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Dax1 modulates ERα-dependent
hypothalamic estrogen sensing in
female mice

Jose M. Ramos-Pittol 1,9, Isabel Fernandes-Freitas2,9, Alexandra Milona3,
StephenM. Manchishi4, Kara Rainbow5, Brian Y. H. Lam 5, John A. Tadross 5,6,
Anthony Beucher 7, William H. Colledge4, Inês Cebola 7, Kevin G. Murphy 2,
Irene Miguel-Aliaga3,8, Giles S. H. Yeo 5, Waljit S. Dhillo 2 &
Bryn M. Owen 2

Coupling the release of pituitary hormones to the developmental stage of the
oocyte is essential for female fertility. It requires estrogen to restrain kis-
speptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while
also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypo-
thalamic nucleus. However, a mechanistic basis for this region-specific effect
has remained elusive. Our genomic analysis in female mice demonstrate that
some processes, such as restraint of KISS1-neuron activity in the arcuate
nucleus, may be explained by region-specific estrogen receptor alpha (ERα)
DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-
locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear
receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in
the arcuate nucleus. These studies provide mechanistic insight into how ERα
may control the KISS1-neuron, and Kiss1 gene expression, to couple gonado-
tropin release to the developmental stage of the oocyte.

Ovarian estrogen production signals the developmental stage of the
oocyte to hypothalamic nuclei. These nuclei, in turn, control the pulsa-
tile output of gonadotropins from the pituitary. However, the mechan-
istic basis for how estrogen-sensing is conveyed to gonadotrophin-
releasing hormone neurons is incompletely understood.

The estrogen receptor alpha (ERα, ESR1) is expressed in at least
two regions of the hypothalamus that regulate female fertility; the
arcuate nucleus, and the so-called ‘AVPV’ nucleus (the rostral peri-
ventricular area of the third ventricle, which contains both the peri-
ventricular nucleus and the anteroventral periventricular nucleus)1–6.
Kisspeptin (KISS1)-expressing neurons of the arcuate hypothalamic

nucleus are now firmly established as the gonadotropin-releasing
hormone (GnRH) pulse-generator and are restrained by the negative
feedback actions of estrogen7–9. In contrast, KISS1- neurons of the
AVPV hypothalamus are stimulated by estrogen and are responsible
for generating the mid-cycle LH-Surge4,10–13. Interestingly, Kiss1 gene
transcription appears to reflect the activity of the neuronal population,
as it is repressed by estrogen in the arcuate nucleus and induced by
estrogen in the AVPV nucleus5,14–18. These transcriptional effects are
dependent on ERα1–6. However, while several mechanisms have been
proposed19, it is currently not clear how ERα can orchestrate these
opposing transcriptional effects on Kiss1 in arcuate and AVPV nuclei.
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Furthermore, it is even less clear how a single nuclear receptor might
mediate negative feedback by restraining the pulse frequency of arc-
uate KISS1-neurons.

We conducted a comparative survey of ERα DNA-binding in the
arcuate and AVPV of female mice by chromatin immunoprecipitation
followedbyDNA sequencing (ChIP-seq).We foundmarked differences
in ERα DNA-binding events in the arcuate and AVPV which pointed to
differential functional outcomes driven by ERα activation. Specifically,
our analysis revealed an enrichment of ERα-binding sites in genes that
can modulate neuronal activity and pulse frequency under estrogen
stimulation in the arcuate nucleus. In addition, we found that the Kiss1
gene itself is uniquely regulated by ERα in these twonuclei and that the
nuclear receptor co-repressor Dax1 is responsible, at least in part, for
its restraint in the arcuate. Together, our studies provide mechanistic
insight into how ERα may control the KISS1-neuron, and Kiss1 gene
expression, in order to couple gonadotropin release to the develop-
mental stage of the oocyte.

