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Assortative mixing in micro-architecturally
annotated brain connectomes
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Boris C. Bernhardt 1, Martijn P. van den Heuvel 2 & Bratislav Misic 1

The wiring of the brain connects micro-architecturally diverse neuronal
populations, but the conventional graph model, which encodes macroscale
brain connectivity as a network of nodes and edges, abstracts away the rich
biological detail of each regional node. Here, we annotate connectomes with
multiple biological attributes and formally study assortative mixing in anno-
tated connectomes. Namely, we quantify the tendency for regions to be con-
nected based on the similarity of their micro-architectural attributes. We
perform all experiments using four cortico-cortical connectome datasets from
three different species, and consider a range of molecular, cellular, and lami-
nar annotations. We show that mixing between micro-architecturally diverse
neuronal populations is supported by long-distance connections and find that
the arrangement of connections with respect to biological annotations is
associated to patterns of regional functional specialization. By bridging scales
of cortical organization, from microscale attributes to macroscale con-
nectivity, this work lays the foundation for next-generation annotated
connectomics.

The brain is a complex network of anatomically connected and func-
tionally interacting neuronal populations1. Representing the brain as a
graph of grey matter nodes interconnected by white matter edges
allows us to articulate and quantify its organizational principles. A
compact set of hallmark features has been documented across
organisms, spatial scales and reconstruction technologies2. These
include communities of densely interconnected brain regions and
disproportionately well connected hubs3,4. Together, these features
promote a balance between specialization and integration5.

An important limitation of the graph model of the brain is
the assumption that all regions are the same. Yet, regions differ in
their intrinsic micro-architectural attributes6–10. These attributes
include gene expression11–16, cellular morphology17,18 and density19,
cell type20, neurotransmitter receptor profiles21–24, laminar
differentiation25–28, and myelination29. Understanding how the het-
erogeneous micro-architectural attributes of regional nodes are rela-
ted to their connectional fingerprint is a fundamental question in
systems neuroscience10,30–32.

Multiple studies have shown that the arrangement of connections
and regional attributes are related. For example, regions with more
macroscale connections tend to have more dendritic spines, larger
dendritic trees and greater neural density17. Moreover, regions with
similar attributes are more likely to be connected with each
other14,22,27,29,33,34, suggesting a tendency for homophilic attachment.
However, the assessment of the relationship between connectivity and
micro-architecture is complicated by the background influence of the
brain’s spatial embedding on both, whereby spatially proximal regions
are likely to have similar micro-architecture, but also to share anato-
mical connections35–38. Disentangling the relationships between neural
wiring, regional heterogeneity and spatial embedding is a core
challenge39,40. Furthermore, studies are often limited to a constrained
set of attributes in a single organism, precluding discovery of universal
principles of cortico-cortical organization.

Here we apply principled methods from network science to con-
struct annotated connectomes. We use connectomes reconstructed
from tract-tracing inmodel organisms aswell as high-resolution in vivo
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imaging in humans, and annotate them with multiple micro-
architectural attributes including gene expression, neuron density,
receptor fingerprints and intracortical myelin. We then systematically
quantify the assortativity of these annotated connectomes: the ten-
dency of regionswith similar attributes to connectwith one another. In
particular, we implement null models to assess the contribution of
spatial constraints. We find a tendency for regions with similar anno-
tations to connect with each other, and highlight the role of long-
distance projections in connecting micro-architecturally diverse
regions. We also generalize the concept of assortative mixing to
address two biologically relevant questions about wiring principles of
brain networks. First, we consider heterophilic assortativity: are
regions enriched with one attribute more likely to be connected with
regions enriched with another attribute? Second, we consider local
assortativity: how similar is a region to its connected neighbors in
terms of its annotations?

Results
The results are organized as follows. We first use the assortativity
coefficient to explore the relationship between connectivity and the
regional distribution of nodal attributes. We then specifically look at
the assortative mixing of long-range connections. Finally, we uncover
heterophilic patterns of connectivity between different micro-
architectural properties and extend the general concept of assorta-
tivity to the local level.

We use four different connectomes, namely a human diffusion-
weightedMRI structural connectome, a human resting-state functional
MRI connectome, a macaque tract-tracing connectome and a mouse
tract-tracing connectome (Fig. 1a). Each connectome is annotatedwith
micro-architectural annotations. In other words, each node in the
connectome is given a local annotation score associated with a micro-
architectural attribute. The human connectomes are annotated with

cortical thickness, T1w/T2w ratio (a proxy for intra-cortical myelin41),
the ratio of excitatory-to-inhibitory neurotransmitter receptors in a
region (E/I ratio), the density of neurotransmitter receptors in a region
and the principal axis of gene expression (gene PC1). The macaque is
annotated with cortical thickness, T1w/T2w ratio and neuron density
while the mouse connectome is annotated with its principal axis of
gene expression (Fig. 1b).

Assortativity of cortical attributes
We first explore the relationship between micro-architectural anno-
tations and connectome organization using the assortativity coeffi-
cient. For a given annotated network, assortativity is defined as the
Pearson correlation between the local annotation scores of con-
nected nodes42. In other words, it quantifies the tendency for nodes
with similar annotation scores to be connected (Fig. 2a). An impor-
tant challenge for measuring assortativity is that cortical attributes
are spatially autocorrelated, and at the same time, connections also
tend to form between brain regions that are proximal in space37. As a
result, assortativity may be trivially confounded by spatial embed-
ding. To assess how cortical attributes are related to brain con-
nectivity, we control for this spatial autocorrelation38,43,44. Namely, we
compare empirical assortativity coefficients to the assortativity
coefficients of null annotations with preserved spatial autocorrela-
tion (Fig. 2b).

We find that all annotations are positively assortative (i.e., brain
regions tend to be connected to other regions with similar attributes),
but that surrogate annotations also have positive assortativity scores
(Fig. 3a). To account for the influence of spatial autocorrelation on
assortativity, we compute the standardized assortativity score
(z-assortativity) of each attribute relative to the null distributions of
spatial autocorrelation-preserving surrogates and evaluate the sig-
nificance of the scores using a two-sided permutation test, corrected

Fig. 1 | Annotated connectomes. We annotated four connectomes with micro-
architectural attributes. a Connectomes include a human structural and a human
functional connectome reconstructed using data from the HCP86, a macaque con-
nectomegenerated using data from theCoCoMacdatabase and initially introduced
in Scholtens et al.17, and a mouse connectome reconstructed using data from the
Allen Mouse Brain Connectivity Atlas and introduced in Oh et al.102. The human
connectomes are parcellated according to the 800-nodes Schaefer functional
atlas89, the macaque connectome is parcellated according to a hybrid Walker-von
Bonin and Bailey atlas101 and the mouse connectome comprises 213 brain regions
from theAllenMouse BrainAtlas103. Spatial coordinates used for visualization of the

human and macaque connectomes correspond to the parcel centroids of their
respective atlas. The spatial coordinates used for visualization of the mouse con-
nectome were obtained from the Allen Reference Atlas, version 2 (2011). b Human
connectomes are annotated with measures of neurotransmitter receptor density,
the ratio of excitatory-to-inhibitory neurotransmitter receptors, the principal axis
of gene expression (gene PC1), T1w/T2w ratio and cortical thickness. The macaque
connectome is annotated with neuron density (neuron-to-cell ratio), cortical
thickness and T1w/T2w ratio. The mouse connectome is annotated with the prin-
cipal axis of gene expression (gene PC1).
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for false discovery rate (Fig. 3b). Thismethod ensures that the p-values
are not inflated as a result of spatial autocorrelation38. See Supple-
mentary Fig. 1 for examples of p-values obtained with spatially-naive
null models. We find that annotations are not significantly assortative
on the human structural connectome, while gene PC1 (z-assort = 3.15,
pspin = 0.0049), T1w/T2w (z-assort = 6.02, pspin = 0.0001) and cortical
thickness (z-assort = 3.63, pspin = 0.0017) are significantly assortative

on the human functional connectome. In the macaque connectome,
we observe a significant difference between the assortativity of
T1w/T2w and null annotations (z-assort = 3.98, pmoran = 0.002) as well
as between neuron density and null annotations (z-assort = 3.93,
pmoran = 0.0001). No significant difference is observed for the cortical
thickness. In the mouse connectome, no significant difference is
observed for gene PC1.

