factor,

N = 650 subjects, p=0:13). f Group-average PMAT24_A_RTCR versus mean FC
(20 groups, based on PMAT24_A_RTCR, N = 650 subjects, p=6:9× 10�7).
g, h Group-average (20 groups, based on PMAT24_A_RTCR) and subject-level cor-
relations between mean FC and RT for correct responses in each PMAT question.
Subjects that took more time to correctly answer test questions had a higher FC,
independent of whether the question was easy or hard. P values of two-sided
Pearson’s correlation test: *p <0.05, **p <0.01, ***p <0.001; including only p values
that remained significant after controlling for multiple comparisons using the
Benjamini–Hochberg procedure with a False Discovery Rate of 0.1.
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Table 1 | Correlation coefficients between intelligence, RT, and PS on an individual-subject level (N = 1176)

Pearson correlation (N = 1176) g PMAT24_A_CR PMAT24_A_RTCR CardSort_Unadj

PMAT24_A_CR 0.79*

PMAT24_A_RTCR 0.5* 0.72*

CardSort_Unadj 0.43* 0.23* 0.03

ProcSpeed_Unadj 0.25* 0.16* −0.04 0.42*

Abbreviations of cognitive tests are introduced in Table 2. Note that PMAT24_A_RTCRmeasures RTs (larger values indicate longer times),whileCardSort_Unadj and ProcSpeed_Unadj are PS tests that
measure the inverse of time (larger values indicate shorter times), hence signs of the correlation coefficients are reversed. P values of two-sided Pearson’s correlation test: *p < 0.001.

Fig. 2 | Modeling outline. a 379-nodes large-scale BNMs were constructed from
person-specific white matter connectomes estimated with dwMRI tractography.
In addition, a simplified network with only two nodes (but identical node
dynamics) was used to create E/I-ratio tuning curves (Fig. 4). b In previous BNM
studies long-range white matter coupling from excitatory to inhibitory popula-
tions was often absent. Adding these connections allowed to tune the relative
strength of long-range excitatory-to-excitatory versus long-range excitatory-to-
inhibitory connections, enabling to precisely tune the E/I-ratio of synaptic inputs
between each pair of BNM nodes. Importantly, setting the E/I-ratio allowed to
monotonically and smoothly control the FC between all nodes (Fig. 3a). Under-
lying predicted fMRI time series, the E/I-ratio allowed to smoothly tune syn-
chronization and amplitude of synaptic currents (Fig. 4). c By systematically
tuning E/I-ratios, the fit between simulated and empirical FC can be increased

until full similarity (Fig. 3b, c). d Upon fitting each participant’s BNM with their
empirical FC, each BNMwas coupled with a smaller scale frontoparietal circuit for
simulating DM and WM. Subpopulations in prefrontal cortex (PFC) and posterior
parietal cortex (PPC) are mutually and recurrently coupled to encode two deci-
sion options A and B. For example, evidence for option A recurrently excited the
populations APPC and APFC (red connections) while it led to an inhibition of the
populations BPPC and BPFC (blue connections). Importantly, instead of indepen-
dent noise, we used the activity of the PFC and PPC regions of the 379-nodes
large-scale network to drive the DM circuit, which allowed to analyze how local
decision-making and working memory performance can be modulated by large-
scale brain network topology. Panel a is adapted from ref. 77. and used under a
CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

Fig. 3 | Identification of a smooth, monotonic relationship between E/I-ratio
and FC to fit brain network models. a Tuning curves for a reduced model with
only two nodes, but otherwise identical to the 379-nodes BNM. FC (that is, corre-
lation) between the two nodes increased smoothly andmonotonically as a function
of their E/I-ratio

wLRE
1,2

wFFI
1,2
. The relationship between E/I-ratio and FC persisted when the

strength of noise σ (upper panel; Eqs. 5 and 6) and the strength of structural
coupling Cij (lower panel; Eqs. 1 and 2) weremodulated for test purposes (both are
fixedparameters during the fitting of the full 379-nodesmodel).b Fitting results for

the full 379-nodesmodel for one exemplary FC. Empirical (upper triangular portion
of thematrix) versus simulated (lower triangular portion of thematrix) FC and joint
distributions without E/I-tuning (upper panel) and with E/I-tuning (lower panel).
c Pearson correlations and root-mean-square errors between all N = 650 empirical
and simulated FCs for three different model variants: EI-tuning (the tuning algo-
rithm applied on both wLRE

ij and wFFI
ij ), E-tuning (the tuning algorithm applied only

on wLRE
ij ), original (tuning of a scalar global coupling scaling factor to rescale Cij).
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Reproducing established results6, individuals with higher g and FI
(PMAT24_A_CR) were faster in the simple processing speed tests.
However, they needed more, not less time (PMAT24_A_RTCR) to form
correct decisions in the harder FI test (PMAT24_A_CR, Table 1). This
observation is remarkable as it challenges the notion that higher
intelligence is the result of a faster brain.

The observation may however have a trivial explanation: PMAT
questions are arranged in order of increasing difficulty and the test is
discontinued if the participantmakes five incorrect responses in a row.
People with higher intelligence could have a higher RT simply because
they advanced until the more difficult questions. To exclude this
explanation,we correlated intelligencewith theRTs for each individual
PMAT question, which shows the impact of problem difficulty on RT:
for the first eight questions participants with higher g and PMA-
T24_A_CR were faster to give correct answers, but slower for the
remaining sixteen questions (Fig. 1a–d).

Slow solvers have higher resting-state functional connectivity
Next, we compared cognitive performance with mean FC (average
correlation between all region-wise fMRI time series) in a subset of
N = 650 participants with complete data and where no quality control
issues were identified by the HCP consortium (see Methods). We have
selected mean FC for the subsequent analyses as it is a compact
representation of whole-brain FC and related to E/I-balance per our
analysis (Figs. 3 and 4). Mean FC had no significant correlation with g
on single-subject level (r =0.02, p =0.69) and group level (Fig. 1e and
Supplementary Fig. 1a). On the single-subject level there was a sig-
nificant correlation between mean FC and PMAT24_A_RTCR (r = 0.13,
p =0.0012). Multiple regression to compute the coefficient ofmultiple
correlation between all reported behavioral variables (g, PMA-
T24_A_CR, PMAT24_A_RTCR, ProcSpeed, CardSort) and mean FC

yielded r = 0.16 (p <0.001), which was only slightly higher than the
univariate correlation between mean FC and PMAT24_A_RTCR.

Importantly, independent of the complexity of the question there
were strong positive correlations between mean FC and the times to
correctly answer each individual PMAT question (Fig. 1g, h): slower
participants tended to have highermean FC, regardless of whether the
questionwaseasyorhard, indicating that FC (orproperties of thebrain
network underlying FC) could be related to the modulation of pro-
cessing speed, which we studied with computational models below.