Results
ERα binds to different genomic loci in the arcuate and AVPV
nuclei that can coordinate KISS1 neuron function
The arcuate and AVPV nuclei of the hypothalamus are respectively
responsible for translating the effects of estrogen-negative and posi-
tive feedback into changes in gonadotropin secretion8,10. However,
how estrogen differentially affects the activity of these neurons, and in
particular how it mediates negative feedback in the arcuate nucleus, is
poorly understood. In order to gain insight into these processes, we
first mapped genomic ERα binding sites in these locations by chro-
matin immunoprecipitation followed by DNA sequencing (ChIP-Seq).
We used an estrogen-treatment paradigm in mice that allowed us to
evaluate ERα activity at a timewhen negative feedback in the arcuate is
occurring20.

Our results show that ERα binding sites diverge substantially
between the two regions analysed (Fig. 1A–C, Supplementary Fig-
ure 1A). Indeed, we were surprised to observe that over 50% of the
binding sites were differentially enriched between the arcuate and the
AVPV (Fig. 1C). These differential binding sites were mostly located to
introns or intergenic regions, but were also found in promoters, sug-
gesting nucleus-specific gene regulation by ERα involves both prox-
imal and distal (enhancer) elements21 (Fig. 1D, Supplementary Data 1,
Supplementary Data 2). Together, these findings demonstrate broad
differences in ERα-binding in the arcuate and AVPV under estrogen
stimulation.

In order to elucidate possible functional consequences driven by
arcuate- or AVPV-specific ERα binding sites, we performed gene
ontology (GO) term analysis (Supplementary Data 3) on our ChIP-seq
data22. We found that terms relating to Membrane Trafficking, Vesicle-
mediated Transport, Rapid Depolarisation, and Adrenoreceptors were
enriched in both arcuate and AVPV nuclei (Fig. 1E). Intriguingly, the
enrichment of genes bound by ERα and associated with these neuro-
transmitter processing and release GO terms was generally higher in
the arcuate compared to the AVPV nucleus (Fig. 1E). This raises the
possibility that under estrogen stimulation, ERα may have a greater
impact in Kiss1 neuronal activity through gene expression in the arc-
uate than it does in the in the AVPV. In order to explore this possibility,
we re-analysed transcriptomic data from arcuate17 and AVPV KISS1
neurons (AVPVKISS1)18 in response to estrogen stimulation and explored
ERα-peak proximal-genes (Supplementary Data 4, Supplementary
Data 5 and Supplementary Data 6). We found that the expression of
many genes associated with enriched GO terms were specifically
alteredby estrogen in the arcuate nucleus (Supplemental Fig. 2). Taken
together, these analyses demonstrate that ERα binding in the arcuate
regulates genes in response to estrogen that could modulate KISS1-
neuronal function via neurotransmitter processing and release.

ERα binds in the proximity of genes that coordinate KISS1-
neuron pulsatility in the arcuate nucleus
With the view of gaining further insight into ERα-mediated negative
feedback in the arcuate nucleus, we compared arcuate and AVPVKISS1

transcriptional responses to estrogen. Specifically, we re-analysed pre-
viously published datasets from the Hrabovszky17 and Kauffman118 labs
and asked whether genes affected by estrogen in the arcuate are simi-
larly affected by estrogen in the AVPVKISS1, and whether these effects are
also likely mediated directly by ERα-binding events. Overall, the proxi-
mity to an ERα site is associated with gene upregulation by estrogen
treatment in both nuclei (Supplemental Fig. 1C). We also found that
most of the genes affected by estrogen and containing proximal ERα
peaks in the arcuate were similarly affected in the AVPVKISS1 neurons
(Fig. 2A), demonstrating that region-specific modulation of gene
expression by ERα is not a general feature of these nuclei.

