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Reference-free assembly of long-read
transcriptome sequencing data with
RNA-Bloom2

Ka Ming Nip 1,2 , Saber Hafezqorani 1,2, Kristina K. Gagalova 1,2,
Readman Chiu 1, Chen Yang 1,2, René L. Warren 1 & Inanc Birol 1,3

Long-read sequencing technologies have improved significantly since their
emergence. Their read lengths, potentially spanning entire transcripts, is
advantageous for reconstructing transcriptomes. Existing long-read tran-
scriptome assembly methods are primarily reference-based and to date, there
is little focus on reference-free transcriptome assembly. We introduce “RNA-
Bloom2 [https://github.com/bcgsc/RNA-Bloom]”, a reference-free assembly
method for long-read transcriptome sequencing data. Using simulated data-
sets and spike-in control data, we show that the transcriptome assembly
quality of RNA-Bloom2 is competitive to those of reference-based methods.
Furthermore, we find that RNA-Bloom2 requires 27.0 to 80.6% of the peak
memory and 3.6 to 10.8% of the total wall-clock runtime of a competing
reference-free method. Finally, we showcase RNA-Bloom2 in assembling a
transcriptome sample of Picea sitchensis (Sitka spruce). Since ourmethoddoes
not rely on a reference, it further sets the groundwork for large-scale com-
parative transcriptomics where high-quality draft genome assemblies are not
readily available.

RNA sequencing (RNA-seq) hasbecome the standardmethod for gene/
transcript discovery, transcriptome profiling, and isoform expression
quantification. Since the dawn of high-throughput short-read
sequencing technologies, transcriptome assemblies have enabled
the discovery of novel isoforms1, identification of foreign RNAs2,
intra-species gene-fusion transcripts3 and inter-species chimeric
transcripts4,5, and guided scaffolding6 and annotation of draft genome
assemblies. Such applications have been key in enhancing our under-
standing of genome biology and the etiology and progression of var-
ious diseases.

Pacific Biosciences of California, Inc. (PacBio,Menlo Park, CA) and
Oxford Nanopore Technologies PLC (ONT, Oxford, UK) have been
offering long-read sequencing technologies commercially since 2011
and 2014, respectively. Both sequencing technologies have improved
significantly since their emergence to yield increased read length, base

accuracy, and throughput7. In particular, ONT’s MinION devices are
small andportable, thus having the potential to allow rapid sequencing
and downstream analyses8. Moreover, nanopore sequencing enables
direct RNA (dRNA) sequencing without the need to generate com-
plementary DNA (cDNA) libraries9. On the other hand, PacBio’s single-
molecule-real-time (SMRT) sequencing provides circular consensus
sequencing (CCS) to produce reads that have a lower base error rate
than that of ONT reads10. As a result, the number of computational
methods designed for processing and analyzing long-read sequencing
data is growing rapidly7.

Compared to Illumina short-read sequencing technologies, long
reads are noisier but are several orders of magnitude longer, making
them able to span throughmultiple exons and even capture full-length
transcripts in some instances, thus simplifying the transcriptome
assembly problem. However, existing transcriptome assemblers, such
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as StringTie211, are predominantly reference-based where transcripts
are derived from spliced-alignment of reads against the reference
genome. Genome annotations contain rich information about gene
structures that may be utilized for guiding reference-based tran-
scriptome assembly; some examples include: refinement of spliced-
alignment based on known splice junctions, inference of transcript
strand based on annotated gene orientation, and resolution for anti-
sense transcripts based on known transcription start and end sites.
Consequently, a subclass of reference-based assemblers, such as
FLAIR12, require a genome annotation in addition to the reference
genome for accurate isoform reconstruction. Similarly, StringTie2 has
the option of incorporating transcriptome annotation to aid its
assembly process.

Reference-free assembly of transcriptomes is especially valuable
when there is no available reference genome or the reference genome
is still at the draft stage, which may not fully support the reference-
based assembly of all transcripts in a given transcriptome sequencing
sample. In general, long-read reference-free genome assembly algo-
rithms such as wtdbg213 (also known as Redbean) are not suitable for
transcriptome data because they cannot reconstruct alternative iso-
forms and they typically assume a uniform sequencing depth, which is
practically nonexistent in transcriptomicdata due to varying transcript
expression levels. Reference-free assembly methods typically rely on
read-to-readmapping, whereas reference-basedmethods rely on read-
to-reference alignments. Since read-to-read mapping is much more
resource-intensive than read-to-reference alignment, reference-free
methods tend to have a much higher computational cost than
reference-based methods. To find wider applications, reference-free
assembly algorithms need to overcome the challenges in managing
computational resources.

Sequence clustering-based assembly follows the divide-and-
conquer paradigm and thus it requires less resources than methods
that align all reads against eachother. RATTLE14 is an example of such a
method, and to the best of our knowledge, it is the only reference-free
transcriptome assembler that can assemble transcripts solely from
long-read sequencing data. RATTLE clusters input reads into isoform-
based (or gene-based) groupings and derives consensus sequences
from each read cluster to reconstruct full-length transcripts. Never-
theless, clustering accuracy is an important factor in assembly quality
and computational performance. A lenient clustering criterion would
create few but large read clusters, resulting in slow runtime, high peak
memory, and aggregation of reads from too many genes. A stringent
clustering criterion, on the other hand, would create many small
clusters, potentially resulting in insufficient aggregation of reads and
incomplete transcript reconstruction.

