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Spatially-optimized urban greening for
reduction of population exposure to land
surface temperature extremes

Emanuele Massaro 1 , Rossano Schifanella2,3, Matteo Piccardo4,
Luca Caporaso1,5, Hannes Taubenböck 6,7, Alessandro Cescatti1 &
Gregory Duveiller 1,8

The population experiencing high temperatures in cities is rising due to
anthropogenic climate change, settlement expansion, and population growth.
Yet, efficient tools to evaluate potential intervention strategies to reduce
population exposure to Land Surface Temperature (LST) extremes are still
lacking. Here, we implement a spatial regression model based on remote
sensing data that is able to assess the population exposure to LST extremes in
urban environments across 200 cities based on surface properties like vege-
tation cover and distance to water bodies. We define exposure as the number
of days per year where LST exceeds a given threshold multiplied by the total
urban population exposed, in person ⋅day. Our findings reveal that urban
vegetation plays a considerable role in decreasing the exposure of the urban
population to LST extremes. We show that targeting high-exposure areas
reduces vegetation needed for the same decrease in exposure compared to
uniform treatment.

Over half of the world’s population lives in cities1, and thus in localized
hotspots covering less than 3% of the Earth’s land surface2. Moreover,
the number of urban dwellers is predicted to grow by an additional 2.5
billion by 20503. The large and increasing share of the urban popula-
tion had stimulated renewed attention to studies that investigate the
livability of urban environments4. Urban areas are places where
humans have altered their local environment and local climate in the
most radical way, replacing the natural land cover and vegetation with
impervious materials that have lower albedo and heat capacity5, sub-
stantially reducing the cooling effect of water evaporation6. Urban
ecosystems can be described by having fundamentally three different
types of elements: (i) impermeable surfaces, (ii) vegetated surfaces,
and (iii) water bodies. The spatial integration of these three elements
determines the physical properties of the urban landscape surface,
thereby affecting both the microclimate of cities and the frequency of
extreme heat7–9.

The combination of global warming and the urbanization pro-
cess is ratcheting up the number of humans exposed to health-
endangering heat. This exposure has tripled in recent decades, a
faster rise than previous research suggested10. As a consequence,
heat waves in urban climates have a profound impact on humankind
as the climate warms up11 and this will increase in the future12.
Regional studies confirm that the population is foreseen to be
increasingly exposed toweather-related hazards and, in particular, to
heat waves13 leading to an ever-higher risk of fatalities14,15. Important
aspects of psycho-physical well-being and quality of life crucially
depend on the climatic conditions of the environment in which
people live16. Changes in the global temperature can generate a wide
range of consequences for human health. Direct consequences are
linked to the bioclimatic well-being of people, whereas indirect
consequences are linked to the complex interactions between
environmental conditions and the spread of infectious17 and allergic
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diseases18. The positive effects of climate-related human well-being
are many19: from the reduction of the risk of numerous chronic dis-
eases in adulthood (such as diabetes and cardiovascular conditions,
obesity, and asthma), to the acceleration of recovery after surgery, to
the reduction of hospital admissions and premature mortality, up to
better pregnancy outcomes and improved mental health20. To
achieve an intelligent and sustainable development of the urban
fabric, there is the necessity to move away from the traditional
approach of territorial planning that ignores social and environ-
mental factors21. Instead, there is the need to work together with a
common goal, using shared methodologies and regulations to han-
dle the impacts of climate change on city growth and development22.
To manage the rapid increase of these direct and indirect climate
risks in urban environments, there is a need for knowledge-based
policies that foster the design, application, and monitoring of
adaptation plans. For this scope, new research efforts are needed to
(i) increase the understanding of the specific causes of extreme heat,
and to (ii) offer monitoring and modeling systems of the urban
thermal environment at the required spatial and temporal scales. To
cope with the increasing need to foster climate mitigation and
adaptation, it is therefore important to have spatially and temporally
detailed information, possibly at a sub-daily temporal frequency. So
far, the lack of adequate data has actually prevented the develop-
ment of numerical methods to derive appropriate metrics and
diagnostics to fully describe, or profile, these factors. The increasing
availability of time series of thermal remote sensing information
from satellite platforms is now supporting effective quantification of
urban heat consistently across the globe and with high spatial
detail23–25. Most previous studies on the subject focused on theUrban