Fig. 2 | Assortative mixing. a Given an annotated network where each node has a
local annotation score, we can quantify the tendency for nodes with similar scores
to be connected using the assortativity coefficient. This coefficient is defined as the
Pearson correlation between the scores of connected nodes42. This relationship
between the scores of connected nodes can be visualized with a scatterplot of a
network’s edges where the position of each edge is determined by the annotation
scores of its two endpoints. Here, the intersection of the two dashed lines indicates
the position of the edge highlighted in the zoomed-in frame of the network. In this

example, the assortativity coefficient (r) is equal to 0.54. b To control for spatial
constraints, the assortativity coefficient of an empirical annotation is compared to
the assortativity coefficients ofn = 10,000null annotations thatpreserve the spatial
autocorrelation of the empirical one38,43,44. The boxplots in b represent the 1st, 2nd
(median) and 3rd quartiles of the null distribution; whiskers represent endpoints of
the distribution. The spatial coordinates used for the visualization of the con-
nectome corresponds to the parcel centroids of the 800-nodes Schaefer functional
atlas89.

Fig. 3 | Standardized assortativity of micro-architectural annotations.
a Assortativity of empirical annotations (points) are compared to n = 10,000 null
annotations with preserved spatial autocorrelation (boxplots). For the human
connectomes, the nulls were generated using a spatial permutation model. For the
mouse andmacaque connectomes, the nullswere generated using a parameterized
null model. b Standardized assortativity scores (z-assortativity), computed relative
to the spatial autocorrelation-preserving null annotations. Significance is evaluated

using a two-sided permutation test, corrected for false discovery rate (FDR). Gene
PC1 (pspin = 0.0049), T1w/T2w ratio (pspin = 0.0001) and cortical thickness
(pspin = 0.0017) are significantly assortative on the functional connectome, while
T1w/T2w (pmoran = 0.002) and neuron density (pmoran = 0.0001) are significantly
assortative on the macaque connectome. Boxplots in a represent the 1st, 2nd
(median) and 3rd quartiles; whiskers represent the non-outlier endpoints of the
distribution; and + symbols represent outliers.
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To ensure that the results are not sensitive to processing choices,
we replicated the experiments using different parcellation schemes,
single-hemisphere connectomes, an independently acquired dataset,
additional spatially-autocorrelation preserving nulls models and a
rank-based assortativity measure (Supplementary Figs. 2–4). Further-
more, for each assortativity results, we regressed out the potential
contribution of the other annotations, confirming that the results are
not confounded by relationships between pairs of annotations (Sup-
plementary Fig. 5). We also explored the relationship between anno-
tations using multiple linear regression and dominance analysis
(Supplementary Fig. 6).

The results show that there are numerous instances where
annotations that are prima facie assortative are actually not sig-
nificantly assortative when we account for spatial autocorrelation. We
do find instances, however, where assortativity is significantly larger
than expected from the brain’s spatial embedding and, interestingly,
these findings are consistent with recent reports in the literature. The
significant standardized assortativity of neurondensity in themacaque
cortex is consistent with reports that neuron density ismore related to
the existence of connections than geodesic distance45. Significant
assortativity in the functional connectome is also consistent with
recent reports that functional connectivity gradients are closely
aligned with multiple micro-architectural properties6,13,28,29.

Geometric contributions to assortativity
Recent theories suggest that long-distance connections in the struc-
tural connectome enhance the diversity of a brain region’s inputs and
outputs46. Long-distance connections may thus potentially promote
communication between regions with dissimilar attributes. This idea,
however, has never been formally tested from the perspective of bio-
logical annotations.

We therefore explored how the standardized assortativity of dif-
ferent attributes, relative to null annotations with preserved spatial
auto-correlation, varies as we consider connections of different
lengths. For all four connectomes and for each annotation, we com-
pute the standardized assortativity across thresholded connectomes
where a given percentile of the shortest connections is removed. We
find that as short-distance connections are removed — leaving behind

the longest connections — the standardized assortativity of all
annotations across all four connectomes decreases (Fig. 4). Notably,
with 80% of the human structural connectome’s connections
removed, four annotations become significantly disassortative (two-
sided permutation test, FDR-corrected): E/I ratio (z-assort = − 2.94,
pspin = 0.021), gene PC1 (z-assort = − 2.88, pspin = 0.021), T1w/T2w
ratio (z-assort = − 2.27, pspin = 0.0499) and cortical thickness
(z-assort = − 2.49, pspin = 0.039). In other words, the remaining long-
range connections link regions with attributes that are more dis-
similar than we would expect from the brain’s spatial embedding.
Again, these results are consistent across multiple methodological
choices (Supplementary Figs. 2–4). This confirms the notion that
long-distance connections increase the diversity of a region’s inputs
and outputs, supporting the integration of information between
micro-architecturally dissimilar regions.

Heterophilic mixing of cortical attributes
In the previous sections, we used the assortativity coefficient to ask if
two areas aremore likely to be connected if they are enriched with the
same attribute. In otherwords, we quantified the homophilicmixing of
micro-architectural attributes. An equally important question is whe-
ther there exists heterophilic mixing in the brain. In other words, are
two regions more likely to be connected if one region is enriched with
one attribute while the other is enriched with a different attribute?
Cortico-cortical connectivity may indeed reflect interactions between
pairs of distinct attributes. For instance, it has been hypothesised that
the noradrenergic and cholinergic systems influence in distinct ways
large-scale dynamical processes in the brain47. Laminar organization
also appears to be closely related to brain connectivity48–50. We next
ask if the heterogeneous distribution of pairs of attributes frommulti-
member classes of annotation — neurotransmitter receptor profiles
and laminar differentiation — is reflected in the connectivity of
the brain.

To address these questions, we analyze two datasets (Fig. 5a). The
first is a positron emission tomography (PET)-derived atlas of 18
receptors and transporters from 9 neurotransmitter systems22. The
second is the thickness of individual cortical layers in the Merker-
stained BigBrain histological atlas26,51. To quantify heterophilic mixing,

Fig. 4 | Assortativemixing of long-range connections. Assortativity is computed
in each of the four connectomes, thresholded such that a percentile of the shortest
connections are removed. These assortativity scores are standardized with respect
to a null distribution of n=10,000 spatial autocorrelation-preserving nulls.