Digital normalization15, also known as in silico read normalization,
is a simple but effective method to improve the computational per-
formance of reference-free assemblers by reducing the number of
overrepresented reads, such as those of high-expressed transcripts,
based on the saturation of k-mers in the reads. In contrast to naive
subsampling, digital normalization is better at preserving low-
expression transcripts. However, it has been primarily utilized for
the assembly of short-read RNA-seq data16,17. With the introduction of
strobemers18 as a mismatch and indel tolerant alternative to k-mers,
digital normalization with strobemers should be highly applicable to
transcriptome assembly of noisy long reads.

Here we present RNA-Bloom2, the successor to our short-read
transcriptome assembly tool, RNA-Bloom19, that extends support for
reference-free transcriptome assembly of bulk RNA long sequencing
reads. RNA-Bloom2 offers both memory- and time-efficient assembly
by utilizing digital normalization of long reads with strobemers. Our
benchmarking shows that RNA-Bloom2 requires 27.0–80.6% of the
peakmemory and 3.6–10.8% of the totalwall-clock runtimeofRATTLE.
In simulated datasets, RNA-Bloom2 has 1.5–7.3% higher recall and
0.3–1.5% lower false discovery rates than RATTLE. In the spike-in

datasets, RNA-Bloom2 has 5.7–17.6% higher recall than RATTLE.
Finally, we showcase RNA-Bloom2 in assembling a transcriptome
sample of Picea sitchensis (Sitka spruce), without using a genomic
reference.

Results
Reference-free transcriptome assembly with RNA-Bloom2
RNA-Bloom2’s six-stage workflow for the reference-free tran-
scriptome assembly of long reads is summarized in Fig. 1. In stage
one, long reads are corrected for errors in an alignment-free
approach based on a Bloom filter de Bruijn graph of k-mers derived
from input reads. Short reads can be optionally provided to aid in the
error correction of long reads. In stage two, the set of corrected reads
is digitally normalized with strobemers, such that overrepresented
reads are removed to yield a target read depth. Stages one and two
are highly integrated to reduce input-output operations. Since only a
portion of corrected reads would be retained by digital normal-
ization, stage one is notmeant to exhaustively correct all errors in the
reads and is instead intended to be fast and memory-efficient. In
stage three, reads in the normalized set are overlapped against each
other to identify low-depth regions in the reads to be trimmed or
split. In stage four, trimmed reads are overlapped against each other
to generate an overlap graphwhere reads on each unambiguous path
are assembled into a “unitig”. In stage five, the unitigs, whichmay still
contain errors, are polished using the alignments of corrected reads
from stage one. In stage six, the polished unitigs are aligned against
each other to generate an overlap graph where transcripts are
derived based on the length-normalized read depth of the unitigs. If
the reads are produced by the cDNA sequencing protocol, sequences
containing potential poly(A) tails are identified in order to prune the
overlap graphs in stages four and six. A more detailed description of
each stage is provided in theMethods section. It is important to note
that all-versus-all sequence comparisons in RNA-Bloom2 are per-
formed after digital normalization, as opposed to after sequence
clustering as in RATTLE. Since the number of sequences retained
after digital normalization is expected to be much lower than the
number of raw input reads, sequence clustering is not necessary for
RNA-Bloom2.

Evaluation of error correction and digital normalization
We evaluated the effectiveness of the error correction and digital
normalization stages of RNA-Bloom2 using experimental data. We
selected one mouse dataset from the Long-read RNA-Seq Genome
Annotation Assessment Project (LRGASP) Consortium20 containing
thematching sequencing data for ONT cDNA, ONT dRNA, PacBio CCS,
and Illumina reads of the same biological sample (Supplementary
Table 1).ONTdRNA andPacBioCCS reads donot contain adapters, but
ONT cDNA reads and Illumina reads are trimmed for adapters
with Pychopper21 and Trimmomatic22, respectively (Supplementary
Method 1). Out of the three long-read samples, the ONT cDNA sample
has the largest number of sequencing reads (13,127,667 reads) but
the lowest read alignment rate (78.66%) against the combined refer-
ence genome for mouse GRCm39 and Lexogen’s Spike-In RNA Variant
(SIRV) transcripts23 from the LRGASP consortium (Synapse accession
“syn25683365”). Compared to the ONT cDNA sample, the ONT dRNA
and PacBio CCS samples have only one-sixth of the reads (2,153,439
reads and 2,144,172 reads, respectively) but higher read alignment
rates (95.58% and 95.49%, respectively) against the reference genome.
The Illumina sample has 40,225,298 read pairs (2 × 100 nucleotides
(nt)) and is only used for the hybrid error correction of the long reads
in RNA-Bloom2.

We first assess bothmethods of alignment-free error correction in
RNA-Bloom2: (i) using only long reads, and (ii) using a hybrid of long
and short reads. We investigated the nucleotide base error rates of the
reads before and after error correction (Supplementary Table 2); error

Article https://doi.org/10.1038/s41467-023-38553-y

Nature Communications |         (2023) 14:2940 2

https://www.synapse.org/#!Synapse:syn25683365


rates are measured by Trans-NanoSim24 (Supplementary Method 2).
The error rates of the reads before error correction in the ONT dRNA,
ONT cDNA, and PacBio CCS samples are 12.17%, 7.18%, and 1.96%,
respectively. Long-read-only error correction has reduced the error
rates to 10.28%, 4.03%, and 1.35% for the ONT dRNA, ONT cDNA, and
PacBio CCS samples, respectively. As expected, hybrid error correc-
tion has resulted in even lower error rates of 6.55%, 3.51%, and 1.34% for
the ONT dRNA, ONT cDNA, and PacBio CCS samples, respectively.
Long-read-only error correction has the largest reduction (−3.15%) in
the error rate in the ONT cDNA sample, whereas hybrid error correc-
tion has the largest reduction (−5.62%) in the error rate in the ONT
dRNA sample.

