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Neural correlates of hierarchical predictive
processes in autistic adults

Laurie-Anne Sapey-Triomphe 1,2 , Lauren Pattyn1, Veith Weilnhammer3,4,
Philipp Sterzer 3,4 & Johan Wagemans 1,2

Bayesian theories of autism spectrum disorders (ASD) suggest that atypical
predictive mechanisms could underlie the autistic symptomatology, but little
is known about their neural correlates. Twenty-six neurotypical (NT) and 26
autistic adults participated in an fMRI study where they performed an asso-
ciative learning task in a volatile environment. By inverting a model of per-
ceptual inference, we characterized the neural correlates of hierarchically
structured predictions and prediction errors in ASD. Behaviorally, the pre-
dictive abilities of autistic adults were intact. Neurally, predictions were
encoded hierarchically in both NT and ASD participants and biased their
percepts. High-level predictions were following activity levels in a set of
regions more closely in ASD than NT. Prediction errors yielded activation in
shared regions in NT and ASD, but group differences were found in the ante-
rior cingulate cortex and putamen. This study sheds light on the neural spe-
cificities of ASD that might underlie atypical predictive processing.

Even though we live in a complex and changing environment, most of
us manage to minimize uncertainty and therefore avoid being over-
whelmed by surrounding stimuli. This is achieved using our predictive
abilities which rely on prior beliefs. Priors are accumulated over pre-
vious experiences and capture the hierarchical statistical regularities
of sensory stimuli. Using a generativemodel, the brain would act like a
predictive engine that constantly tries to anticipate or predict the
incoming inputs, and infer their causes1–3. This process has been for-
malized in the Bayesian brain framework, where the brain implements
and updates a hierarchical model of the world3–5. Priors are combined
with sensory inputs to generate percepts, and their relative weights
depend on their precision (i.e., inverse variance). The prior/sensory
precision balance needs to be flexibly adjusted to the context to yield
optimal perception. Discrepancies between priors and sensory inputs
are signaled through prediction errors, which can be used to update
priors or may be ignored when signaling irrelevant noise6. Predictive
mechanismsare hypothesized to relyon a bidirectional cascade of top-
down predictions and bottom-up prediction errors, across hier-
archically organized cortical layers and brain regions7.

Impaired predictive skills would lead to an atypical perception
and a sensation of an unpredictable world. In particular, atypical pre-
dictive mechanisms might underlie the symptoms encountered in
Autism Spectrum Disorders (ASD)8–14. ASD is characterized by deficits
in social interactions and communication, and by restrictive and
repetitive behaviors and interests (Diagnostic and StatisticalManual of
Mental Disorders, 5th edition, DSM-515). Even though this neurodeve-
lopmental condition affects >1% of the population16, the core
mechanisms of ASD remain to be identified. The Bayesian theories of
ASD offer a promising framework to account for the heterogeneous
symptoms of ASD. Indeed, suboptimal predictive abilities might, for
instance, explain the higher uncertainty intolerance in autistic
individuals17 or their difficulties to rapidly build up an internal repre-
sentation to categorize stimuli18. More broadly, if ASD is a disorder of
perceptual inference19, it would prevent autistic individuals from
accurately inferring themeaning of stimuli or making predictions. The
social domain would be particularly impacted as it is a complex,
dynamic, and noisy domain, where predictions need to be frequently
updated and adjusted to the context. Non-social symptoms, such as
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repetitive behaviors or insistence on sameness, could be a way to
restore some predictability. More specifically, Bayesian theories have
suggested a reduced impact of priors in ASD, either because of low
prior precision11 or because of high sensory precision8, both resulting
on a very realistic perception of the world according to these theories.
One of the hypotheses focusing on the ratio of prior and
sensory precisions9,10,13 is that there might be a high and inflexible
precision of prediction errors in autism (HIPPEA)13.

As detailed in a recent review20, the predictive abilities of autistic
individuals are intact or impaired depending on the context. While the
perceptual bias induced by structural priors seems typical in ASD (e.g.,
ref. 21,22), the learning of predictive associations is sometimes
impaired20. Associative learning would be particularly difficult in ASD
when predictive features have low salience or consistency20. In terms
of learning dynamic, autistic individuals were slower at updating
predictions23, which could explain amore inflexibleweighting of priors
in ASD24. The ability to learn probabilistic associations in volatile
environments was intact in autistic children25, but atypical in autistic
adults26 who showed less surprise to unexpected outcomes in ASD26,
consistently with the hypothesis ofmore inflexible prediction errors in
ASD13. This is also in line with a mismatch negativity study showing a
less flexible modulation of prediction errors in autistic adults27.

Despite the thought-provoking debate about the Bayesian
hypotheses of ASD, very little is known about their neural correlates in
ASD. Three fMRI studies recently investigated reward and social pre-
diction errors in ASD. In a false belief paradigm, social prediction
errors were atypically encoded in the gyral surface of the anterior
cingulate cortex (ACC) of autistic adults28. In two studies investigating
the neural correlates of reward prediction errors, group differences
between neurotypicals (NT) and autistic individuals were found in the
paracingulate gyrus, insula, and frontal pole29 and in the ACC and
frontal regions30. Yet, note that these two last studies did not identify
neural correlates of prediction errors within groups. The neural
mechanisms underlying predictions and prediction errors in ASD
should be characterized in order to shed light on the predictive pro-
cesses in ASD.

Unlike the literature on ASD, the neural correlates of predictive
mechanisms have been quite extensively investigated in NT31–36. Pre-
dictions and prediction errors are thought to pass between superficial
and deeper cortical layers within each brain region (e.g., ref. 37), and
some key regions have been identified. For instance, when processing
contextual associations, the parahippocampal and retrosplenial cor-
tices represent familiar associations at different levels of abstraction,
while the orbitofrontal cortex (OFC) updates the internal

representation of the current context38,39.Morebroadly, a recentmeta-
analytic approach36 highlighted the role of the inferior frontal gyrus
(IFG) and insula in signaling both prediction errors and predictions. A
few model-based fMRI studies investigated hierarchically structured
predictions and prediction errors31–33. In two associative learning
studies31,32, lower-level prediction errors involved the dopaminergic
midbrain, and visual, frontal, parietal, and cingulate regions, while
higher-level prediction errors correlated with activity in the choliner-
gic basal forebrain. In another associative learning task33, higher-level
predictions involved regions such as the OFC or hippocampus,
whereas lower-level predictions only triggered activity in the visual
cortex. The advantage of these model-based fMRI studies is that they
allow to identify predictions or prediction errors at different levels of
the hierarchy, on a trial-by-trial basis and with individualized trajec-
tories of the model parameters.

The aimof the present studywas to characterize the brain regions
involved in signaling hierarchical predictions and prediction errors in
NT and autistic adults, and to assess whether there were between-
group differences. For this purpose, we used model-based fMRI and
the same experimental paradigm as in the study by Weilnhammer
et al.33. NT and autistic adults performed a crossmodal associative
learning task, where a high- or a low-pitch tone was predictive of a
clockwise or counterclockwise rotation of two dots, respectively
(Fig. 1). In a similar behavioral task, but with a low contingency (i.e.,
62.5% of expected outcomes), autistic adults did not update their
predictions when the association reversed and were less biased by
priors24. Here, we used a higher probabilistic association (i.e., 75% as
in33) to increase the chances that all participants would learn predic-
tions, so that we could identify their neural correlates and pinpoint
genuine group differences in neural activation.