Standardized assortativity scores (z-assortativity) for each annotation are displayed
as a function of the percentile of connections removed in the network. For all four
connectomes, annotations become less assortative as short-range connections are
removed.
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we extend the concept of assortativity to pairs of annotations. In other
words, we compute the assortativity coefficient for pairs of annota-
tions such that the annotation at endpoint i represents an attribute x
and the annotation at endpoint j represents a different attribute y.
Figure 5b shows the heterophilic mixingmatrices of the structural and
functional connectomes for both receptor density and laminar thick-
ness. The assortativity results are standardized with respect to spatial
autocorrelation-preserving null annotations generated by permuting
the attributes on the surface of the brain (spins). Importantly, these
permutations preserve the correlation between brain maps. By con-
trolling for both the brain’s spatial embedding and the correlation
between brain maps, the analyses specifically assess the relationship
between brain connectivity and the heterogeneous distributions of
pairs of micro-architectural attributes. Positive values in each matrix
indicate that a region that scores highly on an annotation x is more
likely to be connected to a region that scores highly on an annotation y

than expected from the spatial distribution of each annotation.
Negative values indicate that a region that scores high on an annota-
tion x is more likely to be connected to a region that scores low on an
annotation y than expected from the spatial distribution of each
annotation.

Several salient associations emerge that are consistent with prior
intuitions and qualitative descriptions in the literature (Fig. 5b). For
the laminar thickness, we find consistent mixing patterns for both the
structural and functional connectomes. Namely, layers III, V and VI are
assortative with respect to each other, but disassortative with respect
to layer IV. In other words, we find that brain areas with a prominent
layer IV tend to preferentially connect with brain areas with thin layers
III, V and VI, whereas brain regions with prominent layers III, V and VI
tend to preferentially connect with each other. Interestingly, in the
functional connectome, thesemixing patterns can be explained by the
relationship between each laminar thickness map and the functional
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Fig. 5 |Heterophilicmixing. aTopographic distributionof PET-derived brainmaps
showing the density of 18 transporters and receptors22, as well as the topographic
distribution of laminar thicknesses extracted from the Merker-stained BigBrain
histological atlas26,51. The spatial coordinates corresponds to the parcel centroids of
the 800-nodes Schaefer functional atlas89 (b) Heterophilic mixing matrices for the
receptors/transporter annotations (left) and for the laminar thickness annotations
(right). Positive values indicate that regions that scorehighlyonan annotationx are
more likely to be connected to regions that score highly on an annotation y than
would be expected from the brain’s spatial embedding. Negative values indicate
that regions that score high on an annotation x are more likely to be connected to

regions that score low on an annotation y. Black squares highlight statistically
significant relationships (p <0.05), evaluated using a two-sided permutation test
with spatial autocorrelation-preserving null annotations and corrected formultiple
comparisons (FDR). c Relationship between the standardized assortativity of
annotation pairs in the structural connectome (SC) and in the functional con-
nectome (FC). We find a strong relationship between z-assortativity in SC and
z-assortativity in FC (r =0.74). Highlighted in red are annotation pairs that are
significantly assortative in FC. Highlighted in blue are annotation pairs that are
significantly disassortative in FC.
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hierarchy, defined as the main axis of variance in the brain’s functional
connectivity matrix6,52. Indeed, assortative mixing between two anno-
tations arises when attributes have positive or negative relationships
with the main axis of brain connectivity, while disassortative mixing
arises when attributes have opposite relationships with this axis
(Supplementary Fig. 7ab). For the patterns of assortativity observed
between layer IV and layers III, V and VI, it has been shown that the
thickness of layer IV is most prominent in the primary visual cortex
(ref. 26), while the thicknesses of layers III, V and VI increases along the
visual processing hierarchy (ref. 26). Similarly, we find here that the
thickness of layer IV is positively correlated with the functional hier-
archy while the thicknesses of layers III, V and VI are negatively cor-
related with the functional hierarchy (Supplementary Fig. 7c). These
opposing relationships with the functional hierarchy, such that a
prominent layer IV is associated with unimodal brain regions while
prominent layer III, V and VI are associated with multimodal regions
explain the mixing patterns observed (Supplementary Fig. 7c).

This general idea also extends to receptors where we broadly find
evidence of disassortative mixing for pairs of receptors and trans-
porters predominantly expressed in brain regions on opposite ends of
this functional hierarchy. More specifically, we find 10 pairs of recep-
tors and transporters that are significantly disassortative (Supple-
mentary Table 1). A clear pattern emerges, whereby each pair involves
a transporter (5HTT, NAT or VAChT) and a receptor. This is in line with
their relationship with the functional hierarchy: transporter maps tend
to be anticorrelated with the unimodal-transmodal hierarchy, while
the identified receptor maps tend to be positively correlated with the
unimodal-transmodal hierarchy (Supplementary Fig. 7d). Altogether,
these results highlight a network-mediated balance between trans-
porter and receptor density.

We also find a significant assortative relationship in the functional
connectome between vesicular acetylcholine transporters (VaChT)
and NAT (z-assort = 5.10, pspin = 0.028). Transporters are generally
expressedpre-synaptically. Thus, the results show that regions densely
innervated by cholinergic neurons tend to be connected with regions
densely innervated by noradrenaline neurons, above and beyondwhat
would be expected from the brain’s spatial embedding. Our findings
therefore support the idea that these two systems interact with each
other and with the brain’s topology to influence large-scale dynamical
processes47. Assortative relationships tend to be similar in both
structural and functional connectomes (Fig. 5c). They are also replic-
able with alternate parcellations and datasets (Supplementary Fig. 8).
Collectively, these complex heterophilic mixing patterns show evi-
dence of howmacroscalewhitematter projections support interfacing
among neuronal populations with diverse microscale attributes.

Local assortative mixing
In the previous two sections, we explored how cortical attributes align
with the underlying connectome at the global level. Here we extend
this concept to the local level and consider the extent to which indi-
vidual regions connect to regions with similar attributes. We first
compute the absolute difference between the local annotation scores
of connected nodes (edge differences; Fig. 6a, left). To quantify the
local assortativity of a region, we then compute the average of its edge
differences to its connected neighbours, weighted by the connection
weight between the two nodes (mean difference; Fig. 6a, right). This
local assortativity score represents howdifferent a region is fromother
regions it is anatomically connected with in terms of its biological
attributes.

Importantly, annotation scores that deviate from the mean of the
distribution areon averagemore dissimilar to anyother score (Fig. 6b).
To account for this, we define the homophilic ratio of a node as the
ratio between its mean difference with connected neighbors and its
mean difference with all the nodes in the network (Fig. 6b). Nodes that
have large homophilic ratios are nodes that tend to connect to brain

regions with more dissimilar properties (disassortative) while nodes
that have small homophilic ratios tend to connect to regionswithmore
similar properties (assortative).

The homophilic ratios of all five annotations on the structural
connectome are shown in Fig. 6c. The homophilic ratios are consistent
across parcellations and datasets (Supplementary Fig. 9). We also
computed the homophilic ratio of each annotation on the functional
connectome (Supplementary Fig. 10). For the structural connectome,
we summarized the assortativity of each node by computing their
averaged homophilic ratio across all five annotations and quantified
the relationship between homophilic ratio and mean connection dis-
tance as well as node strength (Fig. 6d). We find a significant rela-
tionship for both mean connection distance (r = 0.35, pspin = 0.0001),
and node strength (r =0.21, pspin = 0.021). In other words, dis-
assortative regions have, on average, longer connections, which is
consistent with our previous findings that long distance connections
tend to be disassortative (Fig. 4). Also, the results highlight a general
trend in the structural connectomewhere brain regions that have large
node strength (i.e., “hub” regions) tend to be more disassortative. In
other words, the hub regions of the brain tend to connect to regions
that have dissimilar micro-architectural attributes.