Excitation-inhibition balance controls functional connectivity
Which neurophysiological processes underly the observed correla-
tions between intelligence, RT, and FC? To study neuronal processing
in silicowe created BNMs for the 650 subjects using a tuning algorithm
that fits each participant’s simulated FC with their empirical FC (Figs. 2
and 3). The BNMs use coupled neural mass models to simulate the
electric, synaptic, firing, and hemodynamic (fMRI) activity of a 379-
nodes whole-brain network. Each node consists of one excitatory and
one inhibitory population that mutually and recurrently interact. To
simulate long-range white matter coupling, the neural masses were
connected by each participant’s SC, which were estimated by dwMRI
tractography. Importantly, we added feedforward inhibition to
increase biological realism20–30: while in previous BNM studies there
was typically only long-range coupling between excitatory popula-
tions, here, excitatory masses additionally targeted inhibitory popu-
lations (Fig. 2b and “Methods”). In addition, the strength of local
inhibitory feedback from the inhibitory to the excitatory population of
each node was controlled by inhibitory synaptic plasticity31, which was
set to tune each excitatory population’s long-term average firing rate
to 4Hz in a process called Feedback Inhibition Control (FIC)32. By
tuning the ratio of long-range excitation (LRE; strength of long-range

Fig. 4 | Model dynamics correlate with empirical cognitive performance. FC,
synchrony, amplitude and variance of neural population activity depend on E/
I-ratios. a PMAT24_A_RTCR versus strength of correlation of input currents in the
full 379-nodes large-scale BNMs. The models of slower subjects had a higher syn-
chrony between the time series of synaptic currents IEi (p=9:8× 10�5).
b PMAT24_A_RTCR versus input amplitude. The models of slower subjects had a
lower average synaptic current amplitude IEi ðp =8:6× 10�4Þ). c E/I-ratio versus
parameter settings in the simplified two-node large-scale model. The E/I-ratio of a
connection is defined by the quotient of long-range excitation wLRE

ij (black) and
feedforward inhibition wFFI

ij (black). Ji values (green) were obtained by FIC. d E/I-
ratio versus FC for active (black) and inactive FIC (blue). A monotonic relationship
between E/I-ratio and FC only emerged when FIC was active. e E/I-ratio versus
correlation of input currents. f E/I-ratio versus input amplitude. With FIC input
amplitudes peaked at relatively low E/I-ratios and then continued tomonotonically
decrease for increasing E/I-ratios g E/I-ratio versus input variance showed an

inverse pattern compared to f. h Amplitude versus variance of inputs. FIC coupled
the varianceof synaptic inputswith the amplitudeof synaptic inputs: the higher the
variance (resulting from stronger coupling), the lower the amplitude. i, j Firing rate
(Eq. 3) and input current (Eq. 1) time series after injecting 10-Hz sinusoidal waves
with increasing variance for active (black) and inactive FIC (blue). FIC compensated
higher input variances (which were modulated by the fitting algorithm via the
multiplicative coupling parameters wLRE and wFFI) with a lower mean (h). This was
necessary as the upper half-wave of the input continued to grow in amplitude for
increasing E/I-ratios, while the lower half-wave was bounded by 0Hz firing (gray to
black lines), which required FIC to increase Ji to arrive at the same target average
firing rate of 4Hz. Data in panels c-h are presented as mean values +/- SD derived
fromN = 100 simulationswith different randomnumber generator seeds. Obtained
p values of two-sided Pearson’s correlation test: *p <0.001; including only p values
that remained significant after controlling for multiple comparisons using the
Benjamini-Hochberg procedure with a False Discovery Rate of 0.1.
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Fig. 5 | DM performance depends on amplitude and synchrony of input cur-
rents to the isolated frontoparietal DM circuit. Decreased amplitude of PFC
and PPC noise and increased synchrony of PPC noise led to more correct
decisions and longer integration time in the DM circuit. a Percent correct
decisions for varying themean amplitudes of the input noise time series to the PFC

and PPC modules of the DM circuit IPFCnoise,i and IPPCnoise,i. b Evidence integration times
for varying mean amplitudes of the input noise time series IPFCnoise,i and IPPCnoise,i.
c Percent correct decisions for varying correlation coefficients between input noise
time series IPFCnoise,i and IPPCnoise,i. d Evidence integration times for varying correlation
coefficients between input time series IPFCnoise,i and IPPCnoise,i.

Fig. 6 |Multiscalemodeling: couplingPFCandPPCnodes of theperson-specific
BNMs with the corresponding modules of the generic DM circuit. The models
of subjectswith higher PMAT24_A_CR (fluid intelligence)made fewermistakes,
but were slower, echoing the empirically observed trade-off. a Distribution of
significant correlations between mean input of all BNM nodes and PMAT24_A_CR
(p <0.05 for 35 of 379 nodes), respectively PMAT24_A_RTCR (p <0.05 for 26 of 379
nodes) over all N = 650 models. b, c Group-average PMAT24_A_CR versus DM
performance (r =0.77, p = 7:2 × 10�5), respectively DM time (r =0.69,

p= 7:2× 10�4), for an exemplary combination of PFC and PPC nodes. Data are
presented asmean values +/− SD over all N = 650models each simulated 100 times
with different random number generator seeds. d Distribution of significant cor-
relations between group-average PMAT24_A_CR and DM time (p <0.05 for 57 of 90
possible combinations), respectively, DM performance (p <0.05 for 19 of 90 pos-
sible combinations) over all N = 650 models. Including only correlations that
remained significant after controlling for multiple comparisons using the
Benjamini-Hochberg procedure with a False Discovery Rate of 0.1.

Table 2 | Abbreviations of the used cognitive tests

Test Description References

g, g-factor General factor of intelligence derived using a bi-factor model of intelligence82 84

PMAT24_A_CR Number of correct responses in Penn Progressive Matrices. Nonverbal estimate of fluid intelligence using an abbreviated
version of Raven’s standard progressive matrices test

17

PMAT24_A_RTCR Median response time (ms) for correct responses. Larger values for higher RT 17

CardSort_Unadj Score in NIH Toolbox Dimensional Change Card Sort test, a measure of cognitive flexibility. Smaller values for higher RT 18,85

ProcSpeed_Unadj Score in Pattern Completion Processing Speed test. Smaller values for higher RT 19
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excitatory-to-excitatory couplingwLRE
ij , Eq. 1) to feedforward inhibition