The paradigm included three forms of uncertainty. First, sensory
uncertainty was introduced with a subset of ambiguous trials where
the two dots did not rotate, but simply jumped from their vertical to
their horizontal position. In these trials, participants tend to report a
rotation direction that is consistent with the main contingency, sug-
gesting that they are biased by their priors24, 33. Second, expected
uncertainty was introduced by the probabilistic association between
the tone and the rotation direction (i.e., only 75% of the trials showed
the expected rotation). Third, the task included unexpected uncer-
tainty, as the tone-rotation association could suddenly reverse. We
modeled the behavioral data using a three-level Hierarchical Gaussian
Filter40, which offers a way to model perception in uncertain contexts
using a hierarchical generative model of the environment. We corre-
lated the trial-wise estimates of the model parameters signaling

500 ms 1000 ms 600 ms 33 ms 600 ms 1000 ms
Tone Prediction Rotation of two dots Perception ITI

1000 -2000 ms

Unambiguous Ambiguous

Fig. 1 | Experimental paradigm. After hearing a low- or a high-pitch tone, parti-
cipants had to predict the rotation direction of a pair of dots, and to report their
percept. There was a probabilistic association between the tone and the rotation
direction (main contingency: 75%), reversing every 16, 24, or 32 trials. In a subset of

ambiguous trials, the dots did not rotate but simply appeared in their vertical and
then horizontal position. CW: Clockwise, CCW: Counterclockwise, ITI: Inter-trial
interval. The triangle indicates a jitter of 100 to 300ms.
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predictions and prediction errors with the fMRI time-courses. We also
used Dynamic Causal Modeling to investigate how top-down and
bottom-up connections were modulated by predictions and predic-
tion errors, respectively. Finally, autistic traits and symptoms were
assessed using questionnaires to better characterize our sample and to
investigate whether these symptoms could contribute to the group
differences.

In NT, we hypothesized that the neural correlates would be in line
with the literature31,33,41. We predicted a rather large overlap between
NT and ASD regarding the set of regions encoding predictions, as
several behavioral studies found an intact influence of priors in
ASD21,22,42–45. Given that in a similar paradigm, autistic individuals
updated their predictions less thanNT20, differencesmight be found in
regions involved in learning and adjusting predictions, such as the
OFC, IFG, retrosplenial cortex, or (para)hippocampus. In general,
groupdifferences aremore likely to be found at the higher levels of the
hierarchy than at lower levels, as suggested by behavioral results
interpreted as an overestimation of the volatility in ASD26 and by fMRI
results showing a similar effect of visual illusions on the primary visual
cortex in NT and ASD46. The weak prior hypothesis11 would predict a
decreased activation of regions encoding priors, and a less proactive
brain in ASD. Specifically, proactive processes at the neural level were
evidenced in NT33 with this paradigm, as activity in the retinotopic
areas of the dot trajectories was elicited when hearing a tone.
Regarding the neural correlates of prediction errors, the HIPPEA
hypothesis would predict a stronger reaction to precision-weighted
prediction errors in ASD in regions such as the ACC, caudate nucleus,
putamen, basal forebrain, or anterior insula.

Results
Behavioral results
Both groups got percentages of correct prediction responses above
chance level: 76% (±9) in NT (t(25) = 14.6, p < 0.0001, d = 2.86) and 73%
(±11) in ASD (t(25) = 10.7, p <0.0001, d = 2.10) (Fig. 2d). These percen-
tages did not significantly differ between groups (t(48) = 0.88,
p =0.38, d =0.24).

Perception responses were analyzed in unambiguous and
ambiguous trials, separately. In unambiguous trials, both groups got
99% (±1) of correct perception responses. In ambiguous trials, the
percentage of trials perceived as following the current contingency
was 72% (±12) in the NT group and 66% (±13) in the ASD group (no
significant group difference despite a trend, t(50) = 1.7, p = 0.095,
d =0.47) (Fig. 2e). These percentages were above chance level in the
NT group (t(25) = 9.7, p <0.0001, d = 1.90) and ASD group (t(25) = 6.6,
p <0.0001, d = 1.29), suggesting that they were both biased by their
expectations.

Finally, in the confidence rating task, a repeated-measure ANOVA
on confidence rating scores showed a main effect of ambiguity
(F(1,50) = 40.0, p < 0.0001), with ambiguous trials being rated asmore
uncertain than unambiguous trials (60% ± 30 certain in ambiguous
trials vs. 90% ± 14 certain in unambiguous trials, t(51) = 6.4, p < 0.0001,
d =0.88), but revealed no group effect nor interaction.

Behavioral modeling
After inverting the eight models and performing BMS, group-level
inference showed that the Associative learning model (A) best
explained the data in both groups (Fig. 2c). Indeed, the protected
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Fig. 2 | Behavioral and modeling results. a Schematic representation of the
model, adapted fromWeilnhammer, V. A., Stuke, H., Sterzer, P. & Schmack, K. The
Neural Correlates of Hierarchical Predictions for Perceptual Decisions. J. Neurosci.
Off. J. Soc. Neurosci. 38, 5008–5021 (2018)33.bModel parameters. cBayesianModel
Selection comparing 8 models that included an influence of sensory memory (S)
and/or priming (P) and/or associative learning (A) or none (0). Top/Bottom graphs:
protected exceedance probability in the NT/ASD groups. d Proportion (prop.) of
correct prediction responses in the NT group (mean =0.76%) and ASD group
(mean =0.73%). e Proportion of ambiguous trials perceived according to the cur-
rent contingency in the NT group (mean=0.72%) and ASD group (mean=0.66%).
f Associative learning precision πa, estimated using BMA, in the NT group

(mean = 1.37) and ASD group (mean = 1.32). g 2nd level learning rate ω2, estimated
using BMA, in the NT group (mean = −0.72) and ASD group (mean= −0.89). h 3rd
level learning rate ω3, estimated using BMA, in the NT group (mean = −6.23) and
ASD group (mean= −6.25). i Correlation between πa and the percentage of
ambiguous trials perceived according to the current contingency. The error band
represents the confidence interval. Correlations were assessed using Pearson’s
correlation test. In the histogramsd–h, error bars indicate standard deviations, and
groups were compared using Student’s t tests (two-sided, not adjusted formultiple
comparisons). Blue: NT participants (n = 26). Orange: ASD participants
(n = 26). ***p <0.001.
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exceedance probability was 1.00 in the NT group and 0.65 in the ASD
group. In the ASD group, the second model that best explained the
data was the model Associative learning & Sensory memory (AS) (pro-
tected exceedance probability of 0.35).

Following BMA, the precision of associative learning πa was 1.37
(±0.28) in the NT group and 1.32 (±0.28) in the ASD group (no sig-
nificant group difference: t(50) = 0.6, p =0.52, d =0.18) (Fig. 2f). The
second-level learning rates ω2 were −0.72 (±0.86) in NT and −0.89
(±1.28) in ASD (no significant group difference: t(44) = 0.5, p =0.59,
d =0.15) (Fig. 2g). The third-level learning rates ω3 were −6.23 (±0.09)
in NT and −6.25 (±0.11) in ASD (no significant group difference:
t(48) = 0.6, p =0.56, d =0.16) (Fig. 2h). The estimates of the other
posterior parameters are given in the Supplementary Table S1.

As expected for a successful inversion of our model, the strength
of associative learningπawaspositively correlatedwith thepercentage
of correct prediction responses (r = 0.50, p <0.001) and of ambiguous
trials perceived according to the current contingency (r =0.66,
p <0.001, Fig. 2i).