We next explored whether these findings are consistent across
communities of the brain. We clustered the human structural con-
nectomes into 9 communities of highly interconnected regions and
computed the mean homophilic ratio and mean node strength inside
each community. We find that the relationships between node
strength, mean connection distance and homophilic ratio hold for all
communities, with the exception of the dorsolateral prefrontal com-
munity (Supplementary Fig. 11). Brain regions in this community have,
on average, the largest node strengths but the smallest homophilic
ratios. In other words, contrary to the other hub regions of the brain,
nodes in DLPFC tend to preferentially connect to regions that have
similar micro-architectural attributes.

Finally, we ask whether the homophilic ratio of a brain region is
related to its functional specialization. We extracted brain maps of
probabilistic associations between functional keywords and individual
voxels using the Neurosynthmeta-analytic engine53 and correlated the
brain maps associated with 123 cognitive and behavioural terms54 with
the averaged homophilic ratio brain map. We then grouped the cor-
relation scores based on the cognitive category associated with each
term (Fig. 6e). We find, on average, significant (two-sided permutation
test, FDR-corrected) negative correlations between the average
homophilic ratio brain map and both the “action” (r = −0.20, p =0.02)
and the “Executive/Cognitive control” (r = −0.21, p =0.0001) cate-
gories. In other words, regions with large activation during tasks of
these categories tend to have small homophilic ratios. Conversely, we
find that cognitive termsassociated to the “learning” and “memoryand
emotion” categories have, on average, activation maps that are posi-
tively correlatedwith the average homophilic ratio brainmap (learning
and memory: r = 0.11, p = 0.003; emotion: r =0.15, p =0.003). In other
words, regions with large activation during tasks of these categories
tend to have large homophilic ratios. This suggests that executive
functions are subtended by a network of areas that tend to connect to
other areas with similar microscale attributes. Conversely, integrative
functions such as consolidation andmemory are subtended by a set of
medial temporal structures that project to regions with diverse
microscale attributes. Correlations for individual cognitive terms are
shown in Supplementary Fig. 12.

Discussion
In the present report we investigate the link between connectome
architecture and microscale biological annotations. More specifically,
we ask whether brain regions with similar attributes are more likely to
be connected with each other above and beyond the role of spatial
proximity. We systematically assess the tendency for global and local
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homophilic mixing across a variety of attributes. We show that mixing
between micro-architecturally diverse neuronal populations is sup-
ported by long-distance connections. Finally, we highlight how brain
connectivity supports heterophilic mixing patterns between neuro-
transmitter systems and cortical layers.

The presentwork builds upon an exciting newdirection in network
neuroscience to jointly consider macroscale networks and microscale
attributes8,17,18,31,39. Contemporary theories emphasize the link between
cytoarchitectonic similarity and synaptic connectivity48–50,55,56. Numer-
ous recent reports related macroscale connectivity to microscale
annotations, including gene expression14,57–60, cytoarchitecture27–29,33,45

and neurotransmitter receptor profiles22,24. While some of these studies
have shown evidence of global assortativemixing for specific attributes

and connectomes types, the extent to which these findings can be
generalized to wiring principles across network reconstruction techni-
ques, species, spatial scales and annotations remains unknown. By
considering a broad range of annotation in multiple connectome
datasets, the present work comprehensively studies how connectivity
between neural populations depends on their micro-architecture.

Importantly, the spatial embedding of the brain constrains
its organization37. Microscale attributes are graded across the
cortex6,10,61, which means that most cortical attributes are spatially
autocorrelated13,38,44,62. There is also a concomitant prevalenceof short-
distance connections compared to long-distance connections63, with
connection probability and strength typically decaying exponentially
with spatial distance35,36,64–66. Collectively, these principles of cortical
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Fig. 6 | Local assortativemixing. aWe first computed the weighted average of the
absolute differences between each brain region’s local annotation score and the
local annotation scores (mean differences) of its directly-connected neighbors.
b The mean difference between a node’s annotation score and the annotation
scores of all the other nodes in the network (black points in the scatterplot) is
directly related to its annotation score. A similar relationship exists when con-
sidering connected neighbors (gray points in the scatterplot). Therefore, a node’s
homophilic ratio is defined as its mean difference with connected neighbors,
divided by its mean difference with all the nodes in the network. c Homophilic
ratios of five micro-architectural attributes, for the human structural connectome.
d The homophilic ratio, averaged across the five micro-architectural attributes
shown in c, is significantly correlated (permutation tests against n = 10,000 spatial
autocorrelation-preserving nulls, two-sided) with the mean connection distance
(right; r =0.35, pspin = 0.0001, CI = [0.29, 0.41]) and the strength (left; r =0.21,
pspin = 0.02, CI = [0.15, 0.28]) of a node. Regression lines are shown for both rela-
tionships. Shaded bands represent the 95% confidence intervals of the regression

estimates. eWe correlated 123 parcellated brain maps of probabilistic associations
between functional keywords and individual voxel activation53 with the averaged
homophilic ratio of each node. These keywords are separated into 11 different
cognitive categories: executive/cognitive control, action, motivation, attention,
reasoning and decision making, social function, language, other, perception,
learning and memory, and emotion. On average, we find significant (two-sided
permutation test, FDR-corrected) negative correlations between the averaged
homophilic ratio brain map and the activation maps associated to the “action”
(r = −0.20, p =0.02) and the “Executive/Cognitive control” (r = −0.21, p =0.0001)
categories. Conversely, the averaged homophilic ratio brain map is positively
correlated with activation maps associated to the “learning and memory” (r =0.11,
p =0.003) and “emotion” (r =0.15, p =0.003) categories. Boxplots in e represent
the distribution’s 1st, 2nd (median) and 3rd quartiles; whiskers represent the dis-
tribution’s endpoints. Spatial coordinates ina–c correspond to theparcel centroids
of the 800-nodes Schaefer functional atlas89. Cortical surfaces in c are visualized on
the pial surface of the FreeSurfer145 fsaverage template using PySurfer142.
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organization necessitate careful consideration and methodological
control of spatial effects when studying the relationship between
connectivity and annotations13,38,43,44,62,67.

Here, we rigorously assess how network wiring, micro-
architectural features and spatial embedding are intertwined from
the perspective of assortativity. Although degree assortativity – whe-
ther nodes with similar degrees are more likely to be connected with
each other – has previously been studied in brain networks68–72, the
fundamental idea is more general and can be applied to any nodal
features. In this sense, assortativity, combined with spatially-
constrained null models, is the ideal framework to study con-
nectome annotations.

For the functional connectome, we find a significant relationship
between connectivity and gene PC1, T1w/T2w, and cortical thickness.
This is consistent with previous reports that these three properties are
related to the principal gradient of functional connectivity6,13,29, which
canbe thought of as the dominant patternof assortativity in functional
connectomes52. For the structural connectome, we find that assorta-
tive connectivity heavily depends on the annotation itself. While we
find significant assortativity in the macaque for T1w/T2w and neuron
density (consistent with previous reports45), we find also numerous
counter-examples of annotations that are not assortative beyond the
background effect of spatial embedding. For instance, we find that
receptor density and E/I ratio, T1w/T2w ratio, cortical thickness and
genePC1 arenot assortative in thehumanconnectome, nor is genePC1
assortative on the mouse connectome. Collectively, these results
support a general tendency for cytoarchitectonically similar regions to
be connected, but also highlight the fact that not all features conform
to this wiring principle.