(FFI; strength of long-range excitatory-to-inhibitory coupling wFFI
ij ,

Eq. 2) between each pair of brain regions it was possible to precisely
control the synchrony, respectively functional connectivity, of the
entire brain network (Fig. 3 and Supplementary Movie 1). Although
many parameters are simultaneously tuned, whichmay raise concerns
about overfitting, we show below that the fitting procedure robustly
predicts the samemodel dynamics over different re-initializations and
that the fitted models produce generalizable mechanistic insights and
meaningfully comparable predictions over the subject cohort.While in
previous models the values of wLRE

ij and wFFI
ij were implicitly set to the

same scalar constant for everypair of brain regions,with this approach
E/I ratios can be justified in a principled and data-driven way, in
agreement with the direct relationship that we identified between E/I
ratios and FC: increasing E/I-ratios led to increasingly positive FC up to
full synchronization; vice versa, decreasing E/I-ratios decreased the
correlation between the simulated fMRI time series until full anti-
synchronization (Fig. 3a). By simultaneously tuning the E/I-ratios of
every connection to minimize the error between empirical and simu-
lated FC, it was possible to considerably improve FC fits to a point
where the simulated FCs of all 650 individual BNMs became almost
indistinguishable from their empirical counterparts, explicitly repro-
ducing even intricate and subtle patterns (Fig. 3b). In comparison to
the original model (Fig. 3c, green curves), where E/I-ratios were left
untuned at their default settings (wLRE

ij = 1 andwFFI
ij =0,8i,j 2 f1, . . . ,Ng)

from Deco et al.32, and compared to a variant where only wLRE
ij values

were tuned (Fig. 3c, red curves), tuning bothwLRE
ij andwFFI

ij at the same
time allows to smoothly set the state of synchronization between each
pair of brain regions (Figs. 3b and 4d, e), which can be used to con-
siderably reduce the root-mean-square error between simulated and
empirical FC (Fig. 3c, blue curves). It is important to point out that E/I-
ratio here refers only to the ratio of the long-range coupling strength

parameters
wLRE

ij

wFFI
ij

without considering the effect of local inhibitory

connectivity Ji. Due to FIC the E/I-ratio of the total sums of long-range

and local currents that arrive at excitatory populations

(
WEI0 +w+ JNMDAS

E
i + JNMDA

P
j
wLRE

ij CijS
E
j

JiS
I
i

, Eq. 1) is always in a balanced state,

which ensures an average firing rate of 4Hz of the excitatory popula-
tion even in the case that long-range connections are unbalanced.

Summarizing, the long-range E/I-ratios between network nodes
control the direction (positive versus negative) and strength of their
synchronization and FC; tuning these E/I-ratios enables simulation of
person-specific empirical FCs with average correlations r >0:97.

Simulated brain activity correlates with cognitive performance
To identify processes relevant for intelligence, we correlated the
dynamics of each subject’s BNM with their PMAT24_A_RTCR. On the
single-subject level we found only a low negative correlation between
PMAT24_A_RTCR and the mean amplitude of synaptic currents
(r = −0.11, p = 0.0068) and a low positive correlation with the mean
correlation between synaptic currents (r = 0.13, p < 0.001). For the two
processing speed measures CardSort_Unadj and ProcSpeed_Unadj no
significant correlations were obtained on the single-subject level.

On the group-average level correlations with PMAT24_A_RTCR
were however large showing that themodels of slower subjects had on
average a lower amplitude of synaptic currents, but a higher synchrony
between synaptic currents (Fig. 4a, b and Supplementary Fig. 2).
Importantly, synaptic currents had an almost linear relationship with
FC on an individual-subject level (Supplementary Fig. 3), indicating
that E/I-ratios also control amplitude and synchrony of synaptic cur-
rents, which possibly points towards brain network mechanisms for
explaining the observed differences in cognition. To better isolate the
involved mechanisms, we again studied a reduced version of the 379-
nodes BNM with only two-nodes.

How E/I-ratios control FC
To study how E/I-ratios modulate FC in isolation we tuned E/I-ratios
from 0.01 to 100 in the two-node model. The two-node model is a
simplified version of the 379-node large-scale brainmodel to study the
effect of large-scale E/I-balance with a simpler network structure
(Fig. 4c–j). The two-nodemodel (Eqs. 1–6) differed from the functional
frontoparietal decision-making circuit33 (DM circuit, Eqs. 7–10) further
introduced below. The two-node model simulated mutual and recur-
rent interaction between one excitatory and one inhibitory population
as in the 379-nodes large-scale model, but with a simpler network of
only two nodes to produce tuning curves (Fig. 4c–h). In contrast, the
DM circuit is an existing frontoparietal circuit model to simulate
winner-take-all competition resulting from cross-inhibition of two
excitatorypopulations viaone inhibitorypopulation,whichwestudied
in isolation (Fig. 5), and after coupling with the 379-nodes large-scale
model to form themultiscalemodel (Fig. 6). Dynamics of the two-node
model were identical to the full 379-regions model but with only two
nodes i,j that hadamutual coupling strength ofCij =Cji = 1. To increase
E/I-ratios we increased wLRE and decreased wFFI under the constraint
wLRE +wFFI = 1 to keep the total sum of inputs constant (Fig. 4c). As
before, FIC was used to tune average firing-rates of the excitatory
populations to abiologically plausible rate of 4Hz32. As before (Fig. 3a),
increasing the E/I-ratio increased FC from a strong negative to a strong
positive correlation (Fig. 4d). Underlying the simulated fMRI, also the
correlation between simulated synaptic inputs increased mono-
tonically from negative to positive (Fig. 4e). This monotonic relation-
ship enabled fitting themodels to empirical FC using a simple learning
rule that increased or decreased E/I-ratios based on the strength of FC
of each connection (Methods). Interestingly, the monotonic relation-
ship only emergedwhen FICwas active (Fig. 4d, e, black curves).When
FIC was disabled (Fig. 4d, e, blue curves), a complex nonlinear rela-
tionship between E/I-ratios and FC appeared, whichwould prevent the
fitting with empirical FC. That is, without FIC, increasing the E/I-ratio
could either increase or decrease the FC, and vice versa, while with FIC
FC canbe smoothly increasedby increasing the E/I-ratio and vice versa.
These observations underline the importance of FIC: only when FIC
was active synaptic correlations increased and synaptic amplitude
decreased for increased E/I-ratios, respectively FC (Fig. 4d–f). There-
fore, onlywith FIC a concordant effect of amplitude and correlation on
decision times and decision accuracy was obtained that is in line with
empirical data. Supplementary section How E/I-ratios control syn-
chrony and amplitude of synaptic currents describes the involved
mechanisms in more detail.