We investigated whether the strength of associative learning
was correlated with autistic traits (AQ), intolerance of uncertainty
(IU), and atypical sensory sensitivity (GSQ). After correcting for
multiple comparisons using FDR correction, none of these corre-
lations were significant on the entire sample or within the ASD
group, but two correlations remained significant in NT. Within
the NT group, the strength of associative learning πa was nega-
tively correlated with the number of autistic traits (AQ, r = −0.54,
pFDR-corr < 0.01) and with the atypical sensory sensitivity (GSQ,
r = −0.54, pFDR-corr < 0.01).

fMRI preamble
After having identified that the associative learning model best
explained the behavioral data in both groups, we aimed at character-
izing the neural correlates of prior mean and precision as well as pre-
diction errors at several levels of the hierarchy in NT and ASD
participants. In all the analyses reported below, the statistical thresh-
old was set at p < 0.001 at voxel level and p < .05 at cluster level, unless
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orbitofrontal cortex (OFC), bilateral posterior cingulate cortex (PCC, note that the
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and right posterior superior temporal sulcus (pSTS). OFC histogram: one-sample t
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PCC histogram: one-sample t test in NT: p <0.001, in ASD: p =0.002; two-sample t
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p =0.002; two-sample t test: p <0.001. NT group: n = 26, ASD group: n = 25. Middle
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p =0.182, in ASD: p <0.001; two-sample t test: p <0.001. NT group: n = 26, ASD
group: n = 25. Bottom row: positive effect of the low-level prior mean μa across
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n = 25. In the fMRI analyses, significance level was set at p <0.001 at voxel level and
p <0.05 at cluster level. In the histograms, the significance level of the one- or two-
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it is specified “pFWE-corr < 0.05”, in which case FWE correction was
applied at cluster level.

As expected, the contrast tone vs. baseline showed significant
activation in the auditory cortex (superior temporal cortex,
Heschl gyrus), precentral cortex, superior frontal, and superior
parietal gyri in both groups (pFWE-corr < 0.05). The contrast rota-
tion vs. baseline involved the bilateral occipital cortex, precentral
gyri, cerebellum and putamen in both groups, as well as the
superior frontal gyrus in NT and superior parietal cortex in ASD
(pFWE-corr < 0.05). There were no significant group differences for
these two contrasts. The main focus of the analyses was on the
correlates of the estimated model parameters that were added as
parametric modulators of the tone and rotation regressors, as
detailed below.

Neural correlates of predictions
The correlates of predictions (high-level: ∣cμ3∣, mid-level: ∣cμ2∣ and low-
level: μa) are illustrated in Fig. 3 and detailed in Supplementary
Table S2.

In NT, high-level predictions ∣cμ3∣ (i.e., strength of the belief about
the volatility) involved the cerebellum, supplementary motor area
(SMA), precentral gyrus, middle frontal gyrus, insula, posterior
superior (pSTS) and middle temporal gyri and inferior parietal lobe
(pFWE-corr <0.05). In ASD, high-level predictions involved the SMA,
pSTS, IFG, and middle cingulate cortex (pFWE-corr <0.05). In compar-
ison with NT, the ASD group showed a stronger correlation between

∣cμ3∣ and the activity in the left OFC, bilateral posterior cingulate cortex
and right pSTS.

In both groups, mid-level predictions ∣cμ2∣ (i.e., strength of the
belief about the probabilistic association) involved a broad cluster
covering several medial and central regions (including the cingulate
cortex, SMA, medial frontal, OFC, precuneus, lingual gyrus,
cerebellum, striatum, hippocampus, parahippocampus), as well as the
pre- and postcentral gyri, auditory cortex, pSTS and temporal pole
(pFWE-corr <0.05). The correlation between ∣cμ2∣ and activity in the right
retrosplenial complex was stronger in ASD than NT.

Low-level predictions μa were associated with activity in the
occipital cortex and left postcentral gyrus (whole-brain analysis) and
were further explored through a ROI-analysis. Using the individual
masks mapping the CW and CCW rotations, we extracted the contrast
estimate μa corresponding to the probability of having a CW rotation
given the tone. As displayed in Fig. 3, for most of the participants,
hearing a tone that was predictive of a CW or CCW rotation yielded
activity in the CW or CCW mask, respectively. In the CW mask, it was
the case for 84% of NT and 68% of ASD participants, and in the CCW
mask, for 72% of the participants in each group (no significant pro-
portion differences). Across NT participants, the mean activation level
was significantly different from zero for both the CW (t(24) = 4.2,
p <0.001, d = 0.84) and CCW (t(24) = 3.0, p < 0.01, d = 0.61) masks.
Across ASD participants, the mean activation level was significantly
different from zero for the CCW mask (t(24) = 3.4, p < 0.01, d =0.68)
but not for the CW mask (t(24) = 1.8, p =0.08, d =0.36).
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Neural correlates of the prediction precision
The regions whose activity correlated with the precision of mid- and
high-level predictions are listed in Supplementary Table S3 and shown
in Supplementary Figure S1. The precision of high-level predictions cπ3

correlated with activity in the bilateral medial occipital cortex, middle
and superior temporal cortex and temporo-parietal junction (TPJ) in
both groups, with the bilateral middle cingulate cortex and right IFG in
NT, and with the left postcentral gyrus, right central sulcus and bilat-
eral cerebellum in ASD (pFWE-corr <0.05). Activity in the left superior
frontal gyrus was more strongly correlated with cπ3 in NT than ASD.

The precision of mid-level predictions cπ2 did not yield any sig-
nificant activity in any group. The only region that was close to sig-
nificance level (p < 0.001 at voxel level,p <0.08 at cluster level)was the
right parahippocampal cortex in the ASD group. In comparison with
NT, activity in the right superior parietal gyrus was more strongly
correlated with cπ2 in ASD than NT.

Neural correlates of prediction errors
Finally, we were interested in characterizing the neural correlates of
absolute precision-weighted prediction errors ∣ε3∣ and ∣ε2∣, and per-
ceptual prediction errors ∣δq∣. The results are detailed in Supplemen-
tary Table S4 and shown in Fig. 4.

High-level precision-weighted prediction errors were associated
with activity in the bilateral middle/posterior cingulate cortex in NT,
and in the bilateralmiddle temporal gyrus, bilateral angular gyrus, and
left superior frontal gyrus in ASD. There were no significant group
differences.

Mid-level precision-weighted prediction errors correlated with
activity in the bilateral SMA, middle and superior frontal gyrus, and
inferior parietal lobe in both groups (pFWE-corr < 0.05). In addition, they
were related to the bilateral superior medial frontal gyrus, middle
cingulate cortex, and precuneus in NT, and to the left insula in ASD

(pFWE-corr <0.05). The correlation between ∣ϵ2∣ and the activity level in
the left ACCandputamenwashigher inASDparticipants thanNT.Note
that the group difference in the ACC actually denotes an absence of
correlation in the ASD group.

Perceptual prediction errors gave a similar pattern in both groups,
with an involvement of the bilateral precentral gyrus, IFG, SMA,
parietal lobe, insula, posterior inferior/middle temporal gyrus
(pFWE-corr <0.05). There were no significant group differences.

Correlations between fMRI results and questionnaire scores
We assessed correlations between the contrast estimates in regions
where there was a group difference and the scores of the ques-
tionnaires assessing autistic traits or symptoms. Given the presence of
a group difference in these two domains, a correlation was expected,
but thiswas performed in order to evaluate whether certain symptoms
(e.g., sensory sensitivity) were especially related to one of the group
differences. Medium to large positive correlations were found with
most of the questionnaires, especially with the IU and AQ, and the
results are presented in Supplementary Table S5.

DCM analyses
We assessed whether top-down and bottom-up connections were
modulated by high-level and/or mid-level predictions and/or
precision-weighted prediction errors, respectively (Fig. 5a). The BMS
(Fig. 5b) revealed that M8 was the best model in the NT group (pro-
tected exceedance probability: 0.95, model frequency: 0.41). In the
ASD group, the results were less clear, with M8 being the best model
(protected exceedance probability: 0.54, model frequency: 0.28), fol-
lowed by M6 (protected exceedance probability: 0.33, model fre-
quency: 0.25).

