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Near-lifespan longitudinal tracking of brain
microvascular morphology, topology, and
flow in male mice

Konrad W. Walek1,10, Sabina Stefan2,10, Jang-Hoon Lee2, Pooja Puttigampala3,
AnnaH.Kim4,SeongWookPark4, Paul J.Marchand 5, FredericLesage5, TaoLiu6,
Yu-Wen Alvin Huang 1,7,8, David A. Boas 9, Christopher Moore 4,8 &
Jonghwan Lee 2,8

In age-related neurodegenerative diseases, pathology often develops slowly
across the lifespan. As one example, in diseases such as Alzheimer’s, vascular
decline is believed to onset decades ahead of symptomology. However, chal-
lenges inherent in currentmicroscopicmethodsmake longitudinal tracking of
such vascular decline difficult. Here, we describe a suite of methods for mea-
suring brain vascular dynamics and anatomy in mice for over seven months in
the same field of view. This approach is enabled by advances in optical
coherence tomography (OCT) and image processing algorithms including
deep learning. These integrated methods enabled us to simultaneously
monitor distinct vascular properties spanning morphology, topology, and
function of the microvasculature across all scales: large pial vessels, pene-
trating cortical vessels, and capillaries. We have demonstrated this technical
capability in wild-type and 3xTg male mice. The capability will allow compre-
hensive and longitudinal study of a broad range of progressive vascular dis-
eases, and normal aging, in key model systems.

There is an increasing need for methods to longitudinally track
microvascular alterations in the aging brain. As one example, in Alz-
heimer’s disease, vascular decline is thought to emerge up to decades
before the onset of cognitive symptoms and is widely viewed as one
potential contributor to symptomology1. Similarly, changes in vascular
structure and dynamics are a signature of several other progressive
neurodegenerative diseases, including Parkinson disease2, Huntington
disease3, and multiple sclerosis4, suggesting a direct role in disease
progression. Deriving effective early treatments for these conditions,
and better understanding their etiology, likely requires a better
understanding of these evolving vascular changes.

However, studying the role of vascular factors in age-related
neurodegenerative diseases has been challenging because of difficul-
ties in longitudinally tracking their development. To date, multi-
endpoint terminal approaches have been used for determining such
vascular alterations at different ages5–7. While effective in some
respects, these approaches are analytically less efficient, vulnerable to
subject-specific random effects, and require an increasing number of
animals when involving more measurement time points (Supplemen-
tary Fig. 1). Fluorescence multi-photon microscopy has revolutionized
the in vivo visualization of neocortical vascular structure and function
(flow)8, but has notmet the need for long term, longitudinally repeated
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imaging. Bleaching and phototoxicity9,10 and the instability of
genetically-encoded indicators limit the use of fluorescent methods
for stable repeated measurements over several months11–14.

Optical coherence tomography (OCT) is a label-free technology
that provides several unique imaging capabilities without the aid of
fluorescence15–17. Because of its sensitivity to moving red blood cells
(RBCs), OCT can rapidly produce microangiograms18, quantitatively
measure blood flow of individual vessels19, and even detect passage of
individual RBCs in capillary vessels20, all in a label-free manner. These
capabilities suggestOCT can provide a unique solution to the problem
of longitudinally studying aging. However, it is unclear for how long
OCT methods can repeatedly and robustly image the same cortical
microvasculature, and the impact of aging on this imaging. In addition,
it is also important to consider the impact of repeated assessments on
the same animal, particularly the potential effect of the chronic cranial
window on aging animals. More importantly, studies using fluores-
cence microscopy or OCT have, to date, only measured a few vascular
properties at a time8,11,12 making it difficult to investigate how degen-
eration in individual microvascular structural and functional proper-
ties distinctly correlate with and/or contribute to etiology of disease. A
further constraint on using any method, including OCT, for such
imaging is the intensive data integration and management challenges
created by longitudinal acquisition. Ideally, such image sets should be
processed in an automated, unbiased manner; particularly given their
size, it poses another technical challenge to be addressed. As one
example, the longitudinal experiment presented in this paper pro-
duced more than 50 terabytes of raw data, whose analysis would have
been unrealistic without automation.

To meet the methodological need and address the related chal-
lenges, we present a set of integrated methods for tracking and ana-
lyzing diverseproperties of themorphology, topology, and functionof
corticalmicrovasculature. The approach invented for this purpose and
detailed here provides simultaneous measurement of 25 vascular
properties across all scales, ranging from large pial vessels to pene-
trating arterioles and venules to capillaries. For this comprehensive set
of properties, a variety of techniques were adopted, developed, and
integrated, including OCT microangiography18, Doppler OCT19,21, red
blood cell (RBC) passage measurements20, and several deep-learning
toolkits22 (Supplementary Text 1). This integrated set of imaging
techniques and imageprocessing algorithmshasenabled near-lifespan
longitudinal tracking of the vascular features in the aging brain. The
present paper demonstrates this methodological capability in 3xTg
model mice of Alzheimer’s disease (AD) with wild-type (WT) controls,
by quantifying a process of cerebral microvascular degeneration over
the course of seven months. When applied to broad age-related neu-
rodegenerative diseases, the presented method framework is antici-
pated to facilitate findings on the roles of microvascular factors in
etiology and pathophysiology of disease.