We next investigated the percentage of reads remaining after
digital normalization and the percentage of input reads aligned to the
final assembly (Supplementary Table 3, SupplementaryMethod 3). For
assemblies with long-read-only error correction, 48.15%, 3.76%, and
11.66% of reads remained after digital normalization in the ONT dRNA,
ONT cDNA, and PacBio CCS samples, respectively. For assemblies with
hybrid error correction, 38.80%, 3.53%, and 11.63% of reads remained
after digital normalization in the ONT dRNA, ONT cDNA, and PacBio
CCS samples, respectively. TheONTdRNA assemblies have the highest
percentages of reads remaining after digital normalization. This is
likely due to the much higher error rate in the reads, which limits the
number of matching strobemers among the reads. Despite the fact
that a substantial proportion of reads are removed by digital normal-
ization, 97.44–97.54% and 95.04–95.16% of input reads are still able to
align to the final assemblies for the ONT dRNA and PacBio CCS sam-
ples, respectively. Although 73.52–74.02% of input reads aligned
the final assembly for the ONT cDNA sample, it is important to note
that only 78.66% of reads in the sample were aligned against the
reference genome. These results confirm that digital normalization in

RNA-Bloom2 is effective in removing overrepresented reads from
long-read transcriptome sequencing data.

Finally, we assess how well digital normalization preserves the
number of genes represented in reads, using the same experimental
samples as before. For a given set of reads, the number of represented
genes is defined as the number of genes with expression levels above
zero (Supplementary Method 9). The results are summarized in Sup-
plementary Table 4. Overall, the number of genes represented in the
digitally normalized reads is 95.6–98.3% of those in the raw reads. It is
important to note that error correction already lowers the gene
representation (due to filtering of reads with low k-mer multiplicities)
prior to digital normalization. In general, the majority of genes dis-
carded are very lowly expressed, and their expression levels are pre-
dominantly lower than those of genes retained (See Supplementary
Table 13). Since only a small proportion of reads remains after digital
normalization, the 1.7–4.4% reduction in gene representation is within
our expectations.

Assembly benchmarking with simulated datasets
We benchmarked the assembly quality and the computational per-
formance of RNA-Bloom2 on simulated data. Assembly quality is
measured based on the metrics described in Table 1. The assembly
evaluation procedure is described in the Methods section. We pre-
pared two mouse-simulated datasets with Trans-NanoSim24 for the
cDNA and dRNA sequencing protocolsmodeled on experimental ONT
data (See Methods). To investigate the effect of sequencing depth, we
subsampled each dataset to 2, 10, and 18 million reads, resulting in a
total of six sets of reads for our benchmarking experiments. The fea-
tures of the simulated datasets are presented in Supplementary
Table 5. Compared to the cDNA dataset, the dRNA dataset has a higher
error rate, longer N50 read length, and fewer simulated transcripts.

Fig. 1 | RNA-Bloom2 assembly workflow overview. The long-read assembly
workflow of RNA-Bloom2 consists of six stages. In stage 1, input long reads are
corrected for errors using a de Bruijn graph, where erroneous k-mers (red circles)
are replaced with k-mers of higher multiplicities (blue circles). The de Bruijn graph
can optionally include k-mers from short reads if provided. In stage 2, corrected
reads are digitally normalized to select a subset of reads (blue rectangles). In stage

3, normalized reads are trimmed and splitted at regions of low read depth (red
rectangles). In stage 4, an overlap graph of trimmed reads is generated to assemble
unambiguous paths into unitigs (blue paths). In stage 5, residual errors (red
squares) in unitigs are polishedusing alignments of corrected reads from stage 1. In
stage 6, an overlap graph of polished unitigs is generated to assemble alternative
transcripts (orange and green paths).
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Using the two-million simulated read sets, we illustrate the value
of reference-free transcriptome assembly by comparing RNA-Bloom2
against isONcorrect25, which is an error-correction tool designed for
ONT transcriptome data. Commands for running both tools are
described in Supplementary Method 10. We evaluated the number of
complete transcripts and false discoveries detected for both tools
(Supplementary Fig. 1). For cDNA data, output reads of isONcorrect
have 7104 complete transcripts and 4852 false discoveries, whereas
the RNA-Bloom2 assembly has 8929 complete transcripts and 4028
false discoveries. For dDNA data, output reads of isONcorrect have
7646 complete transcripts and 2606 false discoveries, whereas
the RNA-Bloom2 assembly has 11,157 complete transcripts and 2559
false discoveries. Overall, RNA-Bloom2 offers 25.7–45.9% increase in
complete transcripts and 1.8–17.0% reduction in false discoveries
compared to isONcorrect. Although long reads often span multiple
exons, our results show that transcriptome assembly is valuable to
reference-free analysis of long-read transcriptome data.