E/I-ratios switch between fast and accurate DM
To better understand how E/I-ratiosmodulate DM andWMwe used an
existing33 frontoparietal circuit model for winner-take-all DM and
persistent activity WM called DM circuit in the following (see Supple-
mentary section Studying DM and WM with a frontoparietal circuit
model). In the DM circuit NMDAergic and GABAergic synaptic
dynamics of prefrontal cortex (PFC) and posterior parietal cortex
(PPC) decision populations are explicitly modeled, while uncorrelated
and independent noise from anOrnstein-Uhlenbeck process is used to
simulate AMPA synapses33. However, a more realistic assumption is
that synaptic inputs are not uncorrelated, but that populations receive
correlated inputs from shared presynaptic groups34–40. Furthermore,
inputs might not necessarily be fully balanced and centered at zero.
Rather, our BNM simulations suggest that input amplitudes and cor-
relations vary heterogeneously across brain areas and subjects and are
strongly related to FC (Supplementary Fig. 3). Consequently, we sys-
tematically varied amplitude and correlationofAMPAnoise inputs and
found that they switch the DM circuit between fast-but-faulty and
precise-but-slowmodes of DM (Fig. 5). Decreasing themean amplitude
of inputs increased decision accuracy as well as integration time
(Fig. 5a, b). Similarly, increasing the correlation of input noise to the
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two PPC populations also led to increased performance and integra-
tion time (Fig. 5c, d). Integration times followed an inverted U-shape
and were at their maxima for intermediate levels of noise correlation
(r ∼0:5, Fig. 5d). In contrast, input correlation to the two PFC popu-
lations had no relevant effects (Fig. 5c, d). These results indicate that
DMperformance depends on synaptic inputs in line with our empirical
data: participants with higher FC (corresponding to lower amplitudes,
but higher input correlations in themodel) were slower (Fig. 1 g, h) but
made fewer errors (Fig. 1c, d). They also corroborate the identified link
between empirical PMAT24_A_RTCR and synaptic inputs in the BNM
simulations, wherehigher input synchrony and lower input amplitudes
correlatedwith longer PMAT24_A_RTCR (Fig. 4a, b and Supplementary
Fig. 2). The underlying dynamic mechanisms are described in supple-
mentary sections How input amplitude modulates DM performance
and How input correlation modulates DM performance (see also
Supplementary Figs. 4 and 5 and Supplementary Movie 1).

E/I-ratios switch between stable and flexible WM
We also tested the effect of input amplitude onWM in the DM circuit
and created bifurcation diagrams that visualize dynamical regimes of
the system as a function of net recurrent synaptic currents JS
(recurrent excitation minus cross-inhibition) and stimulus strength
Iapp (Supplementary Fig. 6). Memories were induced by a brief sti-
mulus to one of the PPC populations, which created persistent
activity in the memory-encoding population. At t = 1.5 s after the
target stimulus a distracting stimulus was applied to the other
population, to test the robustness of the memory-encoding persis-
tent activity. The WM state was robust if the memory-encoding
population maintained its persistent high firing activity and it was
fragile if the persistent firing was disrupted. Varying JS and Iapp
parameters gave rise to three dynamical regimes in the bifurcation
diagram: robust WM, disrupted WM, or no induction of WM at all
(Supplementary Fig. 6). We found that the thresholds for WM
induction and robustness shifted in dependence of input amplitude.
Decreasing the input amplitude increased the thresholds for WM
induction and disruption, which in turn requires larger stimuli to
induce or overwriteWM content (Supplementary Fig. 6). A decreased
input amplitude therefore makes WM less flexible, which is again in
line with our empirical observations: slower subjects had a higher FC
(Fig. 1f–h and Supplementary Fig. 1), which was related to decreased
input amplitude via BNM simulations (Fig. 4b and Supplementary
Figs. 2a and 3a) and two-node model simulations (Fig. 4d, f). Vice
versa, higher input was related to lower thresholds for the induction
and overwriting of workingmemories, whichmadeWMmore flexible
to support simple but time-sensitive tasks.

Coupling the DM circuit with the large-scale BNMs
To predict DM performance of each individual, we coupled the DM
circuit with each of the 650 BNMs with the effect that the PFC and
PPC modules of the DM circuit were driven by large-scale PFC and
PPC inputs instead of the independent noise that was used in the
isolated circuit (replacing Eq. 7a from the original DM circuit
model33 by Eq. 7b). Correlations between PMAT24_A_RTCR, respec-
tively PMAT24_A_CR, and the input amplitudes of the 379 BNM
regions indicate that the amplitudes encode information about
individual cognitive performance (Fig. 6a). For coupling we identi-
fied 10 PFC and 9 PPC atlas regions41 that were activated during
n-back task performance, which combines aspects of WM and DM
(PFC: a9-46v, 9-46d, p9-46v, 8 C, i6-8, s6-8, 8Av, SFL, and 8BM. PPC:
AIP, LIPd, IP1, IP2, 7PL, 7Pm, 7Am, POS2, PFm, and PGs). Simulation
results predicted empirical performance for several of the 90 pos-
sible PPC-PFC combinations (Fig. 6b–d). Multiscale models of par-
ticipants with higher FI (PMAT24_A_CR) also had a higher DM
accuracy and needed more time to take the decisions, reproducing
the empirical data.

Model validation
To test the robustness of the fitting procedure we ran it 1000 times
with random initial conditions and noise generator seeds using the
average SC and FC from all subjects. The minimum correlation
between all 1000 simulated FCs was r = 0.9946 and their average
correlation with the empirical FC was r =0.9973, which shows that the
procedure consistently led to a high fit. Next, we simulated one hour of
fMRI with the 1000 fitted models, this time using the same noise. The
average correlation between all resulting fMRI time series over all 379
brain regions was r =0.9962, showing that the fitting led to consistent
fMRI predictions although there existed a variance in the obtained
model parameters (average coefficients of variation CVLRE =0.5 and
CVFFI =0.72). Although the repeated fitting runs did not converge to a
unique parameter set the simulated time series were nevertheless
robustly reproduced as a general result of the fitting procedure.

To test whether DM performance predictions can be robustly
reproduced we divided all subjects into six groups according to
PMAT24_A_RTCR and fitted each 100 times, randomizing seeds and
initial conditions as above. In all 100 tests mean amplitudes decreased
and correlations increased from low to high PMAT24_A_RTCR (Sup-
plementary Fig. 8; Friedman test rejected the null hypothesis that
distributions are equal with p = 0; post-hoc multiple comparison ana-
lysis usingNemenyi’s test showed that the six groupswere significantly
different with p <0.001 for all pairs), confirming that the identified link
to empirical performance is a general result of the fitting procedure.

To test whether there is a robust relationship and comparability
between inferred synaptic inputs across the subject population we
trained regression models on one half of the cohort and then applied
the model on the second half to estimate its generalizability and
repeated this process 1000 times to obtain a statistic over different
random train and test groups. Predicting subject-wise mean FC from
mean synaptic inputs yielded correlations of r = 0.67 ±0.025 for the
training sets and r =0.66 ±0.025 for the test sets. Next, using themean
inputs from the ten areas with highest correlation with mean FC as
independent variables yielded a fit of r =0.79 ±0.018 with the training
sets and r = 0.73 + /−0.055 with the test sets. Lastly, we computed
regressionmodels for every single FC connection (N = 71,631) using the
mean input currents from the ten areas with highest correlation with
the respective FC connection as independent variables. Over all con-
nections, this yielded an average fit of r =0.61 + /−0.1 for the training
and r =0.52 + /−0.13 for the test set. The stability of prediction qualities
in test versus train sets in above tests indicates that the inferred
properties are meaningfully comparable across the subject
population.