Results
Structural and functional properties of pial and penetrating
vessels
We repeated microscopic brain imaging sessions every four weeks
through a chronic cranial window under anesthesia (7 AD and 6 WT
mice, seeMethods for details). Figure 1 displays an example set of OCT
angiograms obtained from the same animal cortex across seven
months. It demonstrates that the label-free, in vivo microscopy tech-
nique is stable enough for longitudinally imaging the cortical micro-
vasculature for a long period of such duration. To quantitatively track
diameter changes over the same set of pial vessels from the acquired
images, we registered the images for each animal (Fig. 1a), selected
a set of the same vessels across ages (Fig. 1b), and then measured
the diameter of each vessel by fitting its cross-sectional profile
to a Gaussian function (Fig. 1c). This allowed us to longitudinally track
the same set of 107 pial vessels of 13 mice over seven months

(gray lines in Fig. 1d). These measures were analyzed by linear mixed-
effects (LME) fitting to either a linear or nonlinear (sigmoidal) model,
where each value was normalized by the group baseline to focus on
relative changes with aging and how the changes differed between the
AD and WT groups (“Methods”). LME analysis revealed that in AD,
average pial vessel diameter decreased with age at a rate of 1.3% per
month (95% confidence interval [CI], −2.4 to −0.2), but this ratewas not
significantly different fromWTmice (−1.1% per month; 95% CI, −2.2 to
0.0; p = 0.78 between AD and WT; Fig. 1e).

Every imaging session included acquisition of Doppler OCT ima-
ges as well. We used these images to track changes in the diameter and
blood flow of individual penetrating vessels (Fig. 2). The diameter of
each vessel was measured by fitting its en-face cross-section to a 2D
Gaussian function, while the blood flow was measured by the area-
integral method19 after noise reduction21. This enabled us to long-
itudinally track the same set of 151 penetrating vessels of 13 mice for 7
months (gray lines in Fig. 2c, f).

Arteriolar diameter showed sigmoidal decreases in both AD and
WTbut faster in AD, with the rates of change defined from the sigmoid
fits (Methods) being −13% permonth in AD (95% CI, −18 to −9) and −7%
per month in WT (95% CI, −11 to −3; p = 0.008; Fig. 2c). In turn, their
fractional changes became significantly different between AD and WT
at 18 weeks of age (WOA) (p <0.05, Fig. 2d), which is termed as the age
of significance (AOS) hereafter. Second, the venular diameter
decreased inADwith the rate of changeof−13%permonth (95%CI, −18
to −8), significantlydifferent fromWT (1.3%permonth; 95%CI, 0.9–1.7;
p <0.001), leading to the AOS of 12 WOA (Fig. 2e). Third, the arteriolar
flow decreased in both AD and WT but faster in AD (−13% versus −10%
per month, p <0.001; AOS, 21 WOA; Fig. 2g). Fourth, the venular flow
decreased in AD only (−16% per month; 95% CI, −25 to −8; AOS, 18
WOA; Fig. 2f, h). Finally, the penetrating vessel density in vessel num-
ber per unit area decreased in AD (−6% per month; 95% CI, −11 to −1),
but the slopes were not significantly different between AD and WT
(p = 0.11). It is interesting to see the AOS be earlier for the structural
degenerations than their flow counterparts (see Discussion for
detailed interpretation).

Structural and functional properties of capillary vessel networks
To longitudinally track alterations in smaller vessels like capillaries,
every imaging session also included acquisition of another OCT
angiography dataset with a higher spatial resolution (3 µm) and an
optical focus on the cortical capillary bed (“Methods”). To extract as
much information as possible from these microangiography images,
we first converted grayscale microangiograms into a graph of the
capillary vessel network, using our deep learning-based toolbox for
enhancement, segmentation and vectorization of vessels22 (Fig. 3a).
From these network graphs and the original grayscale images, our
methods enabled measurements of numerous angio-architectural
properties, including morphological properties like the length, dia-
meter, and tortuosity of each vessel; and topological properties such
as the branching order, betweenness, closeness, and shortest cycle of
each vessel. Betweenness, closeness, and the shortest cycle are used in
graph theory for elucidating how nodes are connected within a net-
work (see Supplementary Fig. 4 for conceptual illustration and their
implication when applied to a vascular network). While these proper-
ties were measured for each capillary segment (108,964 segments in
total across 13 animals and seven ages ofmeasurement), we calculated
the mean and heterogeneity of every property per animal per age and
then tracked them as a function of age, where the heterogeneity was
quantified by the coefficient of variation (COV; the standard deviation
divided by the mean). Other related measures include capillary num-
ber density, capillary length density, and fractal dimension (see Table 1
for a full list).

Prior to analyzing how the properties varywith age, we compared
our measures to those reported in the literature when available. The
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distributions of capillary lengths, diameters, branching orders, and
tortuosity obtained from our WT group (Fig. 3b) looked similar in
shape andmean value to those previously reported fromWTmice23–26.
We also observed agreement with the literature in the capillary length
density and the shortest cycle (Supplementary Tables 1 and 2).

LME analysis revealed several differences emerging between AD
and WT. Mean capillary length steadily decreased in AD mice only
(−1.5% per month; 95% CI, −2.6 to −0.3; AOS, 25 WOA; Fig. 3c, d). Mean
capillary tortuosity also significantly increased in AD only (2.2% per
month; 95% CI, 1.3–3.1), but its fractional changes did not become
significantly different between AD and WT until the end of measure-
ment (35 WOA). Regarding network topology, the shortest cycle
increased in AD only (1.9% per month; 95% CI, 0.3–3.4; AOS, 20 WOA;
Fig. 3e). The betweenness also increased in AD only (3.5% per month;
95%CI, 1.3–5.8; AOS, 21WOA; Fig. 3g). In contrast, the closeness did not
change significantly with aging in both AD and WT (Supplementary

Fig. 3), but heterogeneity (COV) decreased in AD (−3.0% per month;
95% CI, −7.9 to −2.0) whereas it increased in WT (3.6% per month; 95%
CI, 0.9–6.4), with an AOS of 18 WOA (Fig. 3i).