Interestingly, our analysis of prior RNAseq datasets17,118 found that
the Kiss1 and Golt1a genes were repressed in the arcuate nucleus and
induced in AVPVKISS1-neurons (Fig. 2A–C), while being proximal to an
arcuate-specific ERα binding site (Figs. 2D, E). The data analysis pre-
sented here highlights the fact that this pattern of activity is highly
unusual, as no other genes with arcuate ERα binding sites displayed
such striking opposing regulation (Fig. 2A). For example, other genes
known tomodulate Kiss1-neuron pulsatility8,9,23, the Tac2 gene and the
Dynorphin gene (Pdyn), were bound by ERα and regulated by estrogen
only in the arcuate nucleus (Fig. 2A, B, Supplemental Fig. 1E, Supple-
mental Fig. 1D). Golt1a and Kiss1 are expressed from a common
genomic locus (Kiss1-Golta1 locus)24, and evidence form our RNA-seq
analysis support the proposition24–27 that they may be co-regulated by
ERα (Fig. 2C). Importantly, the ERα binding site identified approxi-
mately 4 kb upstream of the Kiss1 transcriptional start site was present
in an intergenic region downstreamof theGolt1a gene (Fig. 2D). These
findings suggest that the Kiss1-Golt1a locus may be regulated by a
proximal ERα binding site, and that a feature exclusive to the arcuate
nucleus allows for ERα-driven repression in this locus. Overall, our
analysis revealed region-specific ERα-bound genes that could mod-
ulate neuronal activity under negative feedback conditions, and a
unique transcriptional control of Kiss1 gene expression.

Dax1 is enriched in the arcuate hypothalamus and can repress
Kiss1-transcription in vitro
The presence of nucleus-specific transcriptional co-regulators has
been postulated as a possible mechanistic explanation for the
opposing regulation of the Kiss1 gene in the arcuate and AVPV nuclei19.
In order to identify factors that may mediate region-specific ERα
activity, we conducted a qPCR screen of 84 nuclear receptor
co-regulators in the arcuate and AVPV under estrogen stimulation.
Surprisingly, we found relatively few differentially-expressed genes
(Fig. 3A).Of these, only one transcript,Nr0b1 (also knownasDax1),was
enriched in the arcuate nucleus by a factor of over 5-fold. We con-
firmed this result on biological replicates (Fig. 3B). We also analysed
the same panel of co-regulators in the independently-generated RNA-
seq data from arcuate and AVPVKISS1 nuclei17,18. Dax1 was confirmed in
these data to be the most highly enriched cofactor from our original
panel of genes in the arcuate nucleus, and it was expressed at much
lower levels in KISS1 neurons of the AVPV (Supplemental Fig. 3). Using
immunohistochemistry, we found that many cells in the arcuate
nucleus express the DAX1 protein (Fig. 3C). However, co-
immunofluorescence experiments using animals that express GFP in
Kiss1 neurons revealed that at least 70% of Kiss1 neurons in the arcuate
nucleus express a detectable level of DAX1 protein (Fig. 3C). This
compares to only approximately 5% of Kiss1 neurons in the AVPV
(Fig. 3C). We also detected DAX1 expression by qPCR in the arcuate
nucleus of postmenopausal women (Fig. 3D). Although it remains to be
determined whether DAX1 is present in KISS1 neurons of humans, it is
present in the hypothalamus at a level that is comparable to that of the
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known arcuate-expressed gene, POMC (Fig. 3D). Together, these stu-
dies identify DAX1 as a transcription factor that is selectively enriched
in the arcuate hypothalamic nucleus compared to the AVPV, and is
therefore a candidate-mediator of nucleus-specific estrogen action
on Kiss1.

Dax1 is a nuclear receptor that is known to interactwith ERα28, and
serve as a transcriptional repressor in other steroid-responsive
tissues22,28. As such, we asked whether DAX1 can inhibit Kiss1-expres-
sion under estrogen stimulation in vitro. In order to answer this
question, we took advantage of the finding that the Kiss1 gene can be
regulated by the promotor of the upstreamGolt1agene23. This allowed
us to use CRISPRa to activate Golt1a transcription, and then assess the
effects of ERα and DAX1 on Kiss1 mRNA transcription. As is conven-
tional, we performed these experiments in cells that have very low
endogenous transcription of the genes of interest, in this case muscle
C2C12 cells cultured in 10 nM estrogen. We first confirmed that

activation of the Golt1a promotor using CRISPRa resulted in increased
expression of both the Golt1a gene and the Kiss1-gene (Fig. 3E). We
then found that co-transfecting a Dax1 construct in combination with
an ERα construct reduced Kiss1-expression compared to the empty-
vector control (Fig. 3E). These data demonstrate that Dax1 can impede
Kiss1-locus activation, likely from an ERα binding site identified in the
Golt1a-Kiss1 intergenic region (Fig. 2D).