A BMA on the posterior parameters showed that all the intrinsic
connections were significantly different from zero (p values < 0.001 in

Model M1 Model M2

a. Models tested in the DCM analysis b. Bayesian Model Selection

OFCAUD OCC

INS

Tone

R
otation

0.0

0.2

0.4

0.6

0.8

1.0

M1 M2 M3 M4 M5 M6 M7 M8

NT group

Model frequency Prot. Exceedance Probability

0.0

0.2

0.4

0.6

0.8

1.0

M1 M2 M3 M4 M5 M6 M7 M8

ASD group

Model frequency Prot. Exceedance Probability

OFCAUD OCC

INS

Tone

R
otation

Model M3 Model M4

OFCAUD OCC

INS

Tone

R
otation

OFCAUD OCC

INS

Tone

R
otation

Model M5 Model M6

OFCAUD OCC

INS

Tone

R
otation

OFCAUD OCC

INS

Tone

R
otation

Model M7 Model M8

OFCAUD OCC

INS

Tone

R
otation

OFCAUD OCC

INS

Tone
R

otation

Modulations: | | | | | | | |

Fig. 5 | Dynamic causal modeling. a Description of the eight models used in the
Bayesian Model Selection (BMS) assessing the effect of mid- and high-level priors
and precision-weighted prediction errors on top-down and bottom-up connec-
tions. AUD left auditory cortex, INS left insula, OFC left orbitofrontal cortex, OCC

occipital cortex. To simplify the figure, the OCCL and OCCR were represented here
as a single ROI, but the OCCL and OCCR were modeled separately. b Result of the
BMS, displaying the model frequency and protected (prot.) exceedance
probability.

Article https://doi.org/10.1038/s41467-023-38580-9

Nature Communications |         (2023) 14:3640 6



both groups), except for the connection from the INS to the OFC (NT:
p =0.10, ASD: p =0.52). In NT, there weremodulatory effects by ∣ε3∣ on
the connections fromtheOCCL andOCCR to the INS (p values < 0.005),
and by ∣ε2∣ on the connections from the OCCR to the INS (p values <
0.05). In NT, there was a modulatory effect by ∣cμ2∣ on connections
from the OFC to the OCCL (p < 0.01), and non-significant trends for
modulations by ∣cμ3∣ on connections from the OFC to the OCCL

(p = 0.067) and by ∣cμ2∣ on connections from the INS to the OCCL

(p = 0.099). In ASD, there were modulatory effects by ∣ε3∣ on the con-
nections from theOCCL to the INS (p <0.05) and to the OFC (p <0.05).
In ASD, there was a modulatory effect by ∣cμ3∣ on connections from the
OFC to the INS (p <0.005), and a non-significant trend toward a
modulation by ∣cμ2∣ on this connection (p =0.062). Between-group
comparisons only showed a non-significant trend toward a group dif-
ference on themodulation by ∣ε2∣ on the connection from the OCCL to
the INS (t(48) = 1.7, p =0.89, NT: 0.02Hz ±0.18, ASD: −0.16Hz ± 0.48).

Discussion
In this study, we used model-based fMRI to investigate the neural
correlates of predictive mechanisms in ASD. We were particularly
interested in characterizing the set of brain regions involved in sig-
naling predictions and prediction errors in ASD, and in potentially
revealing group differences to shed light on Bayesian theories of ASD.
At the behavioral level, the two groups managed to make accurate
predictions and were biased by their expectations. At the neural level,
we identified the correlates of hierarchical predictive processes within
group and found a rather large overlap of brain regions between
groups, but also some group differences at the higher levels of the
hierarchy. The main findings of this study are summarized in Fig. 6.

The predictive skills of ASD participants appeared to be typical in
this associative learning task. Indeed, both groups managed to learn
predictions andwerebiasedby their expectations, which indicates that

autistic individuals do not have uniformly weak priors. In this volatile
environment, autistic adults managed to flexibly use prior knowledge
to make perceptual inference. In the same task with a more uncertain
context (i.e., lower probabilistic association)24, autistic adultswere also
able to learn predictions, but failed to update them after a change in
contingency. As compared to NT, autistic adults had a decreased
precision of associative learning ðπaÞ and were less biased by priors24.
This is in contrast with the current study where no such group differ-
ences were found, even though more autistic traits in NT were also
associated with lower πa. It suggests that autistic adults are able to
handle some degrees of expected and unexpected uncertainty, but
might be impaired above a certain level of uncertainty. This is in line
with a recent review20 concluding that associative learning may be
particularly impaired when predictive features have low consistency.
Similarly, a probabilistic reinforcement learning task47 showed that
autistic adults managed to learn stimulus pairs that were frequently
reinforced (80%), but were impaired when the reinforcement was less
frequent (70%). In addition, we found no group differences in learning
rates, consistently with the behavioral experiment cited above24. In
some other associative learning tasks, the learning rates did not differ
either in autistic vs. typically developing children25, or in adults with
more or less autistic traits48.

The neural correlates of predictionswere identified in eachgroup,
and to the best of our knowledge, these regions had not been char-
acterized in ASD before. First, we observed a hierarchical organization
of regions encoding predictions in each group. While low-level pre-
dictions only involved the occipital cortex, higher-level predictions
elicited activity in a broader set of supramodal regions. The regions
identified along this hierarchy resemble the principal gradient of
macroscale organization in the human connectome49, as higher-level
predictions involve regions belonging to the principal gradient, i.e.,
transmodal regions including the default mode network and

Fig. 6 | Summary figure.Using an associative learning task andmodel-based fMRI,
we characterized the neural correlates of hierarchically structured predictions and
prediction errors in neurotypical (NT) and autistic (ASD) adults at the low,mid, and
high levels of the hierarchy. Both groups managed to make accurate predictions
and were biased by their expectations both at the behavioral and neural levels. The
neural networks identified in the two groups were globally similar, but group dif-
ferences were found in a set of brain regions. High-level predictions were following

activity levels in the left orbitofrontal cortex (OFC), bilateral posterior cingulate
cortex (PCC), and right posterior superior temporal sulcus (pSTS) more closely in
ASD than NT. The right retrosplenial cortex wasmore strongly correlatedwithmid-
level predictions in ASD than NT. Mid-level prediction errors were correlated with
activity in the anterior cingulate cortex (ACC) in NT but not in ASD, and weremore
strongly correlated with activity in the left putamen in ASD.
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frontoparietal regions, while low-level predictions resemble the map
of the second functional gradient. Regions of the default mode net-
work are at the upper end of the topographical hierarchy and integrate
information from several sensory modalities to get abstract
representations49. This functional gradient from primary sensory
regions to transmodal regions is therefore in line with the hierarchical
neural correlates of predictions that we identified. Interestingly, a
recent study investigated the microstructural profiles of these
regions50. They identified gradual cytoarchitectural variations that
globally followed the functional gradient, but the transmodal cortices
had a less hierarchical organization50. The rich and less-constrained
interconnectivity of these transmodal regions would be central to
underlie flexible cognitive functions50, which may allow representing
higher-level abstract representations, for instance about the stability
of predictions over time. Interestingly, at the lower-level of the hier-
archy, we found that hearing a tone elicited activity in the retinotopic
areas representing the CW or CCW rotations that was modulated
specifically by the rotation direction predicted by the tone. This effect
is consistentwithfindings inNT33, and reveals proactivemechanisms in
bothNT and autistic individuals. Together with the prior bias observed
at the behavioral level, this fMRI result indicates a similar influence of
priors on sensory processing at low hierarchical levels in autistic
individuals as in NT. In particular, using fMRI allowed to point out that
sensory processing itself is biased by expectations in ASD, resolving an
ambiguity, which often plagues behavioral studies, on whether priors
bias perceptual or decisional processes. Hence, in the context of this
experiment, the findings do not support the weak prior hypothesis of
ASD11. This result for low-level predictions is in line with a recent study
showing that the illusory triangle induced in the primary visual cortex
by the Kanizsa figure did not differ between NT and ASD46, suggesting
an intact perceptual bias in ASD. Future studies including more
ambiguous trials could perform decoding analyses (e.g., such as in ref.
51) to assess if the perceptual bias induced in ambiguous trials gen-
erates activity in motion area MT.