To assess the pattern of blood flow through a largemicrovascular
network involving hundreds to thousands capillary vessels, we pre-
viously presented amethod for high-throughputmeasurements of red
blood cell (RBC) flux based onOCT detection of RBCs passing through
a voxel20. However, this method tends to underestimate high flux
values27 and requires user-selected thresholds. To overcome these
weaknesses and improve accuracy, we developed a deep learning-
based method by using two sets of RBC-passage data that were
simultaneously obtained with OCT and two-photon microscopy
(“Methods”). This new method significantly outperformed the pre-
vious method (Fig. 4a, b, Supplementary Text 2).

To examine long-term changes in capillary network blood flow,
every imaging session included OCT acquisition of RBC-passage data,
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Fig. 1 | Longitudinal imaging and diameter measurement of pial vessels. a An
example of registration of an angiogram (cyan) to a reference angiogram (red)with
overlapping regions shown in white. To achieve this, we selected one angiogram as
a reference out of the seven angiograms and used our code to shift and rotate the
other six to align their imaging area and angle with the reference. This registration
enabled us to visually identify and mark the same vessels across all seven angio-
grams. b An example of selecting the same vessels across time points. The color
lines in circles indicate the selected vessels. To ensure selecting the same vessel
across time points, we considered its relative positionwithin the vascular branches,
as visually shown in this example. Image registration, as shown in (a), facilitated this
visual inspection and vessel selection. Each of the color lines is drawn along the
automatically detected line orthogonal to the orientation of the selected vessel,

along which the cross-sectional intensity profile was extracted for diameter mea-
surement. WOA, weeks of age. c An example of the cross-sectional profile and its
fitting to a Gaussian function to measure the diameter as the full width at half
maximum. Tomake thediametermeasurement robust against slightfluctuations in
vessel thickness along the vessel centerline, ten adjacent cross-sections were
extracted around the selected location and then averaged along the vessel cen-
terline, prior to the Gaussian fitting. d Time courses of the normalized vessel dia-
meters (gray; 60 vessels from 7 ADmice, 47 vessels from 6WTmice, 7 time points)
and their LME fits (color). e The LME fits shown together. Angiograms in (a) and (b)
are shown asmaximum intensity projection (MIP). The color lines and shades in (d)
and (e) indicate themean and 95% confidence interval of the LME fits, respectively.
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and the deep learning method was used to produce a 3D map of
capillary RBC flux values (Fig. 4c). As a result, WT mice exhibited a
gradual increase with aging (2.1% per month; 95% CI, 0.9–3.2; Fig. 4e).
This increasing trend agrees with previous findings from WT rats28

although the previous studymeasured the flux values only at two ages
in a non-longitudinal manner. Interestingly, AD mice also showed an
increase in flux with aging but at a significantly higher rate (6.0% per
month; 95% CI, 3.0–9.0; p <0.001 against WT), making the AOS to be
22 WOA (Fig. 4f). The capillary flux heterogeneity (COV) decreased in
both AD and WT but faster in AD (−6.7% versus −3.0% per month;
p <0.001; AOS, 23 WOA; Fig. 4g).

Temporal relationships between microvascular degenerations
and cognitive impairment
To simultaneously obtain the time course of cognitive impairment, the
animals also underwent novel object location (NOL) tests every month
(Methods; theNOL test assesses spatial cognition andmemory29).While
WT mice showed no significant changes in the discrimination index of
NOL, AD mice showed cognitive decline with the discrimination index

becoming significantly lower thanWT at 27WOA (Fig. 5a, b), consistent
with previous findings from the identical 3xTg AD model30.

As listed in Table 1, 10 out of 25 vascular properties showed sig-
nificant differences in fractional changes between AD and WT during
the ages of measurement (11–35 WOA). To illustrate the temporal
relationships of these vascular degenerations to the cognitive impair-
ment, we plotted a chronological graph as shown in Fig. 5c. This graph
revealed three interesting relationships. First, all the observed vascular
degenerations preceded the cognitive decline, up to 15 WOA early
(about a seventh of the typical lifespan). Second, degenerations in
arterioles and venules appeared earlier than those in capillary vessels.
Third, structural changes generally preceded corresponding flow
changes (arteriolar/venular diameter versus flow, and capillary
betweenness/shortest cycle versus RBC flux; see Discussion for
interpretation).