Heat Island (UHI) phenomena, or more specifically Surface Urban
Heat Island (SUHI) when studied within the remote sensing field23.
SUHI is defined as the difference between the urban and the rural
land surface temperature (LST), and it occurs because the highly
dense artificial materials of city cores heat up considerably stronger
than their rural surroundings (see Fig. 1). Depending on the type of
surface surrounding the city, the value of SUHI can be either positive
or negative (which in the latter case is referred to as an urban cool
island or UCI). When cities are surrounded by vegetated areas (see
Fig. 1B), themagnitude of the SUHI can be seen as a proxy of the rural
vegetation density instead of a measure of the thermal comfort of an
urban environment. To make a step-change in the approach to the
problem, the design and evaluation of urban adaptation plans should
be city-specific and based on the detailed assessment of the city heat
characteristics26.

To assess the latter requirements, in this study, we set a spatial
model to predict the absolute value of the exposure of the population
to LST extremes.Wepresent an approachbasedon a spatial regression
model to predict the exposure of urban populations to LST extremes.
Despite its simplicity, the model is able to assess the exposure of the
urban population to LST extremes using only remote sensing obser-
vations. Wemeasure exposure as the number of days and nights when
LST exceeds a certain threshold, multiplied by the number of people
affected: this is a surrogate version of population exposure to extreme
heat using air temperature10,27. The spatial regression model uses
greenness and proximity to water bodies as predictors and has been
tested in200cities acrossvarious climates andhas consistentlyproven
its accuracy. Finally, we utilize our findings to assess the impact of
urban greening initiatives in reducing the exposure of urban

Fig. 1 | SurfaceUrbanHeat Island (SUHI). AAveraged value of SUHIbetween 2010
and 2020 for the 200 cities analyzed in this research. B As an example, we report
the opposite cases of Kyoto and Jeddah that have positive and negative values of
the SUHI, respectively. The satellite images show thedifference in the vegetation of
the adjacent rural areas. On the right we show the correlation between SUHI and

the average value of the rural greenness expressedwith the Normalized Difference
Vegetation Index (NDVI) as defined in the Methods section for all the cities. See
data availability and code availability for publicly available dataset and codes for
generating the figures.
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populations to LST extremes. Our research presents a globally vali-
dated model and we believe that the same methodology can also be
utilized for specific, practical, and localized solutions.

Results
We focus the analysis on 200 cities worldwide that are characterized
by a wide range of climatic conditions. These are divided equally per
major climate zone: Arid, Continental, Tropical, and Temperate (see
Fig. S1 in SI). The urban environment is described by a 1 km spatial
resolution multiband raster, with several variables, where for each
pixel and for each year, we have aggregated various types of infor-
mation, namely: daytime and nighttime values per summer where LST
exceeds a threshold, average values of the Normalized Difference
Vegetation Index (NDVI), distance to water surfaces, and population
(seeMaterials andMethods section and Fig. S2 in SI).We apply a spatial
regression model to predict the exposure of the urban population to
LST extremes. In line with the recent literature, we define the urban
population exposure TE as the number of days per year where LST
exceeds a threshold, called exposure threshold, multiplied by the
number of people, expressed in persons ⋅days27, where days corre-
spond to the average between daytime and nighttime values over
thresholds. For each urban environment, we define the daytime/
nighttime exposure threshold as the 90th percentile of the temporal
distribution of the daytime/nighttimeLST over 20 years (from2000 to
2020), as shown in Figs. S3 and S4 in SI. By this definition it is possible
to compare the results obtained in geographic areas with a different
climate and in different seasons of the year28, and the 90th percentile