By definition, assortativity means that brain regions will be con-
nected to regions that are similar to themselves; a functional con-
sequence is that regions are less likely to be exposed to diverse inputs.
Importantly, we find that long distance connections are an archi-
tectural feature that potentially serves to diversify inputs to a brain
region. Indeed, the longest connections, in structural (diffusion and
tract-tracing) and functional connectomes are significantly dis-
assortative, meaning that they are more likely to connect dissimilar
regions than expected from the brain’s spatial embedding. This is in
line with the notion that greater prevalence of short-range
connections35,36,64–66, which presumably entail lower material and
metabolic cost63, is counter-balanced by a small number of high-cost,
high-benefit long-range connections that support communication
between regions with diverse functions73,74. Previous studies have
found that long-range connections, which are heterogeneously dis-
tributed alongmicroarchitectural and cognitive hierarchies75,76, help to
shorten communication pathways4, and bridge specialized modules46.
Our results build on this literature by showing that long-range con-
nections are also more likely to be placed between regions that are
biologically distinct.

We also extend the conventional framework of assortativity to ask
two biologically important questions about heterophilic and local
homophilic mixing. The notion of heterophilic mixing becomes par-
ticularly convenient when we study a multi-member class of annota-
tions, and wish to know whether a node enriched with one attribute is
likely to be connected to a node enrichedwith another attribute. In the
brain, two notable examples are receptor profiles and laminar differ-
entiation, both of which have been associated to patterns of synaptic
connectivity22,49. For instance, ascending cholinergic and nora-
drenergic neuromodulatory systems are thought to provide com-
plementary mechanisms to balance segregation (cholinergic) and
integration (noradrenergic)47. Our results highlight a tendency for
cortical areas that are rich in cholinergic and noradrenergic trans-
porters to be connected, offering a potential anatomicalmechanism to
maintain this balance. We also find that the thickness of granular layer
IV, which is more prominent in sensory regions, is disassortative with

the thickness of the other layers of the cortex. This is in line with
previous findings that have shown that sensory regions, such as visual
cortex, form segregated modules in macroscale structural and func-
tional networks68,77–79. How heterophilic mixing is organized between
different classes (e.g., areas enriched with specific layers connected to
areas enriched with specific receptors80) remains an exciting question
that could be readily addressed with the present framework.

Finally, we zoom in to specific regions and assess the extent to
which their local biological annotations conform to the annotations of
their connected neighbours, thereby generalizing the concept of glo-
bal assortativity to the local level. Using meta-analytic decoding, we
find that regions that connect to biologically similar regions tend to
be associated with executive function. This may reflect the fact that
these areas (e.g., dorsolateral prefrontal cortex), which are cytoarchi-
tecturally distinct from other prefrontal regions81, form a highly
interconnected module in the structural connectome68. Conversely,
regions that connect with biologically dissimilar regions tend to be
associated with memory function. This may reflect the idea that these
regions (e.g., medial temporal cortex) are involved in integrating sig-
nals from multiple specialized circuits71. Collectively, these results
show that the arrangement of connectivity patterns with respect to
biological annotations may ultimately shape patterns of regional
functional specialization.

The present results should be interpreted with respect to
important methodological limitations. First, human structural con-
nectomes were reconstructed using diffusion imaging, a technique
that is known to yieldmultiple false positives and false negatives82,83,
and which cannot be used to infer directionality. Although we
replicated the results using high fidelity tract-tracing and histology
in multiple animal models, further development in reconstructing
human white-matter connectomes is needed. Second, despite the
fact that we tried to be as extensive and comprehensive as possible
in our choice of annotations, spanning molecular, cellular and
laminar attributes, the final set of annotations is incomplete. Excit-
ing technological and data-sharing advances will eventually permit
even more detailed and comprehensive biological annotations to be
studied using this framework. Third, the number and the resolution
of samples across annotations varies. To mitigate the impact of
sampling and resolution differences on our results, we parcellated
each brain map according to the same atlas, which effectively maps
them to a set number of brain regions uniformly distributed across
the cortex and across datasets. Relationship between connectivity
and attributes depend on how brain regions are defined (i.e., par-
cellations). We systematically studied multiple parcellations, but
how best to delineate functional territories of the cortex remains an
open challenge in the field84,85.

In summary, the present work bridges scales of cortical organi-
zation, from microscale attributes to macroscale connectivity. By
carefully controlling the background effect of spatial embedding, we
systematically assess how connectivity is interdigitated with a broad
range of micro-architectural attributes and empirically test multiple
theories about the wiring of cortical networks. This work lays the
foundation for next-generation annotated connectomics.

Methods
Connectomes
Human connectomes (HCP). The human connectomes were gener-
ated using data from the Human Connectome Project S900 release86.
Scans from N = 327 unrelated participants (age 28.6 ± 3.73 years, 55%
females) were used to reconstruct a consensus structural and func-
tional connectome. Informed consent was obtained for all subjects
(the protocol was approved by theWashington University Institutional
ReviewBoard as part of theHCP). The participants were scanned in the
HCP’s custom Siemens 3T “Connectome Skyra” scanner, and the
acquisition protocol included a high angular resolution imaging

Article https://doi.org/10.1038/s41467-023-38585-4

Nature Communications |         (2023) 14:2850 8



(HARDI) sequence and four resting state fMRI sessions. Briefly, the
dMRI data was acquired with a spin-echo EPI sequence (TR = 5520ms;
TE = 89.5ms; FOV = 210 × 180mm2; voxel size = 1.25mm3; b-value =
three different shells i.e., 1000, 2000, and 3000 s/mm2; number of
diffusion directions = 270; and number of b0 images = 18) and the
resting-state fMRI data was acquired using a gradient-echo EPI
sequence (TR= 720ms; TE = 33.1ms; FOV= 208 × 180mm2; voxel
size = 2mm3; number of slices = 72; and number of volumes = 1200).
Additional information regarding the acquisition protocol is available
at ref. 86.

The data was pre-processed according to the HCP minimal pre-
processing pipelines87 and structural connectomes were recon-
structed from the dMRI data using theMRtrix3 package88. Greymatter
was parcellated into 800 cortical regions according to the Schaefer
functional atlas89 and fiber orientation distributions were generated
using a multi-shell multi-tissue constrained spherical deconvolution
algorithm90,91. The initial tractogram was generated with 40 million
streamlines, with a maximum tract length of 250 and a fractional ani-
sotropy cutoff of 0.06. Spherical-deconvolution informed filtering of
tractograms (SIFT2) was used to reconstruct whole brain streamlines
weighted by cross-section multipliers92. More information regarding
the individual network reconstructions is available at ref. 93.

A group consensus structural networkwas thenbuilt such that the
mean density and edge length distribution observed across individual
participants was preserved94. The weights of the edges in the con-
sensus networks correspond to the log-transform of the number of
streamlines in the parcels, averaged across participants for whom
these edges existed. A group-average functional connectivity matrix
was constructed by concatenating the regional fMRI BOLD time series
of all four resting-state sessions from all participants and computing
the zero-lag Pearson correlation coefficient between each pair of brain
regions. Experiments were also replicated using connectomes parcel-
lated into 400 cortical regions, again according to the Schaefer func-
tional atlas89, and without log-transforming the edge weights.