We then compared RNA-Bloom2 against three other tran-
scriptome assembly tools designed for long reads: RATTLE, StringTie2,
and FLAIR. RATTLE is the only other reference-free method, whereas
StringTie2 and FLAIR are entirely reference-based. In addition, all
FLAIR assemblies were guided by the reference transcriptome anno-
tation in conjunction with the associated reference genome. String-
Tie2 was run in two different modes: with and without the
transcriptome annotation, which are denoted as “StringTie2_GTF” and
“StringTie2” from hereon. Since reference-based methods are expec-
ted to perform better than reference-free methods, StringTie2,
StringTie2_GTF, and FLAIR serve as the baseline for evaluating the
performance of RNA-Bloom2 and RATTLE. All assembly methods were
run with 48 threads using the same compute nodes with the exception
of FLAIR and RATTLE for the assemblies of the 18 million-read sets,
which were reprocessed on a high-memory machine after failing the
initial runs. The assembly evaluation procedure is described in
the Methods section. Commands for all methods and computing
hardware are documented in Supplementary Method 6.

The computational performance of all five assembly methods is
summarized in Fig. 2 and Supplementary Tables 6 and 7. StringTie2
and StringTie2_GTF performed similarly and they have the fastest
runtimes and consistently low peak-memory usage for all datasets.

FLAIR has the worst peak-memory usages and RATTLE has the worst
total runtimes. As expected, reference-based assemblers are faster
than reference-free assemblers. RNA-Bloom2 has the lowest memory
usage for the 2 million-read cDNA dataset. The peak memory usage
and total runtimes of RATTLE are 1.24–3.70 and 9.22–28.12 times of
those of RNA-Bloom2, respectively. Both RNA-Bloom2 and RATTLE
require a higher peak-memory usage in assembling the dRNA datasets
than the cDNA datasets, possibly due to the higher error rate and
higher N50 read length of the dRNA datasets. However, the peak
memory of RNA-Bloom2 for the dRNA datasets did not increase
exponentially with respect to the number of input reads. This suggests
that the digital normalization stage in RNA-Bloom2 is effective in
reducing the number of reads because the number of transcripts in the
10 million-read set and the 18 million-read set only differs by 210
(Supplementary Table 5).

The benchmarking results for simulated data are presented in
Fig. 3. The trends for recall are similar for both simulated cDNA and
dRNA datasets (Fig. 3a). RNA-Bloom2 has higher percentages (+1.5 to
+7.3%) of complete reconstruction than RATTLE in all simulated
samples. The largest difference is observed in the 18 million-read
cDNA sample, whereas the smallest difference is observed in the 2
million-read cDNA sample. RNA-Bloom2 also has lower percentages
(–9.2 to –11.9%) of missing transcripts than RATTLE in all samples.
Behind StringTie2_GTF and FLAIR, RNA-Bloom2 has the third smal-
lest percentages ofmissing transcripts (41.3–57.0% for cDNA sets and
24.5–49.5% for dRNA sets). For both cDNA and dRNA datasets,
StringTie2_GTF has the highest percentages of complete recon-
struction (46.2–79.9%) and the smallest percentages of partial
reconstruction (4.3–11.4%). However, StringTie2 has the highest
percentage of missing transcripts in all cDNA (57.4–68.5%) and dRNA
(41.8–56.8%) samples.

We further investigated assembly recall with respect to transcript
expression levels. We assigned simulated transcripts to expression
quartiles: low, medium-low, medium-high, and high. The expression-
stratified assembly recall results for simulated cDNA and dRNA data-
sets are presented in Supplementary Figs. 2 and 3, respectively.
StringTie2_GTF has the most complete reconstruction in all four
expression quartiles for both cDNA and dRNA datasets. RNA-Bloom2
has higher percentages of complete reconstruction thanRATTLE in the

Table 1 | Transcriptome assembly quality assessment metrics

Metric Definition

Complete reconstruction Truth set transcript reconstructed at least 95% in length

Partial reconstruction Truth set transcript reconstructed between 0 and 95% in length

Missing reconstruction or false nega-
tive (FN)

Truth set transcript with no detectable reconstruction

True positive (TP) Truth set transcript with complete or partial reconstruction

False positive (FP) Reference transcript not in the truth set

Misassembly (MA) Incorrectly assembled contigwith segments from one ormore reference transcripts. It can be intragenic or intergenic.

Intragenic misassembly Incorrectly assembled contig with segments from reference transcripts of the same gene

Intergenic misassembly Incorrectly assembled contig with segments from reference transcripts of different genes

Large indel (LI) Contigs with at least one large indel (> 70 nt) compared to the best-aligning reference transcript. Large indels can arise
from sequencing errors, alternative donors/acceptors, skipped exons, and retained introns.

Unclassified (UC) Contigs with no alignments against reference transcripts. These contigs can arise from noise or incorrect error
correction.

Recall Percentage of truth set transcripts reconstructed.

False discoveries (FD) = FP +MA + LI + UC

False discovery rate (FDR) = FD / (FD + TP)

F1 = TP / [TP + 0.5 * (FD + FN)]

Redundancy = (contigs representing TP) / TP

These metrics are intended for sequencing data with a known ground truth where true-positives and false-positives can be easily discerned. The truth set transcripts are either the set of simulated
transcripts or the set of spike-in transcripts in real data.
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high and medium-expression expression quartiles, with the exception
of the 2million-read cDNA sample. However, the opposite was
observed in the low quartiles. In the high expression quartile, FLAIR
has the lowest percentage of complete reconstruction except for the
2million-read cDNA sample, but it has the second-lowest percentage
of missing reconstruction. In the low expression quartiles, RNA-
Bloom2 has the lowest percentages of complete reconstruction, but
both annotation-guided approaches, StringTie2_GTF and FLAIR, are
the two best-performing methods.