ensures an effective definition of LST extremes, where the outliers are
not taken into account as suggested by the Intergovernmental Panel
on Climate Change (IPCC)29 and the World Meteorological Organiza-
tion (WMO)30. For each pixel in the images of the cities, we calculate
the number of daytime and nighttime values that exceed exposure
thresholds for the 3warmestmonths of the year, as illustrated in Fig. S5
in the SI for Paris. To account for the daily cycle, we define the total
exposure TET as the average of the daytime exposure TED and the
nighttime exposure TEN, i.e., TET = (TED + TEN)/2, as demonstrated in
Fig. S6 for Paris. In Fig. 2 we show the values of TET across space and
time: in Fig. 2Awe show the average values for each city in the different
climate zones. In Fig. 2B we show the trends of the value of the
exposures over time. We can see a clear increment of the urban
population exposure to LST extremes from2010 to 2020 that ismostly
caused by the urbanization process as observed in Fig. 2C where we
show that the average exposure divided by the population is almost
constant over the years for the different climate zones.

Urban greening to reduce the exposure of the urban population
to LST extremes
Before presenting the findings, it is necessary to elaborate on urban
greening, including its benefits and limitations. Vegetation, including
trees and other plants, has a significant cooling effect on urban
environments, making it a simple and effective way to reduce the
exposure of urban populations to extreme heat19,26. Vegetation can
lower surface and air temperatures by providing shade and increasing
evaporation31. Shaded surfaces can be up to 20−45 °F (11−25 °C) cooler

Fig. 2 | Population exposure to Land Surface Temperature (LST) extremes.
A Population exposure in the cities within the five climate zones defined by the
Köppen-- Geiger climate classification system62 inmean number of person-days per
year. The size of the dots corresponds to the population exposure averaged over
the 10 years of the observations.BValues of the exposure over the years.CAverage

value of the exposure divided by the population that corresponds to the average
number of days andnights over the thresholds for each climate zone (in the legend,
Cont stays for Continental, Temp for Temperate and Trop for Tropical). See data
availability and code availability for publicly available dataset and codes for gen-
erating the figures.
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than unshaded surfaces32. Evapotranspiration from vegetation, either
alone or in conjunction with shading, can help mitigate peak summer
temperatures33,34, whereas urban surfaces covered in concrete and
asphalt contribute to the opposite effect. Due to these biophysical
effects, urban vegetation is an important tool in climate-smart urban
planning. Urban vegetation design is a crucial adaptation strategy that
reduces heat stress by modifying the surface properties of cities.
However, there is still a lack of dedicated modeling tools to aid in the
design of city-specific plans based on the level of intervention required
to achieve climate targets. For instance, microscale models that
simulate the local impacts of urban design and land use on the urban
microclimate and the potential for microclimate interventions to
mitigate urban heat exposure are needed. While proximity to urban
green spaces has advantages for health and cooling19,35, cities also face
competition for space and resources36,37. In this study, we focus solely
on measuring urban greening to reduce the exposure of urban popu-
lations to LST extremes. However, this is not the only solution to urban
heat exposure, and other solutions, such as increasing the albedo of
surfaces38, are known to have positive effects. In practical applications,
urban greening can effectively reduce land surface temperatures39,
however, tradeoffs with water resources must be considered40.