The pattern of brain regions associatedwithmid-level predictions
is highly consistent with the literature34,36,52–54, in particular with results
in NT using the same paradigm33 and showing an involvement of the
OFC, hippocampus, insula, precuneus, and medial frontal gyrus. This
pattern is also consistent with regions that are processing contextual
associations, such as the retrosplenial complex and parahippocampal
cortex, and that contribute to eliciting prediction-related representa-
tions in the OFC1. In particular, the activity level in a cluster of the right
retrosplenial complex followed the strength of mid-level predictions
more closely in ASD than NT. This region plays a fundamental role in
learning contextual associations between sensory stimuli1,55–57. One
potential explanation for this group difference could be that the tone-
rotation associationwas learnedmore strongly ormore rigidly, in ASD.
This stronger correlationmight alsobe interpreted asASDparticipants
needing a greater involvement of this region to reach a similar per-
formance. Future studies could use a causal approach to further cor-
roborate these interpretations.

High-level predictions about the stability of the association over
time evoked activity in regions such as the middle/posterior cingulate
gyrus, IFG, pSTS or SMA in both groups. Yet, the pattern of regions
seemed a bit more distinct between groups than for mid-level pre-
dictions. In particular, there were stronger correlations between high-
level predictions and activity in the left OFC, bilateral posterior cin-
gulate cortex and right pSTS in ASD, relative to NT. A plausible
hypothesis could be that these regions might encode the volatility
more precisely in ASD, which may be related to the idea of an over-
estimation of the environmental volatility in ASD26. It may also con-
tribute to a higher intolerance of uncertainty and more autistic traits,
as suggested by the correlations with the questionnaires. The stronger
correlations with high-level predictions in these regions might entail
different predictive processes in ASD. For instance, the posterior

cingulate cortex signals the expected environmental information and
contributes to increase routines58. Particularly, theOFCplays a key role
in encoding prior uncertainty, maintaining contextual priors and
updating perceptual beliefs1,34,59,60. In ASD and NT, the model best
explaining the data was the one where both mid- and high-level pre-
dictionsmodulating top-down connections from the OFC to the visual
cortex and insula. We can hypothesize that the stronger activation of
the OFC in ASD may be due to more top-down prior knowledge sent
from this region in ASD, which might suggest a difference in the spe-
cialization of the OFC to encode priors. Nevertheless, note that the
extent to which predictions modulated top-down connections from
the OFC did not differ significantly between groups.

Regarding prediction errors, the neural correlates of low-level
perceptual prediction errors encompassed regions such as the
IFG, insula, precentral gyrus, inferior parietal and the middle
temporal gyrus in both groups, consistently with findings in NT33.
As reported in a recent meta-analytic study36, the IFG and insula
were found to be involved in signaling both predictions and pre-
diction errors. The absence of group differences suggests that
low-level perceptual prediction errors may be processed similarly
in NT and ASD. Mid-level precision-weighted prediction errors
involved, among others, middle and superior frontal regions, the
caudate nucleus, the insula and inferior parietal regions in both
groups, which is again in line with results in NT31,33. In ASD com-
pared to NT, there was a stronger correlation between mid-level
prediction errors and activity levels in the putamen, a region
encoding prediction errors41,61. A plausible interpretation could be
a higher weight of mid-level prediction errors in ASD, in line with
the HIPPEA theory13 suggesting that highly precise prediction
errors would cause overwhelming sensations of surprise, leading
them to avoid unpredictable environments. Furthermore, we
observed a negative correlation between neural activity in the
ACC and mid-level precision-weighted prediction errors in NT, but
not in ASD. Interestingly, in a social context, the gyral surface of
the ACC showed a deactivation in response to social prediction
errors in NT, but not in ASD28. Moreover, they found that the
activation level of the ACC was positively correlated with the
social symptoms of ASD assessed with a sub-scale of the ADOS28,
while we also found positive correlations between the ACC activity
level and autistic traits or social difficulties across groups. The
encoding of prediction errors in the ACC might therefore be
altered across multiple domains in ASD, and could play a key role
in the atypical predictive learning mechanisms observed in ASD.
Finally, even though no significant group differences were found,
high-level precision-weighted prediction errors were associated
with distinct sets of regions in each group. The DCM analysis
showed that both high- and mid-level precision-weighted predic-
tion errors modulated bottom-up connections similarly in
each group.

The current study has several limitations. First, the DCM analysis
only focused on a reduced set of regions and might have shown a
different pattern of results if we would have selected other candidate
regions such as the IFG, ACC, caudate nucleus, or putamen. Further-
more, in the fMRI analyses, we decided to focus on positive effects of
themodel quantities on brain activity, which seems easier to interpret,
but negative effects may also provide additional information. Using a
designwith shorter TRs could have revealed variability across different
regions of the cortex in the temporal shape of the HRF62, with faster
responses in sensory regions than in associative areas63. We chose to
rely on a dual-report paradigm with both prediction and perception
responses to get an explicit measure of prediction learning (where
tone could not be simply ignored) and to get an implicit measure of
perceptual bias, but using such paradigm might bias responses as
participants often tend to ensure self-consistency64. Finally, some of
our autistic participants had comorbidities or were taking
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medications, which may have influenced their behavior and neural
responses. Yet, we believe that including such participants is more
representative of the ASD population, as having comorbidities or
taking some medication is highly frequent in ASD.

In conclusion, we found that autistic adults can learn priors and
tend to encode priors hierarchically, like NT. Yet, they showed altera-
tions in the neural processing of mid- and high-level predictions that
may be interpreted as a stronger encoding of these predictions. In
addition, as autistic individuals had their percepts biased by their
expectations both at the behavioral and neural levels, it does not
support the weak prior hypothesis of ASD11. Correlates of mid-level
precision-weighted prediction errors may be in line with stronger
prediction errors in ASD, consistent with the HIPPEA hypothesis13.
Overall, the predictive mechanisms appear to be relatively intact in
ASD, but subtle differences at higher levels of the hierarchy might
contribute to the difficulties in predictive learning observed in certain
contexts. These results suggest that the Bayesian account of ASD
should be refined to better describe predictive mechanisms in ASD.
Finally, planning comparative neuroimaging studies with other clinical
populations hypothesized to have atypical perceptual inference pro-
cesses (e.g., schizophrenia or dyslexia) would help to better identify
the specificities of each condition regarding predictive skills.

Methods
Participants
Twenty-six neurotypical (NT) adults and 26 autistic adults participated
in theMRI experiment. Their demographic characteristics are shown in
Table 1. The two groups were matched for age, sex ratio, handedness
ratio, and total intelligence quotient. One autistic participant com-
pleted the behavioral experiment but fMRI scans were not acquired as
she was too sensitive to the noise of the scanner when we started the
fMRI acquisition. Hence, the sample size is 26 in each group for the
behavioral/model analyses, but 25 in the ASD group, and 26 in the NT
group for the fMRI analyses. Note that for the localizer analyses, the
sample size is 25 ASD and 25 NT participants, as there was a technical
failure during the acquisition of the localizer of one NT participant.