Human connectomes (Lausanne). Our experiments were also repli-
cated in a seconddataset collected at the LausanneUniversityHospital
(N = 67; age 28.8 ± 9.1 years, 40% females)95. Participants were scanned
in a 3-Tesla MRI Scanner (Trio, Siemens Medical, Germany). Informed
consent was obtained for all subjects (the protocol was approved by
the Ethics Committee ofClinical Research of the Faculty of Biology and
Medicine, University of Lausanne, Switzerland). Details regarding data
acquisition, pre-processing and network reconstruction are available
at ref. 95. Briefly, the data acquisition protocol included a
magnetization-prepared rapid acquisition gradient echo (MPRAGE)
sequence (1mm in-plane resolution, 1.2mm slice thickness), a diffusion
spectrum imaging (DSI) sequence (128 diffusion-weighted volumes
and a single b0 volume, maximum b-value 8000 s/mm2,
2.2 × 2.2 × 3.0mmvoxel size), and a gradient echo-planar imaging (EPI)
sequence sensitive to blood-oxygen-level-dependent (BOLD) contrast
(3.3mm in-plane resolution and slice thickness with a 0.3mm gap, TR
1920ms, resulting in 280 images per participant). Grey matter was
parcellated into either 219 and 1000 equally sized parcels96. The
Connectome Mapper Toolkit was used for the initial signal
processing97 while gray and white matter were segmented from the
MPRAGE volume using freesurfer98. Structural connectivity matrices
were reconstructed for individual participants using deterministic
streamline tractography on reconstructed DSI data. 32 streamline
propagations were initiated per diffusion direction and per white
matter voxel.

Again, a group consensus structural network was built such that
the mean density and edge length distribution observed across indi-
vidual participants was preserved94. The weights of the edges corre-
spond to the log-transform of the streamline densities, averaged
across participants and scaled to values between0 and 1. fMRI volumes

were corrected for physiological variables (regression of white matter,
cerebrospinal fluid, as well as motion), BOLD time series were sub-
jected to a lowpass filter and motion “scrubbing”99 was performed. A
group-average functional connectivitymatrix was reconstructed using
the same procedure as described above.

Macaque connectome. The macaque connectome was initially
introduced in Scholtens et al.17 and was generated using data from
the CoCoMac database, an online repository of tract-tracing
experiments100. The parcellation used for the network reconstruction
is an hybrid between the Walker-von Bonin and Bailey atlases101 and
contains 39 non-overlapping cortical regions. The network was con-
structed such that a connection is assigned to pairs of brain regions if
(i) a tract is reported in a leastfive studies in thedatabase and ii) at least
66% of the reports are positive. The connectome is directed and each
edge is weighted between 1 and 3 based on the averaged reported
strength of the connection.

Mouse connectome. The mouse connectome was generated by Oh
et al.102 using data from the Allen Mouse Brain Connectivity Atlas. This
connectivity atlas contains high-resolution images acquired from 469
injection experiments performed in the right hemisphere of C57BL/6J
male mice. Each experiment produced 140 high-resolution (0.35 μm)
coronal sections of EGFP-labelled axonal projections which were then
registered to the Allen Mouse Brain Atlas103. A weighted directed
connectome of 213 brain regions was constructed. The strength of
each connection was obtained by fitting a linear connectivity model to
the data. The connectivity data, the name of the 213 brain regions as
well as the euclidean distance between each region was obtained from
the supplemental material of Oh et al.102. The spatial coordinates used
for visualization were obtained from the Allen Mouse Reference Atlas,
version 2 (2011).

Annotations
Human annotations. Cortical thickness and T1w/T2w ratio were
extracted from high-resolution structural scans made available by the
Human Connectome Project86. For the HCP connectomes, the mor-
phometric measures were obtained for each one of the 201 individuals
used to reconstruct the connectomes and averaged, for each node of
the parcellations, across subjects. For the Lausanne connectomes, the
morphometric measures, averaged across subjects of the S1200
release, were fetched and parcellated using neuromaps61.

The principal axis of transcriptional variation across the human
cortex (gene PC1) captures a hierarchy of transcriptomic specialization
across the human cortex6,13 and has been used in multiple studies
(refs. 11, 34, 104–106. It was computed using the Allen Human Brain
Atlas (AHBA; https://human.brain-map.org/)11, which provides regional
microarray expression data from six post-mortem brains (1 female,
ages 24–57, 42.5 ± 13.38). The AHBA data was pre-processed and
mapped to the parcellated brain regions using the abagen toolbox
(https://github.com/rmarkello/abagen)107. During pre-processing, the
MNI coordinates of tissue samples were updated to those generated
via non-linear alignment to the ICBM152 template anatomy (https://
github.com/chrisgorgo/alleninf). Microarray probe information was
re-annotated for all genes using data provided by Arnatkeviciute and
colleagues108. For bilateral connectomes, microarray expression sam-
ples were mirrored across hemispheres to increase spatial coverage.
Then, probes were filtered by only retaining those that have a pro-
portion of signal to noise ratio greater than 0.5. Whenmultiple probes
indexed the expression of the same gene, the one with the most
consistent pattern of regional variation across donors was selected.
Samples were then assigned to individual regions in the parcellations.
If a sample was not found directly within a parcel, the nearest sample,
up to a 2mm-distance, was selected. If no samples were found within
2mm of the parcel, the sample closest to the centroid of the empty
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parcel across all donors was selected. To reduce the potential for
misassignment, sample-to-region matching was constrained by hemi-
sphere and gross structural divisions (i.e., cortex, subcortex/brain-
stem, and cerebellum, such that e.g., a sample in the left cortex could
only be assigned to an atlas parcel in the left cortex). All tissue samples
not assigned to a brain region in the provided atlas were discarded.
Tissue sample expression scores were then normalized across genes
using a scaled robust sigmoid function14, and were rescaled to a unit
interval. Expression scores were also normalized across tissue samples
using the same procedure. Microarray samples belonging to the same
regions were then aggregated by computing the mean expression
across samples for individual parcels, for each donor. Regional
expression profiles were finally averaged across donors to obtain a
single genes × brain regionsmatrix. From the 15,632 genes listed in this
matrix, 1906 brain-specific genes were used to compute the principal
axis of transcriptional variation using Principal component analysis.
The list of brain-specific genes was obtained from13. The principal axis
obtained (gene PC1) captures 20% of the total gene expression var-
iance in the matrix.

Receptor density information was collected for 18 different
neurotransmitter receptors and transporters from a total of 25 dif-
ferent studies as described in ref. 22. The receptor maps include
5HT1a109, 5HT1b109,110, 5HT2a111, 5HT4111, 5HT6112, 5HTT111, α4β2

113, CB1114,
D1115, D2116, DAT117, GABAA

118, H3119, M1120, mGluR5121,122, NMDA123,124,
MU125, NAT126, VAChT127,128. Positron emission tomography (PET)
images registered to the MNI space were parcellated and receptors/
transporters with more than one mean image of the same tracer (5-
HT1b, D2, VAChT) were combined using a weighted average. Tracer
maps, each corresponding to a single receptor/transporter where
then normalized across regions to values between 0 and 1. Receptor
density was computed as the average density, across all 18 receptors
while an excitatory/inhibitory ratio was computed as the ratio
between the mean density of excitatory receptors and the mean
density of inhibitory receptors. Excitatory receptors include: 5HT2a,
5HT4, 5HT6, α4β2, D1, M1, mGLuR5. Inhibitory receptors include:
5HT1a, 5HT1b, CB1, D2, GABAA, H3, MU.