Mice lacking Dax1 in Kiss1 neurons have abnormal Kiss1 gene-
regulation
In order to determine whether Dax1 physiologically modulates Kiss1
gene transcription, we generated mice lacking DAX1 in Kiss1 cells. We
crossedDax1tm micewith Kiss1-cre animals to produceDax1tm1(kiss1)mice
and littermate controls (Dax1tm). This strategy resulted in the detection
of DAX1 protein in only approximately 20% of Kiss1 neurons of
Dax1tm1(kiss1) mice compared to over 80% of Dax1tm1 mice (Fig. 4A). We
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found that intact female Dax1tm1(kiss1) mice on the morning of diestrous
had elevated Kiss1 gene expression in the arcuate nucleus (Fig. 4B).
Importantly, we found that the Tac2 gene and the Pdyn gene were not
differentially affected by deletion of Dax1 in Kiss1-neurons of the arc-
uate nucleus (Fig. 4B), thus demonstrating the specificity of this tran-
scriptional mechanism to the Kiss1-locus. Dax1tm1(kiss1) mice displayed
several subtle features that indicated the abnormal function of the
HPOaxis (Fig. 4C).However, despite having elevatedplasma FSH levels
(Fig. 4D), that likely still remained within the normal physiological
range, we did not detect dramatic differences in LH-pulse dynamics in
Dax1tm1(kiss1) during diestrous (Fig. 4E). That being said, DAX1 in Kiss1-
cells was required for exogenous estrogen-treatment mediated sup-
pression of the Kiss1-gene in the arcuate nucleus (Fig. 4F). Therefore,
the presence of DAX1 in arcuate kisspeptin-neurons specifically
explains, at least in part, the unique opposing regulation of the Kiss1
gene in the arcuate and AVPV nuclei of the hypothalamus. Further-
more, the DAX1-dependent restraint of Kiss1 transcription in the arc-
uate essentially couples it to the activity of the neuron, and loss of this
restraint results in elevated FSH secretion and an ovarian hyper-
stimulation syndrome.

Together, our analyses demonstrate that arcuate-specific pro-
cesses, such as modulation of pulsatility, may be defined by region-
specific ERαbinding events (Fig. 1 and Fig. 2). In addition,whileDAX1 in
Kiss1 cells does not appear crucial for the maintenance of episodic
gonadotropin release, it does provide mechanistic insight into the
unique control of Kiss1 gene-transcription, and how it may be coupled
to the activity of the neuron (Fig. 3 and Fig. 4). Taken together, these
analyses provide an ERα-centric model (Fig. 4G) to explain estrogen
action on Kiss1 neurons of the arcuate hypothalamic nucleus.

Discussion
We have investigated themechanistic basis for hypothalamic estrogen
sensing,with a focus onnegative feedback in the arcuate hypothalamic
nucleus. Our findings have revealed a complex network of genes that
are bound by ERα and regulate neurotransmitter processing and
release pathways in an estrogen-responsive way. We found that the
intersect between arcuate and AVPV peaks was considerably more
similar than a comparison of either nucleus to ERα binding events
observed in mouse breast tissue28 (Supplementary Figure 1B). There-
fore, our initial analyses also demonstrate that ERα interacts with the
genome in hypothalamic nuclei in a functionally neuron-specific
manner. In addition, we identified ERα binding events in the proximity
of key Kiss1-neuron functional genes in the arcuate nucleus; Tac2 and
Pdyn, and the Kiss1 gene itself. Indeed, we conducted mechanistic
studies on Kiss1 due to its unique pattern of expression and found that
a nuclear receptor co-repressor, DAX1, is required for full ERα-
dependent estrogen-negative feedback on this gene in the arcuate
nucleus.