We also evaluated false-discovery rates (FDR), F1, and redun-
dancy (Fig. 3b–d) for the five methods. RNA-Bloom2 has lower FDR
(–1.3 to –1.5% for cDNA sets, –0.3 to –1.0% for dRNA sets) compared
to RATTLE across all samples. StringTie2 has the highest FDR (9.6 to
14.2% for cDNA sets, 8.9 to 12.9% for dRNA sets), but the FDR of
StringTie2_GTF are much lower (2.7–3.5% for cDNA sets, 3.1 to 6.5%
for dRNA sets). While StringTie_GTF has much reduced mis-
assemblies and large indel contigs compared to StringTie2, its false
discoveries are primarily contributed by false positive reference
transcripts. FLAIR has the lowest FDR in all simulated samples
(0.2–0.6%). The F1 scores of RNA-Bloom2 are higher (+9.2 to +10.0%
for cDNA sets, +7.5 to +10.5 for dRNA sets) than those of RATTLE.
StringTie2_GTF has the highest F1 scores (72.3–83.6% for cDNA sets,
81.3–88.4% for dRNA sets), whereas StringTie2 has the lowest
F1 scores (46.6–56.5% for cDNA sets, 58.4–68.8% for dRNA sets). RNA-
Bloom2 has lower redundancy (−0.2 to −0.7 for cDNA sets, −0.1 to
−0.4 for dRNA sets) than RATTLE.

StringTie2_GTF and StringTie2 have the lowest redundancy
(1.0–1.1 and 1.1–1.3, respectively), while FLAIR and RATTLE have the
highest redundancy (1.3–1.8 and 1.2–1.9, respectively). The high
redundancy of FLAIR and RATTLE is potentially a result of larger
numbersof contigs assembled (SupplementaryTable 11).However, the
number of contigs per gene is similar to the number of transcripts per
gene in the ground truth for multi-transcript genes (Supplemen-
tary Fig. 9).

Finally, we assess the isoform assembly precision based on the
transcript models in the simulated data. The precision metric is cal-
culated using the isoform classification from SQANTI326 (see Methods
for details). Our results are summarized in Supplementary Fig. 8.
StringTie2_GTFand FLAIRhave the highest isoformassembly precision
(87.1–93.6% and 84.7–92.4%, respectively). RNA-Bloom2has the lowest
precision (75.9%) in the 18M dRNA sample while RATTLE has the
lowest precision (76.6–81.0%) in all other samples, where RNA-
Bloom2’s precisions are +2.1 to +9.2% higher.

Assembly benchmarking with spike-in control data
In addition to simulated data, we also benchmarked the four assembly
methods on experimental sequencing data of known sequences. We
selected one mouse dataset from the LRGASP Consortium containing
the matching sequencing data for ONT cDNA, ONT dRNA, and PacBio
CCS of the same biological sample. The sequencing samples for this
dataset were spiked with Lexogen’s Spike-In RNA Variant (SIRV)
transcripts23 containing 92 External RNA Control Consortium (ERCC)
spike-ins, 69 SIRV isoforms, and 15 long SIRVs. We extracted the reads
corresponding to the spike-ins (See Methods) for assembly bench-
marking and the features of the spike-in datasets are summarized in
Supplementary Table 8. The PacBio CCS sample has the longest N50
read length (2,460 nt) and the lowest error rate (2.03%). The ONT
cDNA sample has the shortest N50 read length (712 nt) but the highest
number of reads (n = 404,783). The ONT dRNA sample has the fewest
reads (n = 26,814) and the highest error rate (11.01%).

We evaluated the assembly quality of the spike-in samples based
on the metrics described in Table 1, and the benchmarking results are
presented in Fig. 4. The trends for recall are similar across platforms
(Fig. 4a). In all three samples, StringTie2_GTF has the highest percen-
tages of complete reconstruction (55.1–76.1%). RNA-Bloom2has higher
percentages of complete reconstruction (+5.7 to +17.6%) than RATTLE
in all three samples; RNA-Bloom2 ranks the second highest in both
ONT samples. RNA-Bloom2 has the smallest percentage of missing
reconstruction in the ONT cDNA sample (25.6%) while StringTie2_GTF
has the smallest percentages of missing reconstruction in the ONT
dRNA and PacBio CCS samples (42.0% and 23.9%, respectively).

Overall, false discoveries (Fig. 4b) are predominantly attributed
to intragenic misassemblies and large indel contigs. RNA-Bloom2
assemblies contain unclassified contigs that cannot be aligned to the
reference spike-in transcripts. Unlike the simulated datasets, there are
no false-positive reference transcripts because all reference spike-in
transcripts are true positives. StringTie2_GTF has the lowest false-
discovery rates (FDR) in all three samples (0–4.3%). StringTie2 has the
highest FDR in the ONT dRNA and cDNA samples (25.6% and 20.6%,
respectively) while RATTLE has the highest FDR in the PacBio CCS
sample (16.3%). RNA-Bloom2 has the second highest FDR in the ONT
cDNA sample (20.4%). Both FLAIR and RNA-Bloom2 have over seven
times higher FDR in the ONT cDNA sample than in the ONT dRNA and
PacBio CCS samples. StringTie2_GTF has the highest F1 scores in all
samples (73.4–86.5%). RNA-Bloom2has the second highest F1 scores in
ONT dRNA and PacBio CCS samples (64.2% and 80.3%, respectively),
but it has the lowest F1 score in the ONT cDNA sample (51.4%). RATTLE