Laminar thickness information was extracted from the Merkel-
stained BigBrain histological atlas26,51. Individual cortical layers were
individually segmented with a convolutional neural network, as
described in Wagstyl et al.26, and the laminar surfaces were made
available on the BigBrain Project website (https://ftp.bigbrainproject.
org/). Laminar thickness was computed as the Euclidean distance
between each pair of corresponding vertices on each 3D surfaces. The
data was then parcellated to the Schaefer (800 nodes) parcellation89

using surface parcellation files in the BigBrain space that are also
available on the BigBrain Project website.

Macaque annotations. Three macaque annotations were obtained.
The cortical thickness and T1w/T2w ratio cortical maps are originally
from Donahue et al.129 and were extracted from the structural MRI
scans of 19 adult macaques (T1w and T2w, 0.5mm isotropic). These
brain maps were publicly shared in the BALSA database130 (https://
balsa.wustl.edu/study/show/W336). The cortical maps were first par-
cellated using a 91 regions parcellation scheme (M132). The data was
then further parcellated to theWBB atlas using a region-wise mapping
provided in131. Neuron density information was extracted from brain
tissues of an Old World macaque monkey19 and mapped to the WBB
atlas using a mapping provided in17.

Mouse annotations. The principal axis of gene expression variation
(gene PC1) was computed using data from the Allen Mouse Brain
Atlas103. This atlas contains gene expression profiles, obtained using in-
situ hybridization, from more than 20,000 genes. Expression density
within each of the 213 structures defined in the oh2014 connectome
was computed by combining/unionizing grid voxels with the same 3-D

structural label. The data was obtained using themousemodule of the
abagen toolbox (https://github.com/rmarkello/abagen)107. To facilitate
comparison between genes, we normalized expression levels for each
gene. We then computed the principal axis of gene expression varia-
tion across brain regions using principal component analysis.

Spatial autocorrelation-preserving null annotations
We controlled for the brain’s spatial constraints using null models that
preserve the spatial autocorrelation of the empirical attributes. The
use of spatial permutation nulls (spin nulls) was prioritized since they
tend to bemore conservative38. These nulls require the useof spherical
projections of the brain, which were not available in animal datasets.
For the animal datasets, we therefore relied on a parameterized null
model that usesMoran spectral randomization (Moran nulls)132. All the
results were also replicatedwith a third nullmodel originally proposed
by Burt and colleagues (Burt nulls), and the results obtained with spin
nulls (i.e. for the human connectomes) were also replicated with the
Moran nulls. The spin, Moran and Burt nulls were respectively imple-
mented with the neuromaps (https://github.com/netneurolab/
neuromaps)61, brainspace (https://github.com/MICA-MNI/
BrainSpace)132 and brainSMASH (https://github.com/murraylab/
brainsmash)44 toolboxes. Using these annotations, we performed
two-sided permutation tests. In other words, a distribution of 10,000
null annotations was generated and a p-value was computed by com-
paring the empirical result to the distribution of null results obtained
with the null annotations. P-values were also corrected for False dis-
covery rate (FDR) using the Benjamini-Yekutieli procedure, which
controls for false discovery rate under arbitrary dependence
assumptions133.

Spin nulls. The original framework for this spatial permutationmodel
was introduced in Alexander-Bloch et al.43 and consists in generating
null distributions by applying random rotations to spherical projec-
tions of the brain. Here, we use a framework adapted to parcellated
data originally proposed in Vázquez-Rodríguez et al.134. Namely, we
select for each parcel the vertex closest to its center of mass on the
spherical projection of the fsaverage surface. We then apply a rotation
to the coordinates of these centers ofmass and reassign to eachparcel
the value of the closest rotated parcel. To preserve homotopy across
hemispheres, the rotations are generated independently for one
hemisphere and then mirrored across the anterior-posterior axis for
the other.

Moran nulls. The generation of spatially constrained nulls using
Moran spectral randomization was first proposed in the ecology
literature135 and relies on a spatially-informed weight matrix W. The
eigenvectors of W provide an estimate of the autocorrelation in the
brain and are used to impose a similar spatial structure on random,
normally distributed surrogate data. Here,W is defined as the inverse
of the distance matrix between brain regions. For the human con-
nectomes, the distance between pairs of parcels was defined as the
mean geodesic distance between every vertex pair in both parcels. In
the animal connectomes, it was defined as the euclidean distance
between both parcels. Data was generated separately for each hemi-
sphere using the same random seed to obtain null annotations that
preserve homotopy across hemispheres.

Burt nulls. This parameterized null model was originally proposed in
Burt et al.44. First, the empiricalbrainmap is randomlypermuted. Then,
this permuted brain map is spatially smoothed and re-scaled to re-
introduce the spatial autocorrelation (SA) of the empirical brain map.
The smoothing process is achieved via the following transformation:

y= ∣β∣1=2x + ∣α∣1=2z, ð1Þ
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where y is the surrogate map, x is the permuted data and z is a vector
of random gaussian noise. The α and β parameters are estimated via a
least-square optimization between variograms of the original and
permuted data. By maximizing the fit between the variograms of the
original and permuted data, we ensure that the SA of the surrogate
map matches the SA of the empirical map. Again, the distances
between pairs of parcels in the human connectomes were obtained by
averaging the geodesic distance between every vertex in the two
parcels while they were obtained by computing the euclidean distance
between each parcel in the animal connectomes. Also, data was
generated separately for each hemisphere using the same random
seed to obtain null annotations that preserve homotopy across
hemispheres. The hyper-parameters used were the default parameters
provided by the brainSMASH software44 (https://github.com/
murraylab/brainsmash).

Assortativity
To study the relationship between distributions of cortical attributes
and the topological architecture of our connectomes, we relied on the
assortativity coefficient, which is defined as the Pearson correlation
between the annotations of connected nodes42. More precisely, given
an adjacency matrix A, where aij represents the strength of the con-
nection between brain regions i and j, and a vector of annotations x,
where xi represents the annotation attributed to node i, the assorta-
tivity of a network, with respect to x is defined as:

rx =
X
ij

aij

2m
~xi ~xj , ð2Þ

where 2m corresponds to the sum of the edge weights in the network
and ~xi represents the standardized score of the annotation attributed
to node i:

~xi =
xi � �x
σx

, ð3Þ

�x corresponds to the expected value of x and σx corresponds to the
standard deviation of x:

�x=
1
2m

X
i

kixi ð4Þ

σx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2m

X
i

kiðxi � �xÞ2
s

: ð5Þ

ki corresponds to the strength of node i.

Ranked-based assortativity
More generally, given an annotation x, we can define the vectors x(i)

and x(j) as the annotations of endpoints i and endpoints j across all
edges (i, j) in the network. In other words, each entry in the vectors x(i)

andx(j) represent the annotations of nodes connectedby an edge in the
network. The assortativity coefficient can then be defined as a weigh-
ted Pearson correlation between these two vectors, weighted by the
weight of the connection between each edge.

By ranking the annotation scores in the vectors x(i) and x(j), we can
compute a rank-based assortativity coefficient that corresponds to the
weighted Spearman correlation between these two vectors. This rank-
based coefficient allows us to evaluate the existence of monotonic
relationships between the annotations of connected brain regions.