The recent use of optogenetics and fibre photometry have
revolutionised our understanding of the kisspeptin system24.
These techniques have firmly established that abrupt episodes of
arcuate nucleus kisspeptin-neuron activity are responsible for
determining gonadotropin pulsatility7,25. Under physiological
conditions, the frequency of these arcuate episodes are under
constant restraint by estrogen20. Therefore, arcuate Kiss1 neurons
must possess mechanisms to sustain neurotransmitter release, as
well as modulate neuronal activity. Our data suggest that ERα plays
a role in both of these processes. It appears to couple Kiss1 tran-
scription to metabolic need, reducing its production in the

Fig. 2 | ERα binds in the proximity of genes that coordinate Kiss1-neuron pul-
satility in the arcuate nucleus. A Genes found in proximity to ERα binding sites
and affected by estrogen in the arcuate nucleus. B Expression of Kiss1, Kor, Pdyn,
and Tac2 genes in the arcuate and AVPVKiss1 nuclei upon E2 treatment. C Expression
of Kiss1 and Golt1a in the arcuate and AVPVKiss1 (n = 3-6). Error bars represent SEM.

DeseqFDR **p <0.01, ***p <0.001, nsnot significant.D ERαoccupancy at theGolt1a/
Kiss1 locus in the arcuate and AVPV nuclei (http://genome-euro.ucsc.edu/). E ERE
sequence detected for the Greb1 (positive control), and the peaks identified
proximal to Kiss1, Pdyn, and Tac2. Gene expression data were obtained from pre-
viously published studies17,118.
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arcuate, via DAX1, as estradiol levels rise. It also controls pathways
for the processing and secretion of neuropeptides, and likely
modulates the neuronal pulsatility in the arcuate at least in part by
binding to regulatory elements that we identified proximal to both
Tac2 and Pdyn. The focus of our studies has been negative feed-
back in the arcuate nucleus, which requires intricate control in
order to maintain episodic gonadotropin pulses. However, ERα
also likely plays a major role in coupling Kiss1 transcription and
neurotransmitter processing pathways to physiological positive
feedback in the AVPV nucleus, a process that triggers the LH-surge
and also requires interaction with circadian circuits10.

Functional insight into our ChIP-seq data was made possible
through a comparative analysis of independently generated tran-
scriptomic data fromarcuate17 andAVPVKISS1-neurons18.Many estrogen-
responsive genes contained proximal ERα binding sites (Supplemental
files 14 and 5). Thosewhichdid not arepotentially directly regulatedby
ERα via distal enhancers29, indirectly via other ERα-induced tran-
scription factors, or vianon-genomic actions of ERα (discussedbelow).
Some gene regulation events, such as repression of Tac2 and Pdynmay
be explained simply by region-specific developmental chromatin
architecture at ERα-binding-sites. However, explaining opposing gene
expression, such as that required of Kiss1 in the arcuate and AVPV is
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more challenging. Indeed, our comparative analyses suggest that the
regulation of the Kiss1 locus may, in fact, be unique in these hypo-
thalamic nuclei. We found that the known ERα co-repressor DAX1
explains, at least in part, estrogen-mediated Kiss1 repression in the
arcuate nucleus. This did not result in dramatic differences in LH
pulsatility in mice lacking DAX1 in Kiss1 cells, which is broadly con-
sistent with the maintenance of Pdyn and Tac2 expression. However,
we did not perform fibre photometry to directlymeasure kiss1 neuron

activity. Therefore, there may have been subtle changes in LH
dynamics that were not detected by our sampling paradigm. It is also
formally possible that Dax1 deletion in other Kiss1-cells contributes to
the subtle reproductive phenotype of ovarian hyperstimulation syn-
drome.We alsonote here the unusual structure of theKiss1 locus23, the
presence of an arcuate-specific enhancer (−12 890 to −2165 bp relative
to Kiss1 TSS)26 that overlaps with the ERα-binding site that we identi-
fied, its transcriptional relationship with the upstream Golt1a

Fig. 4 | Mice lacking DAX1 in Kiss1-neurons have abnormal Kiss1 gene regula-
tion. A quantification of Cre-mediated deletion of DAX1-protein in arcuate Kiss1-
neurons (n = 3mice).B Expression ofKiss1, Tac2, and Pdyn in the arcuate nucleus of
intact mice at 9am on the first day of diestrous (n = 8 Dax1tm1, n = 12 Dax1th1(Kiss1)