Fig. 2 | Computational performance on simulated datasets. All assemblers were
run with 48 threads and assemblies were generated for 2, 10, and 18 million
simulated reads of cDNA and dRNA samples. Peak memory usage wasmeasured in
gigabytes (GB), and runtime was measured in wall-clock hours. Both axes are in

logarithmic scale. For StringTie2, StringTie2_GTF, and FLAIR, performance figures
include read alignment and generation of indexed BAM files. Source data are
provided as a Source Data file.
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Fig. 3 | Assembly quality evaluation of simulated datasets. a Recall is measured
with respect to transcription reconstruction levels. b False discovery rate is mea-
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Fig. 4 | Assembly quality evaluation of spike-in control datasets. aRecall,b false
discovery rates, c F1 scores, and d redundancy were evaluated for each assembly
method on spike-in control data generated from three sequencing technologies:

ONT direct RNA, ONT cDNA, and PacBio CCS. The spike-in control data were
extracted from a mouse dataset from the LRGASP Consortium. Source data are
provided as a Source Data file.
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has the lowest F1 score in the PacBio CCS samples (65.5%) and
StringTie2 has the lowest F1 score in the ONT dRNA sample (46.5%).

StringTie2_GTF and StringTie2 have the lowest redundancy in all
samples (1.1–1.2). RNA-Bloom2 has the highest redundancy in all three
samples (2.1, 3.6, 1.6 in ONT dRNA, ONT cDNA, and PacBio CCS,
respectively), +0.5 to +1.7 higher than RATTLE. In particular, RNA-
Bloom2’s redundancy is predominantly contributed by partially
reconstructed transcripts in theONT cDNA sample, but its redundancy
is predominantly contributed by completely reconstructed transcripts
in the ONT dRNA and PacBio CCs samples. The high redundancy of
RNA-Bloom2 assemblies is potentially due to the substantially higher
number of contigs assembled (Supplementary Table 12). Although the
degree of redundancyvaries fromonemethod to another, all assembly
methods do not follow the number of transcripts per gene in the
ground truth (Supplementary Fig. 10). This is different from what was
observed in the simulated data, and we speculate that this is a result of
the small number of the spike-ins.

Assembly evaluation in mouse experimental sample replicates
Using each assemblymethod, we have assembled individual replicates
ofmouse experimental samples from the LRGASP consortium for ONT
cDNA, ONT dRNA, and PacBio CCS platforms. These are the same
samples where the spike-in control dataset was extracted (Supple-
mentary Method 5). For PacBio replicates, RATTLE performed gene-
based clustering instead of isoform-based clustering, which did not
run to completion in our initial attempts. We assess the assemblies
with SQANTI3 (Supplementary Method 11) and our results are sum-
marized in Supplementary Figs. 11–13. RNA-Bloom2 recovered a higher
number of annotated genes compared to RATTLE in all three plat-
forms. Compared to reference-free methods, reference-based meth-
ods have substantially higher numbers of novel genes in ONT cDNA
and PacBio CCS platforms. FLAIR has the highest number of known
canonical splice junctions in all three platforms; RNA-Bloom2 is a close
second in the PacBio CCS platform. Compared to reference-based
methods, reference-free methods have substantially higher numbers
of non-canonical splice junctions; RNA-Bloom2 has the highest in the
ONT cDNA platform. The proportion of non-canonical splice junctions
in RNA-Bloom2 is particularly higher than other categories in the ONT
cDNAplatform (SupplementaryFig. 14). RNA-Bloom2has themost full-
splice match isoforms and incomplete-splice match isoforms. FLAIR
has the most novel in-catalog isoforms. RNA-Bloom2 has the most
novel not-in-catalog isoforms and genic-genomic isoforms. All meth-
ods have few antisense isoforms. StringTie2 has the most antisense
isoforms in the ONT cDNA platform, while RNA-Bloom2 has the most
antisense isoforms in the other two platforms. Compared to reference-
free methods, reference-based methods have substantially higher
numbers of intergenic isoforms in ONT cDNA and PacBio CCS plat-
forms. All methods have relatively low numbers genic-intron isoforms;
StringTie2 and StringTie2_GTF have the most in all three platforms.

Reference-free assembly of a Sitka spruce transcriptome
The Sitka spruce (Picea sitchensis) is a large, evergreen, and long-living
conifer species native to the Pacific Northwest in North America.
Although a 20 Gbp draft genome assembly is publicly available27, its
scaffold N50 length is 56.8 kbp, which reflects the draft stage of this
short-read genome assembly. In particular, the Sitka spruce’s alter-
native splicing pattern has not been fully investigated. Since conifers
are known for their long introns28,29, the fragmented draft genome
would highly limit the effectiveness of reference-based transcriptome
assemblymethods. Thus, it is a valuable use case to illustrate the utility
of reference-free transcriptome assembly methods. Using RNA-
Bloom2 and RATTLE, we assembled RNA-seq data from mixed tissue
(young needle, bark, xylem, andmature needle) cDNA sampled from a
Sitka spruce Q903 spruce weevil-susceptible individual, originated
from Haida Gwaii, British Columbia, Canada (53.917, −132.083). The

cDNA sample was sequenced on a ONTMinION device (R9.4 flow cell)
and the reads are basecalled with Guppy (See Methods and Supple-
mentary Method 7). A total of 1,323,043 ONT reads with N50 read
length of 1,543 nt remained after adapter-trimming with Porechop30.
We also performed an additional RNA-Bloom2 assembly with hybrid
error correction using Illumina paired-end RNA-seq data from a pre-
vious study31.