Partial assortativity
To evaluate the partial assortativity of an annotation y with respect to
x, another vector of annotation score, we fit a linear regression

between the scores y(i) and x(i), as well as between the scores y(j) and x(i),
for all edges (i, j) in the network, and then compute the weighted
Pearson correlation between the residuals of these regressions.

Multiple linear regression and dominance analysis
To characterize the assortativity of a brain region across multiple
annotations, we built multiple linear regressionmodels. Thesemodels
were used to explain the annotation score of a brain region for a
specific annotation from the annotation scores, across all annotations
available, of its connected brain regions. Formally, given a vector of
annotation scoresy(j) representing the annotations scoreof endpoints j
for all edges (i, j) and vectors of annotation scores for independent
variables xðiÞ

1 ,xðiÞ
2 , …, xðiÞ

n , which represent the annotations scores of
endpoints i, for variables x1, x2, …, xn, we modeled the annotation
score of the dependent variable y from the annotation scores of the
independent variables x1, x2, …, xn using a linear regression model:

yðjÞ =b0 +b1x
ðiÞ
1 +b2x

ðiÞ
2 + � � � +bnx

ðiÞ
n : ð6Þ

where b1, b2, …, bn are the regression coefficients and b0 is the inter-
cept. The regression coefficients were estimated using weighted least
squares with the strength of the connections between pairs of brain
regions used as weights.

We then estimated the contribution of each annotation to those
linear regression models using dominance analysis. This technique
consists in fitting the same regression model using every combination
of input variables136 and then evaluating the total dominance of a
variable, defined as the average of the relative increase in R2 observed
when adding this variable to each submodel. This measure indicates
howeach regressor variable contributes to themodelwhile accounting
for interactions between regressors.

Heterophilic mixing
The assortativity coefficient can also measure the heterophilic mixing
between pairs of annotations. We define heterophilic mixing as the
tendency for nodes with a given standardized scores for an attribute x
to connect to nodes with similar standardized scores for another
attribute y. The assortativity coefficient, for pairs of annotations x and
y is defined as:

rx,y =
X
ij

aij

2m
~xi ~yj , ð7Þ

Homophilic ratio
To quantify the extent to which individual regions connect to regions
with similar attributes, we computed the homophilic ratio of each
node. This measure is a ratio between the weighted average of
the absolute difference of a node’s annotation with its neighbors and
the averaged absolute difference of this node’s annotation with all the
other nodes in the network.More precisely, the homophilic ratioh of a
given node i for an annotation x is defined as

hxðiÞ=
P

j
aij

ki
∣xi � xj ∣

1
n

P
j ∣xi � xj ∣

, ð8Þ

where n is the number of nodes in the connectome.

Mean connection distance
The mean homophilic ratio of each node was compared to its mean
connection distance. This measure is defined as the average distance
between a node and its connected neighbors, weighted by the weight
of each connection. More precisely, the mean connection distance
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(MCD) of a node i is defined as

MCDðiÞ= 1
2m

X
j

dijaij , ð9Þ

where dij corresponds to the Euclidean distance between nodes i and j.

Community detection
Communities aregroupsof nodeswithdenseconnectivity amongeach
other. The Louvain method was used to identify a community assign-
ment or partition that maximizes the quality function Q137:

Q=
1
2m

X
i,j

Aij � γ
sisj
2m

� �
δðci:cjÞ, ð10Þ

whereAij is theweight of connection between nodes i and j, si and sj are
the directed strengths of i and j, m is a normalizing constant, ci is the
community assignment of node i and the Kronecker δ-function δ(u, v)
is defined as 1 if u = v and 0 otherwise. The resolution parameter γ
scales the importance of the null model and effectively controls the
size of the detected communities: larger communities are more likely
to be detected when γ < 1 and smaller communities (with fewer nodes
in each community) are more likely to be detected when γ > 1.

To detect stable community assignments for the structural con-
nectome we initiated the algorithm 100 times at each value of the
resolution parameter and consensus clustering was used to identify
the most representative partitions138. This procedure was repeated for
a range of 100 resolutions between γ = 0.25 and γ = 7.5. We then
quantified the similarity between pairs of consensus partitions using
the z score of the Rand index139. Ultimately, we chose the
9-communities consensus partition obtained at γ = 1.23 because the
generated partitions obtained for this value of γ showed high mutual
similarity and persisted through stretches of γ values. The whole
procedure was implemented using code available in the netneurotools
python toolbox (https://github.com/netneurolab/netneurotools).

Probabilistic activation maps
Using the Neurosynth meta-analytic engine53 we extracted brain maps
of probabilistic associations between functional key words and indi-
vidual voxels, synthesized from results from more than 15,000 pub-
lished fMRI studies. The probabilistic measures quantify the
probability that a given term is reported in a study and that there is
activation observed in a given voxel. It can be interpreted as a quan-
titative representation of how regional fluctuations in activity are
related to psychological processes. We analyzed the functional maps
associated to 123 cognitive and behavioural terms from the Cognitive
Atlas (ref. 54, ranging from umbrella terms (“attention”, “emotion”) to
specific cognitive processes (“visual attention”, “episodic memory”),
behaviours (“eating”, “sleep”), and emotional states (“fear”, “anxiety”).

These cognitive terms were grouped into 11 cognitive categories.
These categories consist of “Action”, “Learning and Memory”, “Emo-
tion”, “Attention”, “Reasoning and Decision Making”, “Executive/Cog-
nitive control”, “Social Function”, “Perception”, “Motivation”,
“Language” and “other”. Lists of terms associated with each category
can be found here: http://www.cognitiveatlas.org/concepts/
categories/all. To evaluate whether, on average, terms associated to
one of these categories are significantly correlated with the average
homophilic ratio brain map, we performed a two-sided permutation
test where we randomly permuted the categories associated with each
term and computed the average correlations obtained from these
permuted categories. This was repeated 10000 times, and a p-value
was computed by comparing the average correlations obtained with
the empirical categories with the null distribution of average correla-
tions obtained with the permuted categories. The p-values obtained

were then corrected for false discovery rate using the Benjamini-
Yekutieli procedure133.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used to conduct the analyses is available at https://github.
com/netneurolab/bazinet_assortativity. More generally, the HCP
dataset86 is available at https://db.humanconnectome.org/data/
projects/HCP_1200, the Lausanne dataset is available at https://doi.
org/10.5281/zenodo.2872624, the AllenHumanBrain Atlas11 is available
at https://human.brain-map.org, the receptor density atlas22 is avail-
able through neuromaps (https://github.com/netneurolab/
neuromaps)61, the Allen Mouse Brain Connectivity Atlas102 is available
at https://connectivity.brain-map.org, the Allen Mouse Brain Atlas103 is
available at https://mouse.brain-map.org/static/atlas, the CoCoMac
database100 is available at http://cocomac.g-node.org, the macaque
neuron density19 data is available at https://doi.org/10.1073/pnas.
1010356107, the macaque structural MRI scans129 are publicly avail-
able in the BALSA database130 (https://balsa.wustl.edu/study/show/
W336) and the BigBrain data26,51 is available at https://ftp.
bigbrainproject.org/. Source data are provided with this paper.

Code availability
The code used to conduct the analyses and generate the figures pre-
sented in this paper is available at https://github.com/netneurolab/
bazinet_assortativity and directly relies on the following open source
Python packages: BrainSMASH44, BrainSpace132, Matplotlib140,
neuromaps61, NumPy141, PySurfer142, Scipy143 and Seaborn144.
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