*p <0.05. C Cycle length (n = 8), Offipring/3-months (n = 8 Dax1tm1, n = 10
Dax1th1(Kiss1)) *p <0.05 by t-test, Tertiary follicles per ovary (n = 5). (D) Plasma FSH
levels at 9am on the first day of diestrous (n = 7). E Representative LH profiles

starting at 9am on the first day of diestrous. Peak LH (n = 8) an inter-pulse interval
(n = 5 Dax1tm1, n = 4 Dax1th1(Kiss1)). F Kiss1-expression in the AVPV and arcuate fol-
lowing estrogen stimulation (n = 8) *p <0.05 compared to vehicle 2-way ANOVA
with Tukey’s multiple test correction. G Schematic representation of ERα function
during negative feedback in arcuate Kiss1-neurons (Created with BioRender.com).
Error bars represent SEM. Source data are provided as a Source Data file.
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gene27,30,31, and the fact that it has been found to be an anchor-point for
long-range ERα-bound DNA loops32. Together, these findings highlight
the highly complex nature of Kiss1-transcription, a process that has
necessarily evolved as part of the ‘two-nucleus’ hypothalamic
mechanism that sustains fertility by controlling follicular development
via the arcuate8, and ovulation via the AVPV10.

Our experiments have focused on so called ‘classical’ ERα-
signalling. That is, direct binding of the receptor to estrogen
response elements (EREs) in the genome to regulate gene transcrip-
tion. However, two previous reports concluded that ‘non-classical’,
ERE-independent, signalling is partially responsible for mediating
estrogen negative feedback29,33. The interpretation of findings in these
mice is complicated by the fact that the mutated ERα can still bind
ligand and therefore may physically interact with, and modify the
function of, other transcription factors (possibly including DAX1) in a
way that would not necessarily occur if it could bind to the genome in
the usual way. Nevertheless, it remains likely that both classical and
non-classical estrogen signalling are required for the normal hypo-
thalamic control of fertility. Finally, we acknowledge the presence of
species differences in the kisspeptin system34,35, and that the role of
ERα and DAX1 in the control of negative feedback in humans remains
to be determined.

Previous findings in the literature had seemed to contradict an
ERα-centric hypothesis for negative feedback36–42. However, during the
review of this manuscript, ERαwas conclusively shown by others to be
critical for estrogen-negative feedback on Kiss1-neuron pulsatility in
the arcuate hypothalamic nucleus43. Our data provide a potential
transcriptional framework for this single-receptor phenomenon, and
identify DAX1 as an important regulator of the highly complex Kiss1-
locus in the arcuate hypothalamic nucleus.

Methods
In vivo experiments
All procedures were conducted on female mice and approved under
theU.K Animals (Scientific Procedures) Act, 1986, and approved by the
Animal Welfare Ethical Review Body of Imperial College London. Ani-
mals were housed under standard conditions in individually ventilated
cages with free access to food and water, environmental enrichment,
and wood-chip bedding. Lights-on 07:00 h, lights of 19:00 h. Dax1tm1

((B6Ei.129-Nr0b1tm1Lja/EiJ) Stock number 007006) and Kiss1-Cre
((Kiss1tm1.1(cre/EGFP)Stei) Stock number 017701) mice were obtained from
The Jackson Laboratory. Kiss1-Cre were maintained as heterozygous
animals with the exception of homozygous used for co-
immunohistochemistry. A survey of steroidogenic gene expression
was conducted inDax1tm1(Kiss1) and did not identify any abnormalities in
the ovary or adrenal gland. However, we cannot exclude the formal
possibility that the deletion of Dax1 in extra-hypothalamic Kiss1-cells
may confound the interpretation of our results. Assessment of the
estrous cycle wasperformedby vaginal cytology. Tissues fromanimals
is diestrous were collected at 9 am. Animals were typically sacrificed
between 8 and 12 weeks old.

Estrogen-treatment
Animals were ovariectomised and implanted with 2 cm sub-cutaneous
Silastic tubes (Dow Corning 508-005) containing 17β-estradiol (Merk)
in sesame oil (0.1mg/mL). One week later, they were injected at 09:00
with either vehicle (sesame oil) or estradiol benzoate (0.05mg/kg),
and tissues were collected 28 h after the injection.