Discussion
We propose that FC and synchrony between brain areas directly
depend on the ratio of their mutual excitation and inhibition. This
theoretical observation yielded a parameter optimization algorithm
that enabled to fit whole-brain simulated FCs to their empirical coun-
terparts based on a Hebbian learning rule that implements homeo-
static plasticity of excitation-inhibition balance in brain network
models42. The dynamics of the resulting N = 650 models were then
linked with the subjects’ empirical intelligence test scores and used to
explain individual differences in cognitive performance. The research
yields an implementation of multiscale brain network models that are
able to perform decision-making tasks, both of which have recently
been identified as crucial steps to explain the relationship between
microscopic phenomena, large-scale brain function, and behavior as
well as generating brain digital twins for personalized medical
interventions43. The obtained insights held true independent of any
parameter fitting in subsequent tests with isolated circuits. In addition,
strict tests were employed to ensure the generality of the fitting pro-
cedure. Although we here focus on individual variability in DM and
intelligence of healthy individuals, the insight that E/I-balance can be
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used to precisely set FC in brain models indicates a general-purpose
method for inferring healthy and pathological neural mechanisms
underlying functional brain networks. This is particularly relevant for
clinical applications as impaired E/I-balance has now become a refined
framework for understanding neurological diseases including autism
spectrum disorders, schizophrenia, neurodegenerative diseases, and
neuropsychiatric disorders42,44.

It must be mentioned as a limitation that BNMs are high-
dimensional models with thousands of parameters and the identified
mechanism may be one out of a potentially infinite number of
mechanisms that could explain the observed data. As with any scien-
tific hypothesis, it is therefore crucial to validate and falsify theorywith
dedicated experiments. Since the used brain networkmodel simulates
detailed properties of neural systems like input currents, firing rates,
synaptic activity, and fMRI, it is directly amenable for further validation
or falsification with empirical data from different modalities. By inte-
grating diverse empirical findings into a unifying computational fra-
mework that can be iteratively refined (or refuted) dynamic models
provide an avenue out of the ‘reproducibility crisis‘7. BNMs are limited
when it comes to their resolution, as they are typically based on con-
nectivity data obtained fromnon-invasive imaging techniques likeMRI
and limited computational power to simulate large networks. These
problems are addressedwithmultiscalemodelswhere only someparts
of the brain are simulated at a finer scale (for example, at the level of
spiking neurons45) while the remaining parts are simulated by a coarser
network to save computational resources. In addition, by integrating
connectivity and other microstructural information from finer scale
studies, for example, from invasive rodent studies46 or post-mortem
human atlases47, it becomes possible to further constrain parameters
and test the plausibility of simulation results. In this regard, we note
that the described relationship between E/I-balance and FC (respec-
tively population synchronization) appears independent of the spatial
and temporal scales of the network, andmay be used to generally tune
also finer-scale or coarser-scale networks, as it is based on generic
dynamical primitives of neural mass action applicable to describe
dynamics across spatial and temporal scales48. Although BNMs employ
abstractions, like all models, further advances may emerge precisely
where the assumptions break down. For example, the used ensemble
models capture neural population dynamics primarily when coher-
ence is sufficiently weak that individual spikes can be ignored or when
coherence is sufficiently strong that variance can be considered small,
while scale-free dynamics with unbounded variance resist mean-field
reductions and may require alternative ensemble methods7,8. Despite
these limitations, BNMs are in contrast with artificial neural networks
specifically designed to explain the underlying biology, using typically
observed features of the empirical system as targets for validation and
falsification (Supplementary Fig. 10) to achieve an incrementally
improved computer model of the empirical system.

In this work, we found that DM accuracy can be traded with DM
speed in dependence of brain network configuration. Faster is there-
fore not necessarily better, but rather the ability to switch between fast
and deep modes of information processing—depending on the nature
of the problem and the involved brain areas. The idea that decision-
making speed is traded with accuracy is supported by numerous
empirical findings in the fields of economy, ecology, psychology, and
neuroscience9,49–51.

Ourmodeling results nowcast this idea in termsof neural network
interaction: FC depends on E/I-ratios, E/I-ratios modulate synaptic
inputs,which in turnmodulates evidence integration inwinner-take-all
circuits. Decreased synaptic inputs prolong the time window for
integration and make DM more dependent on the buildup of slowly
reverberating activity between PFC and PPC regions, pointing to a
general mechanism that gives higher-order populations top-down
control. Slowing down the timescale may bring DM under conscious
control, enabling to modulate DM by attentional processes, which is

supported by empirical results that associate top-down attention with
amplification of PPC activity and increased correlation between PFC
and PPC52. This idea was formulated as the ‘ignition’ theory of con-
scious processing, stating that while most of the brain’s early compu-
tations can be performed in a non-conscious mode, conscious
perception is associated with long-distance integration of activity in
frontoparietal circuits52,53. Importantly, the specific markers that con-
trast conscious from nonconscious processing overlap with those
needed for DM slowing in our model. In the experimental literature
conscious perception is systematically associated with surges of pre-
frontal activity followed by top-down parietal amplification: conscious
access crucially depends on a sudden, late, all-or-none ignition of
prefronto-parietal networks and subsequent amplification of sensory
activity54. Themost consistent correlate of conscious perceptionwas a
late (~300–500ms) positive waveform in prefrontal regions that
reactivated parietal regions along with increased long-distance syn-
chronization in the frontoparietal network54, which strongly resembles
our model’s behavior: in the slow DM mode ramping of PFC was
necessary to amplify activity in PPC, while in the fast DM mode PPC
ramping preceded the ramping of prefrontal cortex (Supplementary
Figs. 4 and 5 and Supplementary Movie 1). Similarly, monkey record-
ings showed that WM content in PFC neurons was multiplexed with
signals that reflected the subject’s covert attention55. Togetherwith the
observation that subjects’ performance and WM load correlated with
the degree of prefronto-parietal synchronization56,57, the conclusion
can be drawn that these processes may reflect top-down prefrontal
attentional mechanisms that modulate processing in posterior cortex.
Likewise, these results also integrate with the parieto-frontal integra-
tion theory of intelligence, which roughly states that after basic pro-
cessing in temporal and occipital lobes, sensory information is
collected inparietal cortex,which then interactswith frontal regions to
perform hypothesis tests on attempted solutions to select an optimal
solution58.