Inclusion criteria were being between 18 and 50 years old,
reporting normal or corrected-to-normal hearing and vision. Exclu-
sion criteria were having contra-indication for MRI, having a total
intelligence quotient below 70 at the Wechsler Adult Intelligence
Scale IV65, or scoring above 32 at the Autism Spectrum Quotient
(AQ)66 for NT participants. Autistic participants received their diag-
noses from a multidisciplinary Expertize Center for Autism (Uni-
versity Hospitals of KU Leuven) in a standardized way according to

the criteria of the DSM-515, and had idiopathic ASD. Autistic adults
were recruited via this expertize center and via the LAuRes (Leuven
Autism Research) consortium website. NT participants were recrui-
ted via the University of Leuven or acquaintances. None of the NT
participants reported having a comorbidity or being under medica-
tion. Five ASD participants reported having one or several comor-
bidities (ADHD (4), dyslexia (2), Gilles de la Tourette (1)). These
participants who had comorbidities are included in the analyses, but
note that the results of the behavioral and fMRI analyses did not
change after removing these five participants. Eleven ASD partici-
pants reported taking one or several medications (Abilify (2), Asaflow
(1), Bufonix (1), Celecoxib (1), Deanxit (1), Depakine (1), Escitalopram
(1), Fluoxetine (1), Fluoxone (1), Hydrea (1), L-Thyroxine (3), Mediki-
net (1), Melatonine (1), Montelucast (1), Notrilen (1), Redomex (1),
Ritalin (1), Trazadone (1), Venlafaxine (1), Welbutrin (1)).

The study was approved by the medical Research Ethical Com-
mittee UZ / KU Leuven. All participants provided written informed
consent, according to the Declaration of Helsinki.

Overall procedure
Prior to the experiment, participants filled out online questionnaires
(inDutchor English, dependingon their native language): AQ66,67, short
version of the Intolerance of Uncertainty scale68,69 and Glasgow Sen-
sory Questionnaire70,71. Participants started with a short training (7
trials), before being installed in the MR scanner. After a T1-weighted
anatomical scan, participants performed another short training and
five fMRI runs, followed by a localizer run. Magnetic resonance spec-
troscopydatawerealso acquiredduring this session, aspart of another
study72.

Data were acquired on a 32 head coil 3 T Philips Achieva system at
the University Hospital of Leuven. During the fMRI acquisition, stimuli
were projected on a screen behind the scanner, and reflected through
a mirror mounted on the head coil. Stimuli were presented using the
Psychtoolbox (version 3) in Matlab (version 2019a), and auditory sti-
muli were presented binaurally via headphones.

Experimental paradigm
Main task
Trial structure. Participants performed an associative learning task
(Fig. 1, based on33) where tones were probabilistically associated with
the rotation direction of two dots. Participants were instructed that
therewas an underlying association between the tone and the rotation
direction, and that this association could change. A high (576Hz) or
low (352Hz) tone was presented for 500ms and followed by a pre-
diction response screen for 1000ms (jitter of 100 to 300ms between
the tone and the prediction screen). The prediction screen displayed a
right and a left arrow, and participants had to click on the right or left
button of the MRI response box if they thought that the tone was
predictive of a clockwise (CW - right) or counterclockwise (CCW - left)
rotation, respectively. The arrow selected by the participant turned
red. Then, two dots appeared at their vertical position for 600ms,
made a CW or CCW rotation within 33ms and remained at their hor-
izontal position for 600ms. This was followed by a perception
response screen showing a right and a left double arrow, displayed for
1000ms. Participants had to report whether they perceived a CW or
CCW rotation using the right or left button, respectively (the selected
double-arrow turned red). The inter-trial interval lasted for 1000 to
2000 ms (uniform distribution).

There were two types of trials: unambiguous trials where the two
dots rotated, and ambiguous trials where the pair of dots simply
appeared in their vertical and then horizontal positions (no rotation).
While unambiguous trials allowed learning the contingency, ambig-
uous trials allowed assessing whether participants were biased by their
expectations (i.e., if they would report a rotation consistent with their
expectations, despite the absence of rotation).

Table 1 | Demographic characteristics and questionnaire
scores of the participants

NT group ASD group p

Number of participants 26 26 -

Male/female number 13/13 13/13 ns

Age (years) 30.9 (±8.3) 32.2 (±9.5) ns

Left/right-handed 2/24 5/21 ns

Total IQ score 113.9 (±12.3) 112. 1 (±16.5) ns

AQ score 13.0 (±6.2) 32.1 (±8.7) ***

IU score 27.9 (±8.4) 42.7 (±6.6) ***

GSQ score 34.5 (±16.7) 53.3 (±21.2) ***

The table presents the group means (±standard deviations). IQ Intelligence Quotient (Wechsler
Adult Intelligence Scale IV), AQ Autism spectrum Quotient, IU Intolerance of Uncertainty, GSQ
Glasgow Sensory Questionnaire. Note that IQ data from four NT participants are missing as they
were not native Dutch speakers. One of the ASD participants was included in the behavioral
analyses but not in the fMRI analyses. The twogroupswere compared using two-sided Student t
tests (i.e., age, total IQ, AQ, IU, and GSQ scores) and chi-square tests (i.e., proportions of male/
female, left/right-handed). ns non-significant, ***p <0.001.
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Run structure. Participants completed five runs of 72 trials (total of
360 trials). In each run, there were 12.5% of ambiguous trials (9 trials)
and 87.5% of unambiguous trials (63 trials). Among the unambiguous
trials, 75% were expected (i.e., main tone-rotation association) and
12.5%were unexpected (i.e., least frequent association). The trial order
was pseudo-randomized so that these percentages (75% unambiguous
expected, 12.5% unambiguous unexpected, 12.5% ambiguous)
remained the same across eight successive trials. In each run, the
contingency reversed after 16, 24, or 32 successive trials.

Localizer task. The localizer task was designed for retinotopic map-
ping of the CW and CCWdot trajectories. Checkerboards covering the
dot CW or CCW trajectory were displayed for 15 s, and flickered at a
frequency of 8Hz. The checkerboards did not overlap the initial ver-
tical or final horizontal dot position but covered the upper-right and
lower-left quadrants in CW trials, and the upper-left and lower-right
quadrants in CCW trials. There were 4 CW trials and 4 CCW trials
interleaved, separated by 5 s of fixation. To maintain attention, parti-
cipants had to fixate on a central cross and click on the left button
when the cross changed of color (white or red).

Post-fMRI confidence rating task. After finishing the fMRI experi-
ment, participants completed a short computer task as in33 to assess
the perceptual quality of the ambiguous trials. The structure of this
taskwas the same as themain task, but trials included a third response
screen showing the options “1. Very sure”, “2. Quite sure”, “3. Quite
unsure”, “4. Very unsure” (displayed for 2600ms). Participants used the
numbers 1 to 4 to indicate how confident they were about their per-
ception response. There were 48 trials, including 50% of ambiguous
trials and 50% of unambiguous trials. To calculate a mean confidence
rating, the 1 (Very sure) to 4 (Very unsure) scale was transformed into a
100% to 0% certainty scale.

MRI acquisition
Anatomical scan. A high-resolution T1-weighted anatomical scan
was acquired with a MPRAGE sequence (200 contiguous coronal
slices, voxel size = 1 × 1 × 1 mm3, TR = 9.7ms, TE = 4.6ms, field of
view = 256× 240 × 200 mm3, acquisition matrix = 256 × 238, acquisi-
tion time = 4min 35 s).