To reveal the correlation between the simultaneously observed
vascular alterations and cognitive impairment, we calculated the cor-
relation coefficientwith age lags of 0, 4, 8 and 12weeks in theADgroup
(Methods). Our analysis found that 19 vascular properties were
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significantly correlated with the NOL discrimination index (Fig. 5d).
Some correlations were expected, such as the positive correlations
between the decrease in NOL test score and the decreases in arteriolar
and venular diameter and flow. Other correlations were unexpected;
for example, the betweenness was strongly negatively correlated with

the NOL score. This betweenness result was interesting when con-
sidering that it exhibited the youngest AOS among capillary vessel
properties (Fig. 5c) and formed the greatest number of inter-
correlations with other vascular alterations (Supplementary Fig. 8,
see “Discussion” for interpretation).
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Discussion
We have demonstrated that the integrated set of label-free in vivo
imaging and image-processing methods produces an unprecedented
set of data regarding age-related alterations in the morphology,
topology, and function of the cortical vasculature across all scales.
Such information-rich, multi-feature, longitudinal datasets allow to
simultaneously investigate multiple aspects of slowly developing cer-
ebral microvascular degeneration while affording high statistical
power (Supplementary Fig. 1). Amongother results presentedhere, the
chronological and correlation graphs between cognitive impairment
and vascular alterations (Fig. 5c, d) are a representative example of
what type of information can be obtained by the presented methods.
Such information may provide insight into how cognitive impairment
and different types of vascular alterations develop along with or
independently of each other. Moreover, the presented methods align
with the “3R’s” principles of animal research, particularly reduction.
For example, while a vascular corrosion casting study demonstrated
age-related changes in capillarymorphology, it requiredmore animals
due to the terminal nature of the method5. Similarly, another casting
study identified that changes in capillary morphology preceded cog-
nitive decline, but it was limited to investigating only one age point out
of a similar number of animals31. In contrast, the in vivo nature of the
OCTmethod used in this study provides a clear advantage in reducing
the number of animals required, while simultaneously providing
detailed information about the dynamics of cerebrovascular changes.

In the presented demonstration, we stopped the longitudinal
imaging when the AD mice exhibited obvious differences from WT

in the cognitive function test for two consecutive sessions (i.e., for
eight weeks). The tracking period was approximately a third of the
typical mouse lifespan: The potential tracking period could be even
longer as the image quality did not significantly degrade over time
in many animals (Fig. 1b for example). One limitation in the pre-
sented demonstration is that we conducted all imaging experiments
under anesthesia, although anesthesia unlikely affects our major
outcome, i.e., difference in the rate of change with age (RCA)
between AD andWT (see Supplementary Text 9 for related data and
discussion). The presented methods are readily applicable to awake
imaging as being shown in our follow-up studies. In the context of
longitudinal assessments of awake animals, our methods can offer
detailed, microvasculature-level assessments under a head-fixed
condition. In comparison, diffuse correlation spectroscopy has
shown the ability to provide assessments under a freely behaving
condition but at a less detailed, macroscopic level32. Combining
these two methods could yield a more comprehensive under-
standing of the changes and mechanisms underlying cere-
brovascular dysregulation in Alzheimer’s disease and other
progressive vascular diseases. Supplementary Text 3 provides fur-
ther discussion of other challenges and opportunities related to the
presented methods. Supplementary Text 10 discusses the sensitiv-
ity of our approach to detecting changes in vascular diameter and
blood flow. Supplementary Fig. 7 summarizes how the various types
of OCT data went through the described image-processing pipeline,
and all processing software codes are publicly opened (see “Code
availability”).

Table 1 | Summary of statistical results of 25 vascular properties

Property Rate of change with age (RCA) in
AD (%/month)

RCA inWT (%/month) P value of difference in RCAbetween
AD and WT

The age of sig-
nificance (weeks)