Another relevant perspective is provided by the distinction into
effortful versus automatic cognition: while effortful tasks require
synchronization or parietal regions with PFC, the synchronization
suddenly drops as soon as subjects move into a routine mode of task
execution59,60. Similarly, harder decisions required slow integration in
the model’s PFC-PPC network, while simpler decisions were quickly
taken by the PPC module. A number of FC studies come to similar
conclusions: FC becamemore integrated during challenging tasks and
remained more segregated during simple tasks61–65. Likewise, work on
short-term synaptic plasticity suggests that FC is changed to form
temporary task-relevant circuits, which comes with energetic and
computational advantages66, similar to the influential Communication
through Coherence theory67, which proposes phase synchronization
as an essential and generic mechanism for controlling selective infor-
mation flow in multiplexed brain networks.

More generally, our study indicates that areas with higher FCmay
interact on a slower time scale than areas with lower FC. These dif-
ferent time scales could give rise to a hierarchical information pro-
cessing cascade where intermediate results from faster processes are
integratedby slower processes,which is reflected in the emerging view
that cortex posits a timescale-based topography with integration
windows increasing from sensory to association areas68. As receptive
windows are progressively enlarged along the hierarchy, DM integra-
tion is extended from local to long-range circuits integrating increas-
ingly widespread information, which is supported by studies that show
how slow (<0.1 Hz) power fluctuations reliably track the accumulation
of complex sensory inputs in higher-order regions69.

Summarizing, in the present work we identified a monotonic and
smooth relationship between the structural and the functional archi-
tecture of neural networks: by tuning the E/I-ratio it became possible
to precisely and simultaneously tune the FC between any pair of
network nodes to the desired target configuration from full
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antisynchronization to full synchronization. We believe this is impor-
tant, as the link between FC and structural brain architecture is often
described as unclear and many research streams aim for inferring
structural network topology70,71. We therefore expect that the descri-
bed smooth andmonotonic link betweennetwork architecture and FC,
and the derived learning rule, will be useful to better understand and
infer structural network mechanisms underlying healthy and patho-
logical cognition72,73.

Methods
Large-scale brain network model
The used large-scale BNM simulates brain activity based on the net-
work interaction of populationmodels that represent brain areas. Each
brain area is simulated by coupled excitatory and inhibitory popula-
tion models based on the dynamical mean field model, which was
derived from a detailed spiking neuronal network model32,74,75. Popu-
lations are connected by structural connectomes estimated from
dwMRI data viafiber tractography. Here, we extended themodel using
two additional parameters wLRE

ij and wFFI
ij that allow the balancing of

long-range excitatory and feedforward inhibitory synaptic currents.
The model equations read as follows.

IEi =WEI0 +w+ JNMDAS
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i + JNMDA
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j
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rðE,IÞi denotes the population firing rate of the excitatory (E) and inhi-
bitory (I) population of brain area i. SðE,IÞi identifies the average exci-
tatory, respectively inhibitory, synaptic gating activity of each brain
area. The sum of all input currents to each area are identified by IðE,IÞi
(units nA). W ðE,IÞI0 are the overall effective external input currents to
excitatory, respectively inhibitory, populations, and w+ the local
excitatory recurrence. JNMDA and Ji are parameters that quantify the
strengths of excitatory synaptic coupling and local feedback inhibitory
synaptic coupling, respectively. Feedback inhibition control using
inhibitory synaptic plasticity modulates Ji of each region such that the
long-term average firing rate rEi of the corresponding excitatory
population is ∼4 Hz (see section Feedback Inhibition Control). We
extended the original model by Deco et al.32. by introducing the
parameters wLRE

ij and wFFI
ij , which are matrices with the same

dimensions as the structural connectome Cij (regions × regions) that
describe the strengths of long-range excitation and feedforward
inhibition, respectively. Equations 3 and 4 are sigmoidal functions that
convert input currents into firing rates. τðE,IÞ and γðE,IÞ specify the time
scales and rate of saturation of excitatory and inhibitory synaptic
activity, respectively. υiðtÞ is noise drawn from the standard normal
distribution. Table 1 lists all state variables as well as parameters and
their settings. BOLD activity was simulated by inputting excitatory

synaptic activity SEi into the Balloon-Windkessel hemodynamic
model76, which is a dynamical system that describes the transduction
of neuronal activity into perfusion changes and the coupling of
perfusion to BOLD signal. The model is based on the assumption that
the BOLD signal is a static non-linear function of the normalized total
deoxyhemoglobin voxel content, normalized venous volume, resting
net oxygen extraction fraction by the capillary bed, and resting blood
volume fraction. Please refer to Deco et al.74 for the specific set of
Ballon–Windkessel model equations that we used in this study.

Multi-scale brain network model
To form the multiscale model, we connected the two-module DM
circuit functional WM/DM circuit33 to the large-scale regions that
simulate PPC and PFC. To connect the large-scale network with the
mesoscopic network, we augmented the noise terms of the DM circuit
network by large-scale BNM inputs to PPC and PFC. The equations of
the DM circuit read as follows.

Ini =
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Parameter values and state variables have the corresponding
meanings as in the equations for the large-scale models (see also
Supplementary Table 2 for an overview of quantities and values).
Equation 7a shows the original DM circuit model input equation with
noise term Innoise,i. To couple the DM circuit to the large-scale network,
the noise term Innoise,i was replacedby the term InBNM,i in Eq. 7b. The term
adds the noise process from the DM circuitmodel (Eq. 10) to the large-
scale BNM input to drive the DM circuit:

InBNM,i = ðbMJW � aMJW Þ½ðw + JNMDAS
E
i + JNMDA

X
j

wLRE
ij CijS

E
j � JiS

I
iÞ

� aBNM,i�=ðbBNM,i � aBNM,iÞ+aMJW + Innoise,iðtÞ
ð11Þ

Similar to Eq. 1 the input from the BNM to the DM circuit popu-
lations consists of the sumof local recurrent excitation, global network
input and local recurrent inhibition. For each region this input is range
normalized to bring the range of amplitudes from the 650 individual
models into a range suitable for the DM circuit as identified in Fig. 4,
with bMJW =0:001ðnAÞ and aMJW = � 0:006ðnAÞ. For each region the
amplitude ranges from the 10th percentile to the 90th percentile over
the650BNMswasmapped into the range ½aMJW ,bMJW �. To the resulting
amplitude the individual Ornstein–Uhlenbeck noise processes were
added in order to make one variant of this input for each of the two
nodes of one DM circuit module.

Decision-making performance was computed as in the original
publication of the DMcircuit byMurray et al. bymodeling the strength
of evidence as an external current to the two parietal populations APPC

and BPPC as follows:

Inapp,i = Ie 1 ±
c0

100%

� �
ð12Þ
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where Ie =0:0118 nA scales the overall strength of the input and
c0 =6:4%, referred to as the strength of evidence or contrast, deter-
mines which of the two populations APPC or BPPC receives higher evi-
dence (APPC received the higher evidence), which reflects the saliency
of the target with respect to that of distractors. As in Murray et al.33,
when one of the two action populations APFC or BPFC reaches a firing
rate threshold of 40Hz the decision for option A or B is taken and a
reaction time is registered. We repeated the decision-making task
1000 times in order to compute the percentage of times for which the
decision was made correctly (number of times APFC crossed the firing-
rate threshold divided by the total number of trials) and the average
time until the threshold was reached.