Functional MRI. Whole-brain T2*-weighted echo-planar imaging
sequences were collected (voxel size = 2 × 2 × 2mm3, TR = 2 s, TE =
30ms, flip angle = 90°, FOV = 224 × 224 × 132mm³, 60 ascending
transverse slices,multi-band factor: 2). In each runof themain task, 198
volumes were acquired (6min 44 s per run, total of 990 volumes). In
the localizer run, 160 volumes were collected (4min 52 s).

Behavioral analyses
Statistical analyses. All the results are presented as mean (±standard
deviation). Demographic data (Table 1) of theNT andASD groupswere
compared using Student’s t tests and chi-square tests. The percentage
of correct predictions was compared to chance level using one-sample
t tests with μ =0.50. Between-group comparisons on accuracy levels
were performed using two-sample t tests. Effect sizes are reported as
Cohen’s d: very small (d =0.01), small (d =0.20), medium (d =0.50),
large (d =0.80), or very large (d > 1.20) effect sizes73,74. Correlations
were assessed using Pearson’s correlation test, and were corrected for
multiple comparisons using False Discovery Rate (FDR) correction.
Statistical analyses were performed using R (version 4.0.3, http://www.
r-project.org/). All Student’s t tests were two-tailed. The threshold for
statistical significance was set at p <0.05.

Computational modeling. The behavioral data were modeled using
the Bayesian modeling approach of Weilnhammer and colleagues33

(see the Supplementary Note S1 for the full mathematical model

description). The model consists of a contingency model and a per-
ceptual model (Fig. 2a–b). The mean and variance of the priors used in
this model are shown as Supplementary Table S1 and are the same as
in ref. 33.

The contingency model infers the associations between the tone
and the rotation direction to determine the prediction response. It
relies on a three-level Hierarchical Gaussian Filter (HGF)40,75 with low-,
mid-, and high-level priors. Low-level priors correspond to the sub-
jectively estimated chance of having a CWor CCW rotation (binomial),
and to the conditional probability of a certain rotation direction given
the tone. Mid-level priors capture the belief about the probabilistic
association between the tone and the rotation direction. High-level
priorsmodel the stability of this associationover the timecourseof the
experiment (i.e., this association might remain stable or reverse).

The contingency model is coupled with a perceptual model which
assesses whether the perceptual responses are influenced by associa-
tive learning (i.e., influence of the current hidden contingency),
priming (i.e., influence of the preceding trial) and/or sensory memory
(i.e., influence of the preceding ambiguous trial on the next ambig-
uous trial).

The behavioral data (prediction and perception responses)
were fitted by eight models that included associative learning (A),
priming (P) and/or sensory memory (S) in the perceptual model
(i.e., none: 0, A, P, S, AP, AS, PS, APS). Model inversions were
performed separately for each run. We used the HGF for binary
inputs with the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
minimization as optimization algorithm, implemented in the HGF
4.0 toolbox (TAPAS toolbox – Translational Algorithm for
Psychiatry-Advancing Science, translationalneuromodeling.org/
tapas/) in Matlab (R2020b version). To identify which of the eight
models best fitted the data in each group, we used random-effect
Bayesian Model Selection (BMS)76 in SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/). This model comparison relies on the log-model evi-
dence, which is calculated as the negative variational free energy.
The model parameters were estimated using Bayesian Model
Averaging (BMA) and compared between groups using Student’s t
tests. As an additional way to check the model fit, behavioral data
(percentages of correct predictions) were correlated with the
estimated model parameters using Pearson correlation tests.
Model and parameter recoveries are presented in Supplementary
Note S2.

fMRI analyses
The fMRI data were preprocessed and analyzed using Matlab 2020b
and Statistical Parametric Mapping (SPM), version 12.

fMRI preprocessing. Prior to the preprocessing the anatomical image
was manually reoriented to be centered on the middle anterior com-
missure. The preprocessing consisted of realigning the functional
volumes of thefive runs andof the localizer, slice timing correction (on
timings, with the middle slice as reference), coregistration of the
anatomical scan, segmentation, normalization (based on the standard
template of the Montreal Neurological Institute, MNI) and smoothing
with a Gaussian kernel of 6mm (full width at half maximum). The
Artifact detection toolbox (ART: art-2015-10 release, https://www.nitrc.
org/projects/artifact_detect/) with a motion threshold of 2mm was
used to detect the outliers that were added as unique regressors to
discard the identified outlier scans. On average, 0.5% and 1.5% of scans
were excluded in theNT andASDgroups, respectively. Runswithmore
than 15% of outliers were excluded, resulting on the exclusion of the
fourth and fifth runs of one ASD participant (i.e., all participants had
five runs included, except for one ASD participant who had three runs
included).

Finally, we conducted a denoising step using the CONN functional
connectivity toolbox v17 (http://www.nitrc.org/projects/conn). Using
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aCompCor77, a principal component analysis on the cerebrospinalfluid
and white matter masks was performed to remove physiological con-
founds from the signal.

Whole-brain analysis. In order to identify the neural correlates of
predictions and prediction errors in individuals with and without ASD,
we conducted a model-based fMRI analysis. We defined a General
Linear Model (GLM) using two regressors (tone and rotation) and nine
parametric modulators that were model quantities from the inverted
behavioral model. These parametricmodulatorsmostly corresponded
to the subject-specific trajectories of prediction errors, prior mean,
and precision.

The regressor tone modeled an event starting at the onset of the
tone and was parametrically modulated by five model parameters: 3rd

level prior precisioncπ3 andmean ∣cμ3∣, 2nd level prior precisioncπ2 and
mean ∣cμ2∣, and low-level predictions μa (i.e., inferred conditional
probability of a CW rotation). The 3rd level represents the belief about
the volatility of the environment, while the 2nd level corresponds to
the belief about the main contingency. The absolute prediction mean
(e.g., ∣cμ2∣) models the strength of the belief (e.g., an individual with a
high or low estimated ∣cμ2∣ believes that the tone is highly or not pre-
dictive of the rotation direction, respectively). The prediction preci-
sion denotes how quickly these estimates change across time. The
regressor rotation modeled an event starting 600ms after the pre-
sentation of the two vertical dots, i.e., at the onset of the rotation in
unambiguous trials, and at the onset of the presentation of the two
horizontal dots in ambiguous trials. The regressor rotation was para-
metrically modulated by four model parameters: 3rd level precision-
weighted prediction errors ∣ε3∣, 2

nd level precision-weighted prediction
errors ∣ε2∣, perceptual prediction error |δq| (i.e., lower-level prediction
error defined as δq = P(ϴ1) - yperception) and the posterior probability of
perceiving a CW rotation P(ϴ1). All regressors were convolved with a
canonical hemodynamic response function. Note that the definition of
the GLM was based on the study on NT33, but third-level model
quantities were added to the GLM.

In addition, the potential confounds were modeled as separate
regressors of the GLM matrix and consisted of the six motion para-
meters, the ART-based outliers (if any) and the 10 first principal com-
ponents identified with aCompCor in the denoising step.

At the first level, contrast images were computed for each
regressor or parametric modulator at the individual level using
t-statistics. At the second level, the mean of the contrasts across par-
ticipants was compared to zero using a one-sample Student’s t test.
Activation patterns were compared between the two groups using
independent two-sample t tests. When a significant group difference
was found, we used Marsbar (release 0.44)78 to extract the mean
contrast estimate in the cluster (p < 0.001 at the voxel level, p <0.05 at
cluster level) and plot the distribution of contrast estimates across
participants.

Voxel-based level thresholding was set at p < 0.001, and cluster-
level extent thresholding was set at p < 0.05 (cluster-extent thresholds
are estimated by Gaussian Random Field method implemented in
SPM12). In the Results section, we report whether these results remain
significant after FamilyWiseError (FWE) correction at cluster level. The
SPM toolbox bspmview (version 20161108)79 was used to illustrate the
brain activation patterns in Figs. 3, 4 and S1.