Human samples
Anonymised human samples were obtained from the Cambridge Brain
Bank (CBB) with informed consent under CBB license (NRES 10/
HO308/56) approved by the East of England—Cambridge Central
Research Ethics Committee. Subjects were approached in life for
written consent for brain banking, and all tissue donations were

collected and stored following legal and ethical guidelines (NHS
reference number 11/0EE/0011). All three donors were female, the age
at death ranged from 74-85, and the postmortem interval ranged from
27-46 h.

ChIP-Seq was performed by Active Motif using 25ug of pooled
chromatin from arcuate and AVPV tissue dissected fromC57BL/6mice
and 40ul of antibody (sc-543), with four replicates per condition. 75-nt
single-end sequence reads were generated by Illumina sequencing
(NextSeq 500) and aligned to the mouse reference genome mm10
using bowtie2 (version 2.5.0)29. Enriched regions were identified by
using MACS234. Coverage tracks were generated with DeepTools 3.535

bamCoverage with options “--binsize 50 --normalizeUsing CPM
--effectiveGenomeSize 2652783500 --extendReads 300.” Input tracks
were thereafter subtracted by using bigwigCompare. For the heatmap
display, computeMatrix was used on regions defined by MACS sepa-
rated by arcuate or AVPV enrichment, with options “--referencePoint
center -a 2000 -b 2000 -bs 50.” Estrogen Response Elements (ERE) and
genomic annotations were defined using HOMER annotatepeaks36.
HOMER annotatepeaks was also used to define genes proximal to ERα
peaks, and to perform Gene Ontology term analysis against the
Reactome database20. Images of ERα occupancy at individual loci were
generated with the UCSC genome browser14. ChIP-seq data for ERα in
mouse breast tissue (GSE130032)44 was accessed through the Gene
Expression Omnibus37. Raw reads were processed according to the
pipeline described for our ERα ChIP-seq data for the mouse genome
annotation mm10.

RNA-Seq data from two previously published reports on themouse
arcuate and KISS1 neurons from the arcuate and the AVPV nuclei were
accessed through the Sequence Read Archive, with bioproject numbers
PRJNA68668817 and PRJNA70619818. Raw reads were aligned to the
mouse reference genome mm10 using HISAT245 and associated to
ENSEMBL transcript annotation GRCm38.102 using feature-Counts
from the Rsubread package (version 2.10.5)46. Differential expressed
(DE) genes upon E2 treatment were determined with DESeq2 package
(version 1.36.0)47. Shrinkage of effect size was performed on Deseq2
results using the apeglm method through the function lfcShrink48.
Expression heatmaps were generated with gplots (ver 3.1.3) heatmap.2
using the log2 transformation of transcripts per million (TPM) and
scaling per gene (Row). Rsubread, Deseq2 and lfcShrink are Bio-
conductor packages (Release 3.15) and were executed in RStudio
2022.07.1 Build 554 under R 4.2.0. Distance fromgene loci to ERα peaks
was determined using Bedtools closestbed49 and values lower than 20
kBp were considered proximal. As a quality control, sequencing cov-
erage was computed for every dataset using DeepTools 3.535 plot-
Coverage with options “--region X --BEDGRCm38.102.bed”. Sequencing
coverage for RNAseq datasets from isolated arcuate Kiss1-neurons
precluded direct comparison to AVPVKISS1 neurons datasets (Supple-
mental Fig. 4, Supplemental Data 7).