First, we measured the completeness of single-copy orthologs
with BUSCO32 for the adapter-trimmed ONT reads, the two RNA-
Bloom2 assemblies, and the RATTLE assembly (Supplementary
Method 7). BUSCO provides a quantitative assessment of expected
gene content for each set of transcript sequences, and the results are
summarized in Supplementary Table 9. The RNA-Bloom2 assembly
with hybrid error correction has the highest percentage of complete
BUSCO and the lowest percentages of fragmented and missing
BUSCO. Specifically, the complete BUSCO has improved from 73.4% in
the adapter-trimmed reads to 87.6% in the RNA-Bloom2 assembly,
whereas the percentages of fragmented and missing BUSCO in the
reads (7.7% and 18.9%) have reduced by half after assembly with RNA-
Bloom2 (3.4% and9.0%).On theother hand, theRNA-Bloom2assembly
with long-read-only error correction has a higher percentage of com-
plete BUSCO and lower percentages of fragmented and missing
BUSCO than the input reads and the RATTLE assembly. Compared to
the reads, the RATTLE assembly has a lower percentage of complete
BUSCO and higher percentages fragmented and missing BUSCO.

We have selected the RNA-Bloom2 assembly with hybrid error
correction for further analyses. This transcriptome assembly has a
total of 68,514 transcripts, where 98.95% of adapter-trimmed reads
were aligned to the transcriptome assembly with minimap233 (Sup-
plementary Method 3). We also aligned the assembled transcripts
against the draft genome with minimap2 (Supplementary Table 10). A
total of 66,866 (97.59%) assembled transcripts were aligned to the
draft genome. Of these aligned transcripts, 21,423 (32.04%) transcripts
have at least one split-alignments. Since split-alignments on a high-
quality genomic reference typically indicate incorrectly assembled
transcripts, we compared these split-alignments of assembled tran-
scripts to STAR34 alignments of the Illumina paired-end RNA-seq data
against the draft genome. We found that 13,376 (62.44%) transcripts
with split-alignments contain at least one split supported by at least
one STAR alignment (Supplementary Method 7). This suggests that
these transcripts were correctly assembled and the majority of split-
alignments is likely a result of fragmented genic regions in the draft
genome.

To understand the gene structure of transcripts contained in the
genomic scaffolds, we supplied the RNA-Bloom2 assemblywith hybrid
error correction as full-length RNA sequences to PASA35 to create a
transcript structure annotation based on the draft genome. It is
important to note that this annotation produced by PASA is only a
partial representation of the Sitka spruce transcriptome due to frag-
mented genic regions. PASA generated an annotation consisting of
15,222 genes, 18,991 transcripts, 58,049 unique exons, 37,090 unique
introns, and 19,079 poly(A) tails (Fig. 5a). There are more poly(A) tails
than transcripts because PASA collapses transcripts with alternative
polyadenylation. Overall, 95.7% of splice junctions from the PASA
annotation overlaps with splice junctions in the Illumina paired-end
RNA-seq data reported by STAR. We also tallied the frequencies of
unique exons, introns, and transcripts per gene (Fig. 5b). On average,
each gene has 3.8 exons, 2.4 introns, 1.2 transcripts. 59.12% genes
contain 2 or more exons, and 16.1% genes contain at least 2 expressed
transcripts. A maximum of 55 exons, 53 introns, 13 transcripts are
observed per gene.

We calculated the length distributions of exons, introns, tran-
scripts, genes, and poly(A) tails based on the output files from PASA
(Fig. 5c). Exon lengths range from 10 to 18,115 nt with a primary peak at
116 nt and a slightly shorter secondary peak at 518 nt. Intron lengths
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range from 21 to 206,268 nt with a primary peak at 113 nt and a much
shorter secondary peak at 25,474 nt. 10.3% of introns are longer than
10,000bp, which is in congruence with the long intron characteristic
of conifers. Likely as a result of long introns, gene lengths range from
115 to 364,125 ntwith a primarypeak at 1865 nt and a secondary peak at
45,120 nt. Transcript lengths range from 115 to 18,115 nt with a peak at
1863 nt, which is nearly identical to the peak gene length. Poly(A) tail
length ranges between 10 to 104 nt long with a primary peak at 21 nt
and a shorter secondary peak at 50 nt. The bimodal poly(A) tail length
distribution is also observed in Arabidopsis seeding transcriptomes36.

We also investigated alternative transcript processing events in
the assembled transcripts. PASA reports nine types of events (Fig. 6):
spliced intron, retained intron, alternate acceptor, alternate donor,
alternate exon, retain exon, skipped exon, starts in intron, and ends in
intron. Spliced intron is the most common event (27.5%), followed by
retained intron (24.3%). Retained intron and spliced intron are the
most frequently co-occurring event types. Transcripts involving 3 or
more event types are detected but are much rarer.

Finally, we applied the EnTAP pipeline37 to produce protein
sequence translation and functional annotation for the RNA-Bloom2
assembly (Supplementary Method 7). Using the functional annotation
and similarity search to known spruce protein sequences, we have
identified the following putative peptides: 15 terpene synthases (TPS),
including 10 monoterpene synthases and seven diterpene synthases,
100 cytochrome P450 (CYP) peptides from 55 different subfamilies,
and 17 NAM/ATAF/CUC (NAC) transcription factors from six different
subfamilies. TPS, CYP, and NAC are gene families known for their
contribution to constitutive and induced resistance to damage by the
spruce weevils31,38,39.