Fitting algorithm
The fitting algorithm is based on the observation (Fig. 2) that the cor-
relation between the fMRI time series from two different model brain
regions can be modulated by the relative strengths of long-range exci-
tation versus feedforward inhibition. This ratio, as outlined in the sec-
tion Large-scale brain network model, can be adjusted in our model by
the parameters wLRE

ij and wFFI
ij , which are multiplicative factors that re-

scale the structural connectivity connection weights Cij , between each
pair of connected regions i and j. wLRE

ij modulates the amount of exci-
tation conveyed via long-range connections to distant excitatory
populations, or long-range excitation, whilewFFI

ij modulates the amount
of excitation provided via long-range connections to distant inhibitory
populations, and their resulting feedforward inhibitory effect on the
accompanying excitatory population, or feedforward inhibition. The
goal of the fitting algorithm is to fit weightswLRE

ij and wFFI
ij such that FC

computed from simulated fMRI time series matches a target FC as
closely as possible. The goal is that the difference between each entry
ρtrg
ij of the target FCmatrix ρtrg and ρsim

ij of the simulated FCmatrix ρsim

should be as small as possible. The basic idea of the fitting algorithm is
to increase wLRE

ij and to decrease wFFI
ij if ρtrg

ij >ρsim
ij and, vice versa, to

decrease wLRE
ij and to increase wFFI

ij if ρtrg
ij <ρsim

ij . While the overall
parameter optimization approach followed a standard gradient descent
schema, importantly, the gradients are based on the direct monotonic
and smooth relationship that we identified between E/I-ratios and FC,
respectively population synchronization (Fig. 4), creating a direct bio-
logically interpretable link between brain network structure (specifically
the E/I-ratios between network nodes) and the emerging brain network
dynamics when simulating themodel. In pseudocode the algorithm can
be written as follows.

Algorithm. EI_tuning(ρtrg, η, M)
Input ρtrg: (n x n) target FC matrix

ηEI : scalar learning rate
M: brain network model

Returns wLRE , wFFI : (n x n) matrices long-range excitation, feed-
forward inhibition

for fmri_time_step = 1 to simulation_length do
simulate one fMRI time step using M
compute simulated FC ρsim

for i = 1 to n do
rmse_i = root-mean-square deviation betweenmatrix rows
i in ρtrg and ρsim:
for j = 1 to number of connections of node i do

diff_FC = ρtrg
ij - ρsim

ij
wLRE

ij = wLRE
ij +ηEI x diff_FC x rmse_i

wFFI
ij = wFFI

ij - ηEI x diff_FC x rmse_i
if wLRE

ij ≤0 do wLRE
ij =0

if wFFI
ij ≤0 do wFFI

ij =0
return wLRE , wFFI

The algorithm iterates over all connections ði,jÞ of the BNM and
computes the difference between target and simulated FC for each
connection. This difference is rescaled by the learning rate η, which is

gradually decreased over the course of the tuning. Furthermore, the
difference is re-scaled by the root-mean-square deviation (RMSE)
between the correlation coefficient values of region i with all remaining
regions (i.e. the RMSE between rows i of matrices ρtrg and ρsim), which
can be compared to the temperature parameter in a simulated anneal-
ing heuristic. The factor has the purpose to decrease the change inwLRE

ij
and wFFI

ij as the fit of the row-wise FC increases and we approach an
optimum. Furthermore, the factor differentially weights the changes in
wLRE

ij (wFFI
ij ) andwLRE

ji (wLRE
ji ) with the purpose that the region (either i or

j) that has a better fit at the current tuning iteration is changed less than
the other one, since the change of connection strengths between one
region pair has an effect on the FC between all other region pairs. By
decreasing the step size for the better-fitting region, we ensure that
respective parameters stay closer to the local optimum. In the present
paper this heuristic is used as an online parameter tuning rule, which
means that parameters are updated after eachnewBOLD fMRI time step
is computed. We tested different values for the learning rate parameter
ηEI , anddevised a tuningworkflow inwhich initially theparameter space
is sampledwith large steps (large learning rate) using FC that is basedon
a short timewindow. The tuning lasted over six stages where each stage
was simulated for 10 hours of biological time. The learning rate ηEI was
halved and the window size of simulated FC ρsim was doubled in each
stage, starting with a learning rate of ηEI =0.1 and a window size of 150
TRs. The wall time for simulating one hour of biological activity on one
standard CPUwas roughly two hours, which led to a computational cost
of 6 Stages½ �*20 CPU hours perstage

� �
= 120½CPU hours� to tune a single

model and a total cost of 78,000 CPU hours to tune all 650 models.
Fitting runs were executed in parallel on high performance computers.
The costs for running subsequent DM and WM experiments with the
fitted and coupledmultiscalemodels were negligible and performed on
a standard laptop as only a few seconds of activity were needed to
simulate one DM or WM experiment.

Feedback inhibition control
The firing rate of the large-scale neural masses (Eqs. 3 and 4) depends
on synaptic input currents (Eqs. 1 and 2), which are, to a large degree,
determined by the structural connectomeC, that is, large-scale inputs,
and associated parameters (wLRE

ij andwFFI
ij ). To compensate for excess

or lack of excitation, which would result in implausible firing rates, a
local regulation mechanism, called feedback inhibition control (FIC),
was used. The approach was previously successfully used to sig-
nificantly improve FC prediction, and for increasing the dynamical
repertoire of evoked activity and the accuracy of external stimulus
encoding32,77. To implement FIC we used a learning rule for inhibitory
synaptic plasticity that was shown to balance excitation and inhibition
in sensory pathways and memory networks31. The learning rule
modulated all connection strengths from inhibitory to local excitatory
populations once every 720ms (corresponding to 1 fMRI repetition
time) to achieve a target average firing rate of 4Hz in excitatory
populations. The learning rule can be summarized as