Pial vessel diameter −1.3 (−2.4 to −0.2) −1.1 (−2.2 to 0.0) 0.78

Arteriolar diameter −13.2 (−17.5 to −8.7) −7.2 (−11.4 to −2.8) 0.008 18

Venular diameter −13.1 (−18.0 to −7.8) 1.3 (0.9–1.7) p = 2.4e−8 12

Penetrating vessel density −5.7 (−10.8 to −0.6) −1.3 (−6.7 to 4.7) p = 0.11

Arteriolar flow −12.9 (−18.7 to −7.3) −9.6 (−19.4 to −0.6) p = 1.4e−6 21

Venular flow −16.3 (−24.9 to −7.9) −0.8 (−2.9 to 1.3) 0.009 18

Capillary length −1.5 (−2.6 to −0.3) 0.2 (−1.0 to 1.3) 0.005 25

Capillary length COV −0.2 (−1.0 to 0.7) 0.1 (−0.9 to 1.1) 0.56

Capillary diameter 0.2 (−0.4 to 0.9) 0.0 (−0.8 to 0.9) 0.63

Capillary diameter COV 0.3 (−0.7 to 1.3) 0.5 (−0.3 to 1.3) 0.60

Capillary tortuosity 2.2 (1.3–3.1) 0.7 (−0.5 to 1.9) 0.015 >35

Capillary tortuosity COV 1.0 (−0.1 to 2.1) 3.4 (−3.5 to 10.4) 0.60

Branching order 0.9 (−0.6 to 2.4) 1.4 (0.3–2.5) 0.22

Branching order COV 1.3 (0.4–2.3) 1.0 (0.2–1.9) 0.49

Betweenness 3.9 (1.3–5.8) −0.7 (−2.8 to 1.5) p =0.0003 21

Betweenness COV −1.7 (−3.2 to −0.2) −0.9 (2.2–0.4) 0.21

Closeness −1.6 (−3.8 to 0.6) −1.1 (−3.2 1.0) 0.67

Closeness COV −3.0 (−7.9 to −2.0) 3.6 (0.9–6.4) p = 7.8e−6 18

Shortest cycle 1.9 (0.3–3.4) −0.4 (−1.7 to 0.8) p =0.0006 20

Shortest cycle COV −0.7 (−2.2 to 0.7) −1.3 (2.6 to −0.0) 0.37

Capillary number density 0 (−0.9 to 1.0) 0.0 (0.0–0.0) 0.23

Capillary length density 0.6 (−0.6 to 1.9) 0.8 (−0.7 to 2.4) 0.79

Fractal dimension 0.1 (−0.4 to 0.3) −0.1 (−0.5 to 0.2) 0.66

RBC flux 6.0 (3.0–9.0) 2.1 (0.9–3.2) p =3.7e−9 22

RBC flux COV −6.7 (−11.4 to −2.1) −3.0 (−4.7 to −1.4) p = 2.0e−5 23

The two numbers in the parenthesis present 95% CI. See “Methods” for how the rate of changes with age (RCA) was definedwhen the fractional change of a property was better fit with the sigmoid
function.
Shown in bold are those that showed significant differences between AD and WT before the latest age of measurement (35 WOA, significance tested with α = 0.05 after Benjamini–Hochberg
correction; p values were obtained using a Wald test).
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In our results with the 3xTgmodel (see Supplementary Text 4 for
use of the specific model within the scope of this study), the earliest
cerebral microvascular degeneration (CMD) was detected in the dia-
meter of penetrating vessels (thinner in AD mice), followed by
degeneration in their blood flow (lower in AD). It is interesting to see
the structural degenerations precede the flowcounterparts (Fig. 2).We
speculate that once penetrating vessels start becoming pathological in

structure (i.e., becoming statistically different from age-matchedWT),
a compensating adaptation occurs to autoregulate cerebral blood
flow. However, this adaptation may not be sustained indefinitely, and
eventually blood flow in penetrating vessels decreases below the
normal physiological range (95% CI of age-matched WT; see Supple-
mentary Text 5 for further discussion). Although the primary focus of
our study is technical demonstration rather than biological discovery
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(Supplementary Text 4), the observed cortical hypoperfusion in AD is
consistent with findings from perfusion magnetic resonance imaging
and transcranial Doppler ultrasound studies, which have reported
hypoperfusion in various cortical regions in early human AD (see
refs. 33,34 for reviews) as well as findings from AD model mice35,36.

On a smaller scale, the presented results revealed degenerations
in both morphology (the mean capillary length) and topology (the
shortest cycle, betweenness, and closeness COV) of capillary vessel
networks. The mean capillary length result (becoming shorter with
aging in AD only, Fig. 3d) is consistent with the previous finding that
capillary length is shorter in AD thanWT23, although the previous study
did not longitudinally track the length and used a different AD mouse
model (see Supplementary Text 7 for further discussion). The capillary
tortuosity did not show significant difference in its fractional changes
between AD and WT until the end of measurement (35 WOA), but its
rate of change with age was positive in AD only. While vessel diameter
and tortuosity can be correlated (e.g., with thicker vessels being less
tortuous), it is unlikely that the observed significance in the tortuosity
change rate of AD is an influence of diameter changes because the
diameter change rate did not show significant difference between AD
and WT (Table 1). In contrast, the topological properties have been
little studied in the context of aging. Interestingly, the topological
changes became pathological earlier than the morphological change
(Fig. 3). Also, both the shortest cycle and the mean betweenness
increased with aging in AD, likely indicating a higher degree of sus-
ceptibility to vascular insult than WT (Supplementary Text 6). This
higher susceptibility may be important in AD when considering the
increased rate of capillary stalling in AD models37. The presented
results also showed degenerations in capillary blood flow (see Sup-
plementary Text 7 for interpretation and potential relation to
hypertension).

Finally, the chronological graph showed that most CMDs became
apparent between 12 and 25 WOA and preceded the cognitive decline
observed from the same animals (Fig. 5c). Someof these CMDs slightly
precede even extracellular Aβ deposits in the 3xTg model (see Sup-
plementary Text 11 for details). The correlation graph (Fig. 5d) showed
that 19 vascular properties were significantly correlated with the cog-
nitive NOL test score. While some of these confirmed expected cor-
relations, such as those of arteriolar and venular diameter and flow,
others revealed new findings. Of particular interest is the betweenness
property, which displayed a strong negative correlation with the NOL
test score, meaning that higher betweenness was associated with later
cognitive decline. It was the earliest capillary vessel property to show
significant differences between AD and WT mice (Fig. 5c) and was the
most inter-correlated with other vascular alterations in both AD and
WT, but with different inter-correlation patterns (Supplementary
Fig. 8). These interesting findings suggest that the betweenness of the
capillary network is an important component of CMD in neurode-
generative diseases. This spotlight on the relatively novel topological
property, now longitudinally measurable in vivo using the presented
methods, encourages further studies on how other vascular and non-
vascular factors interact with capillary network betweenness and how
this interaction contributes to the pathology of vascular and other
related systems in aging research.

Aβ clearance plays an important role in AD38. Various overlapping
and interacting clearancemechanisms are being studied, including the
glymphatic pathway. One of these clearance systems, called perivas-
cular system, involves a number of components such as the cere-
brospinal fluid, interstitial fluid, periarterial space, water channel
aquaporin-4 in astrocytes39, extracellular space affected by astrocytic
endfeet structure40, and fiber myelination41,42. Since many of these
components are structurally and functionally interrelated with blood
vessels, the methods presented in this paper would be useful in
studying how the clearance system components interact with the
related vascular properties, how the interaction varies with age, and

how the age-dependent interaction differs between AD and
normal aging.