Gene expression analyses
cDNA (Invitrogen VILO cDNA Synthesis Kit) was prepared from biop-
sies of mouse tissue guided by themouse brain atlas. Nuclear receptor
co-regulators were screened by RT2 Profiler qPCR Array (Qiagen).
Individual gene expression was quantified using the SYBR Green (Bio-
Rad) method, using commercially available primers (Sigma Aldrich)
and analysed by the ddCT-method. For human tissue samples, RNA
was extracted using Qiagen RNeasy Universal Mini Kit with DNase1
digestion following manufacturer’s instructions. The RNA was then
used to generate to cDNA via MMLV reverse transcriptase (Promega).
qPCRwas performedonhuman samples usingTaqManprobes specific
for NR0B1 (Hs05033649_g1), POMC (Hs01596743_m1) and GAPDH
(Hs02786624_g1) and Taqman Universal PCR Master Mix (Thermo-
Fisher) on an Applied Biosystems Quantstudio 7 qPCR instrument
(ThermoFisher). The PCR conditions are as follows: 50oC for 2min,
95oC for 10min, then 40 cycles of 95oC for 15 s and 60oC for 1min.
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Immunohistochemistry and immunofluorescence
Animals underwent perfusion fixation using 4% formaldehyde under
terminal anaesthesia. Brains were further fixed at 4 oC over-night, and
then cryo-preserved in 30% sucrose. 40 µm sections were prepared
using a sledge microtome. Samples were incubated with Immunostain-
ing permeabilisation buffer (0.5% Triton X-100 in PBS 1X) for 30min at
4 °C, then Immunostaining blocking buffer (0.3% Triton X-100 in PBS 1X
with 10% Normal Donkey Serum) at room temperature for 1 h. Samples
were incubated with the primary antibody in Immunostaining blocking
buffer (0.3% Triton X-100 in PBS 1X with 10% Normal Donkey Serum)
overnight at 4 °C. Primary antibodies were used at a concentration of
1:200 for the Anti-DAX1, clone 2F4 antibody (Merck, MABD398), and
1:250 for GFP Polyclonal Antibody, Alexa Fluor 488 (ThermoFisher Sci-
entific, A-21311). Samples were incubated with secondary antibody
(Strateck 715-165-151-JIR) 1:1000 for at least 2 h at room temperature.
Samples were then stained with DAPI (ThermoFisher Scientific, D1306)
at a concentration of 1:1000diluted. Slidesweredried andmountedwith
VECTASHIELD Mounting Medium for Fluorescence (Vector Labora-
tories, H-1000). Slides were imaged using a Zeiss LSM-780 Inverted
Confocal Microscope (Zeiss) and analysed using ImageJ software.

CRISPRawas performed using Edit-R reagents fromDharmacon in
C2C12 cells obtained from the American Type Culture Collection.
Briefly, cells were cultured in media containing 10 nM 17β-estradiol
(Merck), and transfected (DharmaFECT kb DNA Transfection Reagent)
with a set of four lentiviral sgRNA constructs (GSGM 11893-247351096-
247351090) targeted to the Golt1a promotor (or a non-targeting con-
trol (GSGC1193), and a lentiviral mCMV-Blast-dCas9-VPR plasmid
(CAS11915). Transcripts were quantified by gene expression analysis.
Expression constructs for DAX1 and ERα were purchased from
Active Motif.

Hormone measurement
LHwasmeasured as previously described50. Animals were acclimatised
to handling for two weeks. 6ul of plasma was collected every 10min,
starting at approximately 9am on the first day of diestrous. The 25%-
change threshold method was used to identify peaks, which has been
shown to provide accurate results in intact animals51. Peak LH was
defined as the maximal LH level of a pulse, and averaged for animals
that underwentmultiple pulses during the sampling period. Inter-peak
interval was measured for individual animals that underwent more
than one pulse during the sampling period. Mouse Follicle Stimulating
Hormone was measured according to the manufacturer’s instruction
(sensitivity of assay 0.1 ng/ml MyBioSource, MBS727159).

Statistical analysis
See the relevant section above fordescriptionofChIP-seq andRNA-seq
statistical analysis. All other analyses were conducted using GraphPad
Prism 8.2.1. Man Whitney U tests were used to compare means
between two experimental groups. Two-tailed Two-way ANOVA fol-
lowed by Sidak multiple comparison correction was used to compare
multiple groups.

Data availability
ChIP-seq data generated in this study are publicly available at the Gene
Expression Omnibus37 GSE227540. Publicly available data re-analysed
in this study were obtained as follows: Arcuate RNA-seq data18
accession PRJNA686688, AVPVKISS1 RNA-seq data17 accession num-
ber PRJNA706198, Breast ChIP-seq data22 accession number
GSE130032. All other data supporting the findings of this study are
available within the paper and its Supplementary Information. Source
data are provided with this paper.
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