Limitations and advantages of the proposed approach
In this study, we quantify the exposure of the urban population to LST
extremes by measuring the number of days that LST exceeds a certain
threshold,multiplied by the number of people exposed: this definition
is a surrogate version of exposure to extreme heat using air
temperature10. We acknowledge that using thermal remote sensing
data as a proxy for population exposure to heat in urban environments
has its own limits41. LST may not fully represent the thermal environ-
ment experienced by people in urban areas as it measures the tem-
perature of the surface rather than the air41,42. In addition, LST
measurements can be affected by the urban canyon effect41,42, and
errors can arise due to the complex dependence of emissivity onurban
materials and vegetation43. Recent literature has highlighted the need
to assess thermal exposure at a hyper-local level, considering factors
such as exposure to the sun, wind, and relative humidity44. For these
reasons, in this research, we do not focus on the population exposure
to heat but on urban areas with high values of LST. Despite these
limitations, the study of LST provides advantages for research pur-
poses, including a more detailed and global representation of tem-
perature patterns45 that allows for inter-city comparisons at a fine
temporal (daily) and spatial (1 km resolution) resolution thatwould not
be feasible with air temperature data. Our study focuses on global
patterns and both seasonal and longer-term trends, averaging values
of day and night LST at a spatial resolution of 1 km over the 3 warmest
months of the year for a period of ten years41,45. We do not consider
hourly or daily conditions at specific locations, where the differences
between air and surface temperatures might be considerable due to
rapid changes in weather-scale processes41,45. Ourmethodology can be

adopted and reproduced for any city in the world due to the avail-
ability of consistent satellite information captured globally with the
same resolution, methodology, and acquisition time every day. In this
study, we only consider the effect of urban vegetation as a mitigation
strategy for population exposure to LST extremes, while other stra-
tegies such as promoting energy efficiency and regulating building
codes46 or increasing the albedo of urban surfaces47 have not been
considered.

The spatial linear regression model
We present a simple and global model to predict the number of days
(Yd) and nights (Yn) over thresholds for each city where Yd/Yn corre-
spond to the average number of days/nights over the threshold
observed from 2010 to 2020. The model uses as predictors two local
land surface properties: X1 the fraction of green area within a pixel (as
represented by the Normalized Difference Vegetation Index or NDVI);
X2 distance to water bodies dw as described in the Methods section.
Given the presence of a clear spatial autocorrelation of the variables
(see Table S1 in SI), we adopted a spatial linear regressionmodel called
spatial lag model (SLM)48. We studied two models for both TED and
TEN: we use the the Google Earth Engine (GEE) platform49 to compute
the days where LST is greater than the thresholds (day and night). To
assess the performance of the spatial model, we compute R2 (see Fig. 3
and Fig. S8 in SI) and mean absolute error (MAE) within a k-fold cross-
validation setting (seeMethods and Fig. S7 in SI for details). In Fig. 3(A)
and in Fig. S8 in SIwe show that, despite its simplicity, themodel is able
to predict TED and TEN averaged over the 3 warmest months of the
years in the 200 cities with high accuracy. The result shows that an
R2 ≥0.8 in the test-set within a k-fold cross-validation setting is
obtained. Our analysis shows that the SLM performs significantly
better than a Ordinary Least Squares (OLS) regressionmodel as shown
in Fig. S9 reporting negative low values of R2 in the training phase and
negative values during the validation phase, underlying the impor-
tance of accounting for the spatial correlation. Finally, model infer-
ences suggest that themagnitude of the exposure during the warmest
months of the year are largely controlled by urban vegetation with
average regression coefficients ðβNDVI;βdw

Þ, calculated as the mean
value of the best coefficients estimated during the training/validation
steps of the k-fold cross validation (see Fig. S7 in SI), are (−4.7,−1.2) for
TED, and (−2.7,−0.6) for TEN. It is noteworthy that the coefficients
related to vegetation βNDVI and distance to water bodies βdw

are
negative, indicating that an increase of the surface covered by green
areas and water bodies within cities would result in a reduction of the
exposure to LST extremes of the areas that are affected by such an
intervention.