Future findings enabled by the presented methods in diverse AD
models, when combined with follow-up studies at cellular/molecular
level, may determine whether CMD is etiological in AD pathogenesis,
one of the long-lasting questions in AD research43. Such findings can
suggest updating the AT(N) framework to AT(VN) for the Alzheimer’s
disease continuum44, and more importantly, will lead to the develop-
ment of therapeutic targets as well as biomarkers for preemptive early
diagnosis. When widely applied beyond AD, the presented methods
are expected to provide new insight into progressive development of
vascular etiology and pathophysiology, or a means to monitor long-
term vascular responses to therapeutic intervention, in a range of age-
related neurodegenerative diseases.

Methods
Animal preparation
Male wild-type (WT, C57BL/6J, Jackson Lab) mice (n = 10) and male
3xTg AD mice (B6;129-Tg(APPSwe,tauP301L)1Lfa Psen1TM1Mpm/
Mmjax, Jackson Lab, n = 10) underwent craniotomy at 10 weeks of age
(WOA) forwindowplacement45 and in vivoOCT imaging under inhaled
anesthesia. Of these mice, one mouse died during the experiment,
three mice were euthanized due to damage on their headposts, and
three mice were excluded due to degrading image quality (see Sup-
plementary Text 8 for potential impact of long-term craniotomy and
imaging on animal physiology). The mice were housed in a controlled
environmentwith a 12-h light/darkcycle,with lights on at 7:00 a.m. and
off at 7:00p.m. The ambient temperaturewasmaintained at a constant
22 ± 2 °C, and the relative humidity was kept at 50± 10%. Mice were
housed in autoclaved HEPA-filtered ventilated cages made of standard
polycarbonate with sterilized hardwood (Beta Chip) bedding and
provided with environmental enrichment in the form of nesting
material and a plastic tunnel. Autoclaved food and water were pro-
vided ad libitum, and cageswere changedweekly to ensure a clean and
hygienic living environment. All experimental procedures involving
animals were reviewed and approved by the Institutional Animal Care
and Use Committee (IACUC) of Brown University and Rhode Island
Hospital. Experimentswere conducted according to the guidelines and
policies of the office of laboratory animal welfare and public health
service, National Institutes of Health.

Anesthesia and perioperative monitoring. At 10 WOA, mice under-
went induction of anesthesia with 3% isoflurane in oxygen and were
then maintained at 2% isoflurane until recovery in 100% oxygen. For
both the initial surgery and subsequent imaging sessions, the duration
of anesthesia from induction to recovery was approximately 2 h.
Oxygen saturation, pulse rate, and temperature were continuously
monitored with a pulse oximeter and rectal probe for the entire sur-
gical procedure and imaging sessions. The body temperature was
maintained at 37 °C and the pulse remainedwithin the normal range of
250–350 bpm.

Craniotomy. After induction of anesthesia, the scalp overlying the
parietal bones was shaved and then sterilized using alcohol and iodine
scrub. A 1-cm midline incision was made on the scalp, and the skin on
both sides of the midline was retracted. The pericranial tissue was
stripped using needle-tip forceps. A proprietary metal frame, used to
hold the head and preventmotion duringmicroscopy (Supplementary
Fig. 11), was affixed to the skull with dental cement (Parkell Inc., Long
Island, NY, USA). A 3-mm bone flap overlying the left parietal cortex
was thinned with a dental burr until transparent (100-µm thickness). In
detail, the location of the cranial window was identically selected in all
mice, such that the medial border of the window was 1mm lateral to
the sagittal suture and the posterior border was 1-mm anterior to the
lambdoid suture on the right side, allowing for visualization for visual,
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somatosensory, andmotor cortex. The thinnedboneflapwas removed
with fine-tip forceps while keeping the dura intact and the skull defect
filled with normal saline until hemostasis was achieved. Our circular
glass cranial window detailed below was then placed into the defect.
The window was then fixed in place and the annular skull defect sur-
rounding thewindowwas sealed using dental cement. The cementwas
given time to fully cure, and the mouse was then recovered in an
oxygen chamber. Mice were housed in individual cages post-
operatively to protect the integrity of the metal frame.

The base of the window consisted of two 3-mm glass cover slips
and the apex consisted of one 5-mm circular glass slip; these were
epoxied together with a transparent UV-cured resin. The thickness of
the 3 mm-wide base of the window was 0.24-mm (two stacked cover
slips of 0.12-mm thickness each), closely approximating the thickness
of themouse parietal bone (~0.2mm)46. The 5-mmcover slip serving as
the apex of our window acted as an additional safety measure against
compression of the cortex, as it was wider than our 3-mm craniotomy
and thus any pressure against the window prior to cementing was
applied to the bone surrounding the craniotomy and not the brain
tissue itself; it also ensured that the base of the window sat flush just
above the cortex without compressing it. Once the window was
cemented in place, this minimized any dural scarring or scar tissue
ingrowth underneath the window for the duration of our experiment.

The use of an open-skull cranial window has clear strengths and
weaknesses against a thinned-skull cranial window. The open-skull
method in this study provides higher quality microangiography where
individual capillaries are clearly visualized (Fig. 3a) and individual RBC
passages through those capillaries are clearly captured in the time
courses of the image intensity signal (Supplementary Fig. 5). However,
the open-skull method is known to be relatively less robust in a long
term; we began with 20 animals, but one animal did not survive until
the end of our seven-month longitudinal experiment. In three out of
the surviving animals, the imaging quality through the window
degraded significantly with time, secondary to scar tissue formation
underneath the window such that insufficient number of vessels were
visible with imaging—these animals were not included in our analysis.
Additionally, three animals were euthanized in the middle of experi-
ment due to headpost damage. We also note that installing a chronic
cranial window in mice at younger than 10–12 weeks can be proble-
matic due to incomplete skull growth prior to this age47.