4w=ηFICðpre×post� ρ0 ×preÞ ð13Þ

where 4w denotes the change in synaptic strength, pre and post are
the pre- and postsynaptic firing rates, ηFIC =0:001 is the learning rate
and ρ0 = 4:0½Hz� is the target firing rate for the postsynaptic excitatory
population. If postsynaptic firing rate post is larger than the target
firing rate ρ0, the learning rule increases the inhibitory weight w, to
decrease the postsynaptic firing rate. Conversely, if the postsynaptic
firing rate is lower than the target firing rate, the learning rule
decreases the inhibitory weight. The change of the inhibitory weight is
modulated by the presynaptic firing rate pre: if presynaptic firing is
large, then a higher weight change is needed to get the desired effect
than when presynaptic firing is low. The learning rate η was found by
trial and error.
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Data and preprocessing
We used the publicly available HCP Young Adult data release16, which
includes behavioral and 3 T MR imaging data from healthy adult par-
ticipants (age range 22–35 years). Informed consent forms, including
consent to share deidentified data, were collected for all subjects
(within the HCP) and approved. Data collection was approved by a
consortium of institutional review boards in the United States and
Europe, led by Washington University (St Louis) and the University of
Minnesota (WU-Minn HCP Consortium). The experiments were per-
formed in compliance with the relevant laws and institutional guide-
lines and were approved by the medical ethical committee of the
Charité Medical Center in Berlin (EA4/184/20). All data were collected
on a 3 T Siemens Skyra scannerwith gradients customized for theHCP.
We restricted our analysis to 650 subjects (360 female, 290 male,
based on self-report during data collection by the HCP; no analyses
regarding sex or gender were performed as the goal of this study was
to elucidate mechanisms that are independent of sex or gender) with
complete MRI data including all four sessions of resting-state fMRI,
structuralMRI (T1w and T2w), diffusion-weightedMRI (dwMRI) as well
as the behavioral measures PMAT24_A, CardSort, ProcSpeed and
Flanker were available, and which were not identified with quality
issues by HCP. The HCP publishes lists with subjects where quality
control issues were identified (https://wiki.humanconnectome.org/
pages/viewpage.action?pageId=88901591), which involved 151 sub-
jects at the time of writing. Furthermore, we identified one additional
subject that had absent connections that wasmore than four standard
deviations away from the mean over all subjects. Resting-state fMRI
data were acquired in four separate 15-min runs on two different days
(two per day) with a 2-mm isotropic spatial resolution (FOV: 208mm×
180mm,Matrix: 104 × 90with 72 slices covering the entire brain) and a
0.73-s temporal resolution. For correction of EPI distortions, addi-
tionally two spin echo EPI images with reversed phase encoding
directionswereacquired. dwMRI had a resolutionof 1.25mmisotropic,
128 diffusion gradient directions, and multiple q-space shells with
diffusion-weightings of b = 1000 s/mm2, b = 2000 s/mm2 and
b = 3000 s/mm2. For correction for EPI and eddy-current-induced dis-
tortions two phase-encoding direction-reversed images for each dif-
fusion direction were acquired. From HCP, we downloaded
preprocessed fMRI, structural MRI and dwMRI data that underwent
HCP’s preprocessing pipelines, which combine tools from FSL, Free-
Surfer and the HCP Connectome workbench to perform distortion
correction and alignment acrossmodalities78. For high-resolution (0.7-
mm isotropic) T1-weighted and T2-weighted MR scans HCP pipelines
corrected for distortions using a B0 field map and then linearly
registered the anatomy with a common MNI template. Individual sur-
face registration was achieved by combining cortical surface features
and amultimodal surfacematching algorithm79. fMRI pipelines include
distortion-correction, motion correction, registering fMRI data to
structural data, reduction of the bias field, normalization to a global
mean, brainmasking, re-sampling of fMRI time series from the volume
into the gray-ordinates standard space, and denoising using FSL’s ICA-
FIX method. Corrected time series were then sampled into HCP’s
91,282 standard grayordinates (CIFTI) space, which is a combined
representation of a cortical surface triangulation (32k vertices per
hemisphere) and a standard 2mm subcortical segmentation78. We
parcellated grayordinate fMRI time series using HCP’s multimodal
parcellation41 and computed region-wise average time series and FC
matrices. For dwMRI data, HCP pipelines normalize the b0 image
intensity across runs; remove EPI distortions, eddy-current-induced
distortions, and subject motion; correct for gradient-nonlinearities;
perform registration with structural data, resamples into 1.25mm
structural space; and mask the data with a brain mask. For dwMRI
tractography we employed our own pipelines80 based on the trac-
tography toolbox MRtrix381. Structural MRI images were segmented
into five tissue types to aid Anatomically-Constrained Tractography,

a MRtrix3 function that removes anatomically implausible tracks.
Multi-shell, multi-tissue response functions were estimated using
MRtrix3 software dwi2response, followed by multi-Shell, Multi-
Tissue Constrained Spherical Deconvolution using dwi2fod. For
each subject full-brain tractograms with 25 Million tracks were gen-
erated using tckgen, subsequently filtered with tcksift2, andmapped
to theHCPMMPparcellation used for computing fMRI FC to produce
matching structural connectomes. The g-factor was computed using
the code of Dubois et al. who performed factor analysis of the scores
on 10 cognitive tasks from the HCP data set to derive a bi-factor
model of intelligence, which is the standard in thefield of intelligence
research82.

Statistical tests
To test whether simulated data samples that we obtained for the dif-
ferent RT groups have the same or different distributions we used the
nonparametric Friedman test (implemented by the function fried-
manchisquare() in the Python package SciPy stats) followed by a
posthoc multiple comparison analysis using Nemenyi’s test (using the
function posthoc_nemenyi_friedman() implemented in the Python
package scikit-posthocs). Data samples were not normally distributed
(tested with Lilliefors test) and contained repeated measurements
(each group model was fitted 500 times with different initial condi-
tions and then simulated). To test whether medians are equal for data
with unequal sample sizes and without repeated measurements we
used the Kruskal–Wallis test followed by posthoc Conover’s test
(implemented as SciPy functions kruskal() and posthoc_conover()) for
pairwise multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study was derived from the Human Connectome
Project Young Adult study available in the repository https://db.
humanconnectome.org/data/projects/HCP_1200. The derived data
generated in this study are available under restricted access due to
data privacy laws, access can be obtained within a timeframe of one
month from the corresponding authors M.S. and P.R. as processing
and sharing is subject to the European Union General Data Protection
Regulation (GDPR), requiring a written data processing agreement,
involving the relevant local data protection authorities, for compliance
with the standard contractual clauses by the EuropeanCommission for
the processing of personal data under GDPR (https://commission.
europa.eu/publications/standard-contractual-clauses-controllers-and-
processors-eueea_en). The data processing agreement and dataset
metadata are available in EBRAINS (https://search.kg.ebrains.eu/
instances/88507924-8509-419f-8900-109accf1414b).

Code availability
All custom codes used in this study are freely available at GitHub
(https://github.com/BrainModes/fast-slow/)83 licensed under the
EUPL-1.2-or-later. Custom codes were implemented using Python ver-
sion 3.9.7 and multiple Python packages (scipy 1.7.1; numpy 1.20.3;
matplotlib 3.4.3; scikit-learn 1.1.3; statsmodels 0.12.2; scikit-posthocs
0.7.0) and MATLAB version R2020a; GCC 9.4 was used for C code
compilation; FreeSurfer v7.1.0, MRtrix3 3.0, FSL 6.0 for MRI
processing.
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