The mitigation strategy through vegetation increment
We use the SLM with the values of the coefficients computed during
the cross-validation setting to estimate the vegetation increment
required for reducing the exposure of the urban population to LST

Fig. 3 | Spatial lag models for the estimation of the daytime (TED) and the
nighttime (TEN) exposures.APerformanceof themodels in termsofR2 and (B) the
coefficients of the models for the Normalized Difference Vegetation Index (NDVI)

and distance to water bodies (dw). See data availability and code availability for
publicly available dataset and codes for generating the figures.
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extremes as a function of the NDVI (see Methods section), while
keeping the values of the distance to the water bodies fixed to the
observed values. It should be noted that the vegetation increase is
here applied without taking into account any urban or social con-
siderations (e.g., space availability, financial means, energy effi-
ciency, etc), as these are out of the scope ofwhatwewant to do in this
particular work. In practice the considerations with respect to miti-
gation strategies for a specific city need to be analyzed in detail, as
there are, for example, limits in howmuch a pixel can be greened up
without compromising its capacity to contain living and functional
places. In Fig. 4we show the results for the city of Paris as an example.
There we simulate TET when NDVI is increased by 0.3 with respect to
the observed values, to the maximum value of 0.85. We apply this
increment for all the pixels that have an observed valued of the
NDVI < 0.85 of the city and we quantify the exposure reduction as
ΔTET ð%Þ= ðTE1

T � TE0
T Þ=TE0

T , where TE
0
T and TE1

T are respectively the
values of the total exposure before and after the NDVI increment.
Figure 4(A) shows the entire city as well as these pixels where 80% of
the entire population live respectively where the black boundary
corresponds to the urban boundary as defined by the Global Human
Settlement Layer (GHSL) dataset50 and theblue boundary is theurban
environment as defined in the Methods section and in Fig. S2 in SI.
Figure 4(B) and (C) show the value of theNDVI and the total exposure
divided by population for three different scenarios. The values of the
NDVI and the total exposure for the different scenarios are reported
in Table S2 and in Fig. S10 in SI. We show the observed values of the
NDVI that lead to a total exposure TE0

T ∼ 164 million person ⋅ days.
Scenario 1 corresponds to the value of the NDVI increased homo-
geneously at all pixels that leads to a total exposure TE1

T ∼ 144million
person ⋅ days. We show that by increasing the NDVI homogeneously
by 0.3, it is possible to reduce the exposure of urban population to
extreme heat by ~ 12%. We also show that by increasing the NDVI
homogeneously, we count an increment of 44% of the entire NDVI of
the city (see Table S2 and Fig. S10 in SI). In Scenario 2 we estimate the
NDVI increase in just the most populated areas which would lead to
the same exposure reduction of -12%. This reduction could be
achieved with a 0.38 increase of the NDVI in the corresponding pix-
els, shown in Fig. 4(B), and it corresponds to a 14% NDVI increment
over the whole image (see Table S2 and Fig. S10 in SI). With this

simulation we show that it is possible to optimize the vegetation
increment by targeting specific areas of the city.

In a subsequent analysis, we make simulations in which we
increase NDVI for all 200 cities considered in this study as reported in
Fig. 5. We show that, on average, increasing the NDVI by 0.3 results in
exposure reductions of 12%, 13%, 16%, and 32% for cities located in
temperate, arid, continental, and tropical regions, respectively
(Fig. 5B). The required amount of NDVI increase per pixel was com-
puted for themost densely populated areas of each city to achieve the
same exposure reduction. Our findings demonstrate that targeting
specific areas with higher exposure led to significant differences in
NDVI increments. On average, 90%, 20%, 26%, and 33% of the NDVI
could be saved for arid, continental, temperate, and tropical regions,
respectively (Fig. 5C). The average local NDVI increment for the most
populated areas is approximately 0.45 to optimize theNDVI increment
in the urban environment (Fig. 5C). We also considered different NDVI
increments ranging from0.1 to 0.5. Figure 5(E) illustrates the exposure
reduction for various NDVI increments. Results indicate that exposure
linearly decreased with NDVI increments, but stable patterns of rela-
tive NDVI savings were observed as shown in Fig. 5(F). The relative
NDVI savings were calculated using the equation NDVI(%) = 100(
NDVI80 −NDVIall)/NDVIall, where NDVIall and NDVI80 represent the
sum of NDVI values after interventions on the entire city and on the
most populated areas, respectively. On average, it was possible to save
up to 70% of greening by targeting specific areas to achieve the same
exposure reduction as random homogeneous interventions as shown
in Fig. 5F. In Fig. 5G we show the difference between local and global
NDVI increments and we observe that an average NDVI increment of
~0.15 could achieve the same exposure reduction for different global
increments.