OCT imaging
All OCT imaging was performed in vivo. Baseline OCT imaging was
obtained seven days following the surgery, and subsequently each
animal underwent imaging every four weeks for seven months. After
induction of anesthesia and for the duration of imaging, the mouse’s
head was stabilized against motion by attaching the affixed metal
frame to a proprietary platform with a heating pad and inhaled iso-
flurane delivery system underneath the OCT system.

All OCTmeasurements were collected with a commercial SD-OCT
system (Thorlabs, Newton, NJ, USA). We used custom LabVIEW soft-
ware to control the OCT system. The system uses a large-bandwidth
near-infrared light source with a center wavelength of 1310 nm, and
wavelengthbandwidthof 170 nm,which leads to ahigh axial resolution
of 3.5μm.The systemuses a high-speed 2048-pixel line-scan camera to
achieve 147,000 A-scans/s. During each imaging session, we acquired
angiograms of large pial vessels using a 5×objective lens,with a field of
view (FOV) of 1024 × 1024 × 512 (x,y,z) corresponding to an imaging
volume of about 3 × 3 × 1.8mm. Ten angiogram volumes were
acquired, motion-corrected48, and then volume-averaged prior to
diameter measurements, in order to minimize the effect of physiolo-
gical cardiac fluctuations. Microvessels were imaged using a 10X
objective lens with a FOV of 1024 × 1024 × 512 (x,y,z) corresponding to
an imaging volume of about 1.5 × 1.5 × 1.8mm (x,y,z). We measured
blood flow in penetrating vessels using Doppler OCT by repeating 8

A-scans at each (x,y) position over a FOV of 512 × 512 × 512 (x,y,z)
corresponding to a region of about 1.5 × 1.5 × 1.8mm. RBC flux data
consisted of 512 repeated B-scans with a temporal resolution of 1.4ms,
producing a 4D dataset of size 256 × 256 × 512 × 512 (x,y,z,t), corre-
sponding to an imaging volumeof 0.8 × 0.8 × 1.8mm (x,y,z) over a time
period of 0.7 s. Each OCT imaging session took about an hour per
mouse; 10min for angiogram, 5min for Doppler, 10min for micro-
angiogram, and 30min for RBC data. We held imaging sessions rou-
tinely during the daytime.

Microangiography analysis
We measured the capillary length and diameter from the segmented
image and vectorized graph (Fig. 3a as an example) by measuring the
length of the centerline of each capillary segment and the thickness of
the segment in the segmented image (see ref. 25 for further details),
the histograms of which are shown in Fig. 3b. We also measured the
capillary tortuosity from the mean curvature of the vessels, calculated
by the mean derivative of the tangent along the vessel49. Since tortu-
osity and diameter can be correlated (e.g., with thick vessels being less
tortuous), diameter results should be carefully considered when
interpreting tortuosity results. To determine branching order, we
leveraged the fact that penetrating vessels appear as dark circles (or
shadows) in the structural intensity image. This allowed us to label all
penetrating vessels and trace connected vessels as they branched out,
thereby finding the closest distance between each capillary and a
penetrating vessel along the capillary bed.

Closeness and betweenness aim to elucidate how vessels are
connectedwithin thenetwork. Closeness is calculated as the reciprocal
sum of the number of vessels along the shortest paths between the
vessel and every other vessel in the network. Betweenness counts how
many times a single vessel is traversed along the shortest path between
any other two vessels within the network (Supplementary Fig. 4).
However, these metrics depend on the size of the network, so to
account for this we divided the mean values by the mean closeness or
betweenness of an idealized honeycomb network with the same
number of vessels. Supp. Fig. 4d shows the relationship betweenmean
closeness and betweenness and number of vessels in a honeycomb
network, which was used to normalize the values obtained from the
experimental data. The COV was normalized in a similar manner.

Lastly, we looked at global properties of the network within the
imaging volume: we calculated the capillary number density by
dividing the number of capillaries by the volume, and the capillary
length density by summing the lengths of all capillaries and dividing by
the volume. Fractional dimension was determined using the box-
counting method50.

Capillary RBC flux measurement
Data preparation. We developed the CNN-based, RBC flux-measuring
method by utilizing two sets of RBC-passage data that were simulta-
neously obtained with OCT and two-photon microscopy (TPM). We
trained a 1D CNN using the OCT time traces as the training data, and
the corresponding RBC flux determined from the TPM time traces as
ground truth (Supplementary Fig. 5 and Supplementary Text 2). We
augmented the training dataset by reversing the time of the time tra-
ces, and split this augmented dataset into training, validation and
testing as 70%, 20 and 10% respectively.

CNN architecture and training. We implemented the state-of-the-art
architecture in time-series classification, InceptionTime51, as shown in
Supplementary Fig. 6. We designed our CNN to provide an estimate of
uncertainty in its prediction by adapting the loss function as shown in
Eq. 1 tomaximize the probability of a given prediction ŷ, assuming this
prediction is derived from a normal probability distributionwithmean
equal to G, and standard deviation, σ. G is the ground truth, and the
standard deviation thus serves as an indicator of uncertainty in the
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predicted value. We trained our network using the Adam optimizer,
with a learning rate of 0.0008 for 50 epochs, and a gradient threshold
of 500 which was necessary given our adapted loss function.

loss = � log
1
ffiffiffiffiffiffi

2π
p

σ
exp �ðG� ŷÞ2

2σ2

 ! !