To assess if the perceptual bias induced in ambiguous trials gen-
erated activity in V5/MT, we conducted additional fMRI analyses,
presented in Supplementary Note S3 and Supplementary Figure S2.

Localizer-based analysis. In addition to the whole-brain analysis, we
conducted a region of interest (ROI)-based analysis, after having
defined the ROIs using the localizer and the main task. The aim was to
investigate whether the low-level prediction (μa or 1 - μa) about the
rotation direction of the two dots (CW or CCW) would trigger

activation in the retinotopic representation of the CW or CCW trajec-
tories at the onset of the tone (i.e., whether the brain was proactive).
The three-step procedure for the selection of the ROIswas the same as
in the study by Weilnhammer and colleagues33.

First, we specified a GLM with two box-car regressors in the
localizer run: a CW regressor corresponding to the presentation of
checkerboards over the upper-right and lower-left trajectories, and a
CCW regressor corresponding to the checkerboard presentation over
the lower-right and upper-right quadrants. Each of these regressors
started at the onset of appearance of the checkerboard and lasted for
15 s. At the subject-level, we used the contrasts CW>CCW and
CCW>CW, thresholded at p < 0.05 to identify the clusters responding
to CW and CCW trajectories and used Marsbar to extract these
clusters.

Second, in order to only select the voxels thatwere highly specific
for the dot CW and CCW rotations in the main task, we constructed a
second single-subject GLM. This GLM defined in the main task con-
tained three regressors, all modeled as events (0 s duration): CW
regressor at the onset of the CW rotation, CCW regressor at the onset of
the CCW rotation and Ambiguous regressor at the onset of appearance
of the dots in their horizontal position in ambiguous trials. At the
subject-level, we used the contrasts CW>CCW and CCW>CW, thre-
sholded at p <0.05 (uncorrected) to identify the clusters responding
to the CW and CCW rotations and used Marsbar to extract these
clusters.

Third, wedefined theCWandCCWROIs by selecting the intercept
of themasksdefined in the twoprevious steps.At a single-subject level,
these ROIs were used to mask the contrast μa (parametric modulator
of the tone) in the GLM described in the “Whole-brain analysis”. The
individual contrast estimates were again extracted using Marsbar.

DCManalysis.We conducted aDCM80 analysis to assess howmid-level
and high-level priors and precision-weighted prediction errors influ-
enced top-down and bottom-up connections, respectively, in each
group. Using DCM has the particularity to make inferences about the
causal relationships of activity patterns.

Definition of the GLM. The GLM used in the DCM analysis was the
same as in the main analysis, but only included the regressors Tone,
Rotation, ∣cμ3∣, ∣cμ2∣, ∣ε3∣ and ∣ε2∣.

Definition of the regions of interest and extraction of the time ser-
ies. The DCM analysis involved the bilateral occipital cortex, left
auditory cortex, the left OFC, and the left insula. The OFC has been
identified as a key region encoding contextual priors33,34,39,81,82. We
decided to include the insula among two other main candidates
(i.e., the ACC and the caudate nucleus) as it was reported in articles
investigating prediction errors across multiple levels of the
hierarchy31–33,41,83 and because a recent meta-analytical study36 high-
lighted the role of the left insula in encoding prediction errors.

The regions of interest (ROIs) were identified using a two-step
procedure: we first identified the peak of maximum activity across
groups, and then at the individual level (samemethods as in84,85). First,
we defined the peak of activation across groups with p <0.001 at voxel
level and pFWE-corr <0.05 at cluster level. The contrast Tone vs. baseline
wasused to identify the peak of the auditoryROI (AUD: x = −58, y = −14,
z = 4). Note that the maximum activity was in the left hemisphere and
we decided to restrict to one region as the same auditory input was
sent in each ear. We used the contrast Rotation vs. baseline masked
with theCWorCCWmask from the localizer to get the peaks of the left
occipital (OCCL: x = −32, y = −88, z = 4) and right occipital (OCCR:
x = 34, y = −84, z = 4) ROIs. We used the contrast ∣bμ2∣ vs. baseline to
select the peak coordinates of the left orbitofrontal cortex (OFC:
x = −26, y = 34, z = −10). Using the contrast ∣ε2∣ vs. baseline, we extrac-
ted the peak activity in the left anterior insula (INS: x = −36, y = 14,

Article https://doi.org/10.1038/s41467-023-38580-9

Nature Communications |         (2023) 14:3640 11



z = −2). As participants included in the DCM analysis needed to have
similar numbers of runs, the ASD participant who had only 3 runs
instead of 5 was excluded from this analysis (i.e., n = 26 NT, and n = 24
ASD in this analysis).

Then, we created a 12.5 mm-radius spheres around the maxima
described above using Marsbar. Within this sphere, we extracted the
coordinates of the peak activity of each participant using the same
contrasts, with p <0.01 for the OCC ROIs, and p <0.05 for the other
ROIs. For each contrast of interest, we then extracted the first eigen-
vector across all voxels that were above the threshold within a 6 mm-
radius sphere centered on the individual peak coordinates.

DCM specification and estimation, and model comparison. The
inputs were the sound (regressor Tone) entering through the AUD, and
the visual input (regressor Rotation) entering through the OCCL

and OCCR.
We first specified a DCMwith nomodulatory influence to identify

the intrinsic connections. All the models included bidirectional con-
nections between the AUD and OFC. In addition, in M1intrinsic, the OFC
was connected to the OCC and INS, in M2intrinsic, the OCC was con-
nected to the INS and OFC, in M3intrinsic, the INS was connected to the
OCC and OFC, and in M4intrinsic, these regions were all connected (i.e.,
OFC with the OCC and INS, and OCC connected with the INS). BMS
showed that M4intrinsic was the best model in each group (protected
exceedance probability in both NT and ASD: 1.00). So, we selected this
model and added modulatory influences, as described below.

We considered modulatory influences of top-down connections
from the OFC to the OCC and INS, and from the INS to the OCC by the
prior mean at a high- and/or mid-levels, and modulatory influences of
bottom-up connections by precision-weighted prediction errors at
high- ormid-levels from the OCC to theOFC and INS, and from the INS
to the OFC. We specified and estimated eight models to assess if the
connections weremodulated by priors and/or prediction errors at the
mid and/or high levels of the hierarchy. The eight models were spe-
cified as follow: M1 without any modulation, M2 with a modulation by
∣cμ2∣, M3 with a modulation by ∣ε2∣, M4 with a modulation by ∣cμ3∣, M5
with a modulation by ∣ε3∣, M6 with modulations by ∣bμ2∣ and ∣ε2∣, M7
withmodulations by ∣cμ3∣ and ∣ε3∣, andM8withmodulations by ∣cμ2∣, ∣ε2∣,
∣cμ3∣ and ∣ε3∣ (Fig. 5).

Finally, we used BMS to select the model that best fitted the fMRI
data at the group level. We report both the protected exceedance
probability and the model frequency for each model. We then used
BMA to estimate the values of the posterior parameters of the DCM
analyses (i.e., connections and modulation of connections).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral data generated in this study have been deposited in the
Zenodo database under accession code (https://doi.org/10.5281/
zenodo.7808070). The raw fMRI data are protected and are not
available due to data privacy laws, but group-level fMRI results are
available by request to the corresponding author. Source data are
provided with this paper.

Code availability
The codes of the behavioral and fMRI analyses of this study are avail-
able in a Zenodo deposit (https://doi.org/10.5281/zenodo.7808070).
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