Discussion
In this study, we set a spatial lag model (SLM) to reproduce the
exposure of the urban population to LST extremes for 200 cities
worldwide: we defined exposure as the number of days per year where
LST exceeds a heat exposure threshold multiplied by the total urban
population exposed, in person ⋅ days: this definition can be seen as a
surrogate version of population exposure to extreme heat using air
temperature10,27. Our approach, which is exclusively based on remote

Fig. 4 | Exposure reduction for the city of Paris. A We show the number of
inhabitants at each pixel of the entire city and the most populated areas. B We
present the values of the Normalized Difference Vegetation Index (NDVI) for each
observed pixel and for three different scenarios. The Observed scenario corre-
sponds to the observed values of the NDVI and the corresponding measured
exposure. In Scenario 1, the value of the NDVI is increased homogeneously at all

pixels by 0.3. In Scenario 2, the value of NDVI is increased only at the most popu-
lated areas of the city to achieve the same exposure reduction as in Scenario 1.CWe
show the value of the total exposure divided by the population for each pixel in the
different scenarios. See data availability and code availability for publicly available
dataset and codes for generating the figures.
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Fig. 5 | Exposure reduction for all cities across the different climate zones. The
x-axis displays the four climate zones: Temperate, Arid, Continental, and Tropical
(C1, C2, C3, andC4, respectively).A Show the valuesof the total exposure reduction
(ΔTET(%)) for all cities with an increment of the Normalized Difference Vegetation
Index (NDVI) of 0.3. BWe show the aggregated values of ΔTET(%) for the different
climate zones. C We compare the global NDVI increment required to achieve
exposure reduction by targeting the entire city versus the most populated pixels.
Scenario 1 shows a global NDVI increment to achieve exposure reduction by tar-
geting the entire city, while in Scenario 2, NDVI is increased only in the most

populated pixels as described in Fig. 4. D We present the average and standard
deviation of the local NDVI increment for Scenario 1 to achieve the same exposure
reduction with a homogeneous increment of 0.3. E The plot displays the average
and standard deviation of the exposure reduction for different values of NDVI
increment for all cities in the different climate zones. FWe show the relative NDVI
savings achievedby targeting themost populated areas for different values ofNDVI
increment. G We present the difference between the local and global NDVI incre-
ments for different values of global NDVI increment. See data availability and code
availability for publicly available dataset and codes for generating the figures.
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sensing data, is able to predict the population exposure to LST
extremes of urban environments. We have analyzed the impact of the
vegetation change in reducing the exposure of urban population to
LST extremes and computed this value for each pixel of each city. This
provides theoretical options for already highly dense urban areas,
often characterized by a lack of space and housing. Lastly, it should be
mentioned again that our approach is large-scale and in some ways
generalizes patterns across broad geographic and climatic regions45.
Even if the SLM has been tested in cities across various climates and
has consistently proven its accuracy, climate adaptation strategies
need to be implemented locally, e.g., how additional green spaces are
distributed, what types of greenery are planted, details that, for space
constraints, are not part of this study.