ð1Þ

RBC flux estimation. To track long-term changes in the capillary
network blood flow pattern, we acquired 4D data (x,y,z,t) consisting of
512 time points over a period of 0.72 s. We first constructed an
angiogram from this data (Fig. 4c) and obtained a vascular network
graph from the image as described in Fig. 3a. We extracted the time
course from the 4D data for each centerline voxel of the graphed
vessels, where RBC passage is known to cause a transient increase in
intensity. We then applied the CNN to each time course along the
centerline and averaged the predicted flux values along the centerline
voxels for each vessel by weighting the predictions according to their
associated uncertainties, thus determining the average RBC flux for
each vessel (Fig. 4c, bottom). Finally, we determined the mean flux for
each dataset (per animal per time point) by averaging the flux values
over all vessels, and the COV by dividing the standard deviation by
the mean.

Novel object location test
Every 4 weeks from 11 weeks of age, each mouse was cognitively
evaluated using a novel object location test that is widely used to
assess spatial memory52. Our test used an open-field apparatus con-
sisting of a square arena (40× 40 × 49 cm3). Themousewas habituated
to an empty arena with four visually distinct quadrants for 5min, and
then removed. The arena was cleaned with 70% ethanol and dried to
eliminate any potential odor cues left beforehand. Then, two identical
objects were placed into the northwest (NW) and northeast (NE)
quadrants, while the other quadrants remained empty. The mouse
explored the arena for 5min while the video tracked its movement.
The mouse was removed, the arena was again cleaned, and both
objectswereplaced again in theNWand southeast (SE) quadrants such
that one of the objects was placed in a different location (SE). After
20min, the mouse was again placed into the arena and allowed to
explore the arena for 5min while its movement was tracked. Differ-
ences in movement between the first and second 5-min tracking were
used to assess recognition of the novel object’s location.

To determine the sign of cognitive decline, we calculated the
discrimination index:

Z =
TSE

TNW +TSE
ð2Þ

whereTSE is the amount of time spent exploring the object in the novel
position, and TNW is the amount of time spent exploring the object in
the same position. A z-score of 0.5 or below was considered indicating
that the mice did not remember one object being moved to a novel
location, and thus was considered as the sign for cognitive decline52.

Statistical analysis
We used the linear mixed-effects (LME) method to fit each set of
measured time courses to either a linear model or a nonlinear model
following a sigmoidal curve (y= c+ L

1 + expðkðb�ageÞÞ), and then selected
themodelwith the lowest Akaike InformationCriterion (AIC) following
the widely used method53,54. The AIC also informed our choice of
random effects based on the intercept, slope and/or time-group
interaction. We normalized each metric for AD and WT groups by the
intercept as determined by the fitted model. Outliers were excluded
based on Cook’s distance: any value with a Cook’s distance greater
than 3 times the mean was considered an outlier, as practiced in many
studies55,56.

The rate of change was simply defined by the slope for the linear
model. For the sigmoid model, we defined the rate of change by
measuring 90% of the total changes observed during the ages of
measurement (11–35WOA; from thebottom5% to the top 5%) and then
by dividing the 90% change by the age duration corresponding to the
90% change. The samewasdoneon the 95%confidence intervals of the
nonlinear fitting to obtain the confidence intervals for the nonlinear
slope. When comparing the rate of change between AD and WT, for
linear models, we recorded the p value of the interaction term to
determine significant differences between slopes. For nonlinear
models, we determined the p value by conducting a t test between the
estimated parameters L for each nonlinear model. We selected vas-
cular properties for further analysis which were associated with sig-
nificant p values at an overall level of α =0.05 after Benjamini-
Hochberg correction to control falsediscoveries. For thesemetrics,we
determined the age at which AD and WT groups differed by assessing
the degree of overlap between two confidence intervals (CIs). To
account for multiple hypothesis testing using Bonferroni correction,
we aimed to find the age at which the groups were significantly dif-
ferent at a rate ofα = 0.05/7, which in turn leads to the age atwhich the
93% CIs just touch. In detail, we computed the distance between the
lower CI bound of the group with higher values and the upper CI
bound of the other group. The age from which this distance becomes
larger than zero was selected as the age at which AD and WT groups
started to differ.

Correlation analysis
To study the correlation between cognitive decline and the vascular
features studied, we fitted LME models to determine the relationship
between the fractional change of each vascular feature and NOL dis-
crimination index. Two such examples are demonstrated on the right
of Fig. 5d.We fitted thesemodelswhile also introducing time-lags of 0,
4, 8 and 12 months. The features which exhibited a significant slope
(p < 0.05) were considered to be correlated with cognitive function,
with the sign of the slope indicating positive or negative correlation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The vascular property measurement and novel object location test
data generated in this study have been deposited in the Figshare
database: https://doi.org/10.6084/m9.figshare.19178885. The raw
image data is not available due to its size (larger than 50 tera-
bytes). Source data are provided with this paper.

Code availability
All codes for image processing and analysis were developed in
MATLAB. The MATLAB codes are available for non-commercial use in
GitHub (https://github.com/optobrain/adp-1-3xtg-cortex)57.
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