We also make clear that is not simply a matter of increasing the
total amount of urban greening in a city, but where the greening is
targeted. While in this paper we focused on the most populated areas
of the city, in the next steps we suggest to focus on targeting other
relevant parts of the urban environments. It has been shown that the
effects of urban greening can vary depending on the location, with
irrigated landscapes in arid regions lowering nighttime temperatures
only in the least vegetated neighborhoods51. In addition, there are
multiple studies that have highlighted the relationship between land
surface temperature (LST) and historically marginalized areas within
cities52. It is important to also target interventions in more vulnerable
areas53. Although themarginalized areas of citiesmaynot bepart of the
current study, the inequity of where vegetation is currently located
should be addressed in the introduction and interpretation of the
results to provide amore comprehensive understanding of the issue54.
Moreover, exposure to heat is not limited to the outdoors and that
peoplemayalsobe exposed toheatwithin buildings. The availability of
indoor cooling, as well as the gradient in air conditioning between
wealthy and poor neighborhoods, is a crucial factor to consider when
assessing exposure to extremeheat55. These considerations emphasize
the requirement for a deeper analysis of amulti-dimensional approach
when thinking about exposure to extremeheat, and the significance of
considering the built environment and socio-economic factors in
assessing vulnerability: this is a complex topic that deserves further
investigation.

In summary, this research used a spatial lag model to assess and
predict with high accuracy the exposure of urban population to
extreme heat and it reveals quantitative results that give decision-
makers concrete guidance and general options to develop climate
adaptation strategies in planning the urban landscape. In this study,
we utilized Land Surface Temperature (LST) to assess exposure to
extreme heat, considering both daytime and nighttime observations
to account for the diurnal temperature exposure.While theremay be
some limitations in using LST for estimating population exposure at
specific spatial and temporal scales41, previous studies have shown
that LST and air temperature are closely correlated over extended
periods of time45, such as the 3-month period over a ten-year span we
analyzed in this research. In addition, this method can easily be
replicated by anyone for any city worldwide due to the availability of
consistent satellite data that is captured globally at the same reso-
lution, using the same techniques, and obtained at almost the same
time every day and every night56. Our research presented a globally
validatedmodel, and we believe that the samemethodology can also
be applied to specific, practical, and localized solutions. Finally, we
employed our findings to assess the efficacy of urban greening
initiatives in reducing extreme heat exposure for urban populations.
Our results demonstrated that targeting areas of the city where the
population is more exposed to extreme heat leads to a substantial
reduction in the amount of vegetation coverage needed to achieve
the same decrease in exposure compared to a uniform treatment. As
a next step, in order to achieve even greater improvement, it would
be beneficial to use urban greening in combination with other

mitigation strategies such as increasing surface albedo47 and water
bodies57.

Methods
Data and key variables
This study makes use of the Land Surface Temperature (LST) and
Normalized Difference Vegetation Index (NDVI) products from the
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument
on board of the NASA’s Terra and Aqua platforms: all data have been
collected from the Google Earth Engine (GEE) platform49. For each
sample city and its relative urban boundary, the average data for the 3
warmest months of the year from 2010 to 2019 were collected and
extracted from GEE as data points in a table. The urban boundary, the
population layer and landuse (i.e., presence ofwater bodies)was taken
from the EU Global Human Settlement Layer (GHSL)58. To define the 3
warmestmonths for each year and citywe rely on the ERA5Copernicus
data https://cds.climate.copernicus.eu/. All the data have been aggre-
gated at spatial resolution of 1km in the Mollweide projection.

Land surface temperature and heat thresholds. LST is from the
MOD11A1 V6 product that provides daily LST and emissivity at 1 km
nominal spatial resolution. We used the the Google Earth Engine (GEE)
platform to compute the values of the number of days and nights over
thresholds. For each city, the day and night thresholds have been
computed as the 90th percentile of the distribution of the LST over 20
years of observation (from 2002 to 2022) of all pixels of the city as
shown also in Fig. S3 and Fig. S4 in SI. This product provides daily per-
pixel Land The acquisition time of the MOD11A1 Version 6 is around
10:30am and 10:30pm respectively for day and night.

Normalized difference vegetation index. NDVI is from MOD13Q1 V6
product at 250 m nominal resolution and defined as:

NDVI =
NIR� Red
NIR +Red

ð1Þ

where NIR and Red are the atmospherically corrected bi-directional
surface reflectances (masked for water, clouds, heavy aerosols, and
cloud shadows) measured at 250m nominal spatial resolution in the
near-infrared and red wavebands respectively (see MODIS product
description56).

Distance towater bodies. The thirdpredictive variable of themodel is
an indicator of each point to the closest water body. Information on
water presence was retrieved from the Global Human Settlement Data
Layer produced by the European Commission Joint Research Center
for the period 1984–201559. The water occurrence is a measurement of
the water presence frequency (expressed as a percentage of the
available observations over time actually identified as water). The
provided occurrence accommodates for variations in data acquisition
over time in order to provide a consistent characterization of thewater
dynamic over time. The variable used in our model is defined as:

dw =
1

D2
w

ð2Þ

where Dw is the distance of each pixel to the water surface. In the
model, we used the normalized value of dw between 0 and 1 in order to
make this value in the same range as the other predictors.We used the
Guidos toolbox60 to estimate the distance to all pixels to water bodies
worldwide.

Definition of cities and urban boundaries. The urban boundaries are
set to the areasprovidedby EUGHSL. In particular,we used theDegree
of Urbanization, a new global definition of cities, urban and rural areas
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dataset available online (https://ghsl.jrc.ec.europa.eu/degurba.php).
The city boundaries are defined taking a rectangular buffer of 5 km
around the GHSL urban boundaries, as shown in Fig. S2 in SI as an
example for the city of Guangzhou.

Data aggregation. The workflow to generate an aggregated dataset
with all the necessary information starts with the definition of the
urban boundary as defined above. Once the urban boundary has been
defined, we divided the urban environment into a 1 km × 1 km grid as
shown in Fig. S2 in SI. In each cell of the grid, we then aggregated the
information we collected. Thereafter, all the information necessary for
running the model and performing the analysis has been spatially
merged and measured over the grid. For the population, we counted
the total population living in each cell. For the LST we assigned each
data point to its relative cell, for NDVI we assigned several points to a
single cell given the higher spatial resolution and we computed the
average, while for the distance to the water bodies (Dw) we computed
the distance from the epicenter of the grid to the closest water body
point. We used the Guidos toolbox60 to compute the distance of each
pixel to the closest water body as defined by the GHLS58.

Climate aggregation
Cities are classified based on their climate zone following the Köppen
climate classification which is one of the most widely used climate
classification systems. The Köppen climate classification divides cli-
mates intofivemainclimate zones,with each zonebeingdividedbased
on seasonal precipitation and temperature patterns. The five major
climate zones are then further divided into subzones. The second
letter indicates the seasonal precipitation type, while the third letter
indicates the level of heat. We define five main clusters as shown
in Fig. S1.

The spatial model
In this research we make use of the so called Spatial Lag Model (SLM)
that primarily addresses spatial autocorrelation48 (see also Table S1 SI).
Spatial autocorrelation refers to the casewhen the dependent variable
exhibits a non-random pattern over our spatial units after controlling
for other covariates. Positive autocorrelation reflects value’s similarity
in space, and negative autocorrelation reflects value’s dissimilarity in
space. In a matrix notation the SLM reads as (see SI for a detailed
description of the SLM):

Y = βX +ρWyY + ε ð3Þ

where Y = βX + ε corresponds to a standard linear regression model,
while W is the spatial weighting matrix applied to the observed vari-
able, Y, together with a spatial autoregression parameter, ρ that
reflects the spatial dependence inherent in our sampledata,measuring
the average influence on observations by their neighboring
observations61. In a spatial lag model the dependent variable among
our neighbors influences our dependent variable. The spatial weights
matrix, W is standardized such that its rows sum to 1, hence it is
effectively including aweighted average of neighboring values into the
regression equation. The neighbors can be identified by different
methods, such as distance based methods (k-nearest neighbors, dis-
tance specified) and contiguity methods (queen, rook)48. In this
researchweusea k-nearestneighbors approachwith k = 8whereall the
neighbors are equally weighted.
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