Discussion
The rapid improvements to long-read sequencing technologies pre-
sent a significant challenge to reference-free transcriptome assembly
methods. As the throughput of long-read sequencers continues to
increase, larger sequencing datasets are produced and thereby
increasing the sequence assembly and analysis computational
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Fig. 5 | Distributions of feature lengths and feature counts per gene for the
Sitka spruce transcriptome. a Total counts of exons, introns, transcripts, gene,
and poly(A) tails. b The frequency of per-gene counts of exons, introns, and tran-
scripts. The vertical “Frequency” axis is presented in logarithmic scale. c The length
distributions of exons, introns, transcripts, genes, and poly(A) tails. The horizontal

“Length” axis is presented in logarithmic scale. The vertical axis is scaled to the
maximumvalue for each feature. Theminimum andmaximum values are indicated
at both tails of the distributions. Peak values on the distributions are superimposed
on the vertical dotted lines. Source data are provided as a Source Data file.
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challenge. RNA-Bloom2 addresses this by digital normalization with
strobemers. In our benchmarking with simulated data and spike-in
control data, we showed that the computational performance and the
assembly quality of RNA-Bloom2 significantly surpasses those of
RATTLE, a previous reference-free transcriptome assembler that relies
on the clustering of long reads. In particular, RATTLE has total wall-
clock runtimes over nine times that of RNA-Bloom2. Therefore, digital
normalization with strobemers, within the RNA-Bloom2 assembly
workflow, was a successful application of the concept in the assembly
of long-read sequencing data, and it was a superior alternative to
clustering-based reference-free assembly. However, we note that
digital normalization has somewhat detrimental effects on low-
expressed isoforms as we have shown in our benchmarking
experiment.

We note that reference-based assembly methods tend to run
much faster than reference-free methods, but their overall assembly
quality varies depending on the metric used and whether or not a
transcriptome annotation is included. In simulated data, String-
Tie2_GTF has better recall than reference-freemethods, but StringTie2
has lower recall and higher FDR than reference-free methods. FLAIR
has the lowest FDR in the simulated data, but StringTie2_GTF has the
lowest FDR in the spike-in data. It is important to note that StringTie2
does not strictly require a reference annotation in addition to the

referencegenome, but FLAIR requires both a reference annotation and
the reference genome. Therefore, the application of FLAIR is mainly
limited to the discovery of novel isoforms while StringTie2 only
requires a good-quality reference genome.

With the experimental mouse data, annotation-guided methods
tend to generate less novel not-in-catalog (as defined by SQANTI3)
isoforms and novel non-canonical junctions compared to reference-
free methods. This is expected because the reference annotation is
used to filter or correct inaccurate splice junctions in read alignments.
On the contrary, reference-free methods do not use the reference
annotation and the reference genome; they do not have this a priori
information to correct inaccurate splice junctions. Although this sug-
gests that annotation-guided assembly may be more accurate than
reference-free assembly, these novel isoforms and splice junctions
remain to be verified. Nevertheless, RNA-Bloom2 and annotation-
based methods recovered similar amounts of annotated genes. Com-
pared to reference-freemethods, all reference-based approaches have
reconstructed substantially more novel genes and intergenic isoforms
in ONT cDNA and PacBio CCS replicates. This suggests that reference-
based methods may still produce false positives when the reference
annotation does not contain sufficient information.

As good quality reference annotations are not always readily
available, transcriptome assembly methods must manage the lack of

Fig. 6 | Alternative transcript processing events in the Sitka spruce tran-
scriptome. a Nine types of alternative transcript processing events are presented
as they are defined in PASA and depicted by connected grey and orange rectangles.
The exons, introns, or splice-junctions involved in each event type are highlighted
in orange. b The vertical bar chart in the UpSet plot shows the number of

transcripts containing single event types and co-occurring event types, which are
indicated by single dots and connected dots in the matrix, respectively. The hor-
izontal bar chart in theUpSet plot shows the total number of transcripts containing
each event type. c Relative proportions of all event types in the PASA annotation.
Source data are provided as a Source Data file.
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known transcription start and end sites, which are crucial in distin-
guishing the orientation of transcripts and discerning transcripts from
antisense overlapping genes. Unlike direct RNA-sequencing, this is a
major challenge for cDNA sequencing data, where the strand of reads
cannot always be safely assumed. RNA-Bloom2 overcomes this pro-
blemby identifying potential poly(A) tail-containing reads. In addition,
RNA-Bloom2 filters edges in its overlap graph based on read counts of
each edge and its incident nodes, thus removing false overlaps
between sequences. The positive effects of these solutions in RNA-
Bloom2 are supported by the relatively low false discovery rates of
RNA-Bloom2 in our benchmarking experiments for simulated data.
When using the mouse data with replicates, we note that RNA-Bloom2
has reconstructed more FSM, ISM, NNC, and antisense isoforms than
other methods. These metrics may be inflated by RNA-Bloom2’s high
redundancy – an aspect we observedwhen analyzing experimental but
not simulated data. We, therefore, conclude that RNA-Bloom2 has
room for improvement in recognizing noise and reducing the number
of redundant transcripts in experimental data.

In our analyses of the Sitka spruce transcriptome, we illustrated
that RNA-Bloom2 assemblies have higher BUSCO completeness than
input reads and a RATTLE assembly. We note that a portion of our
assembled transcripts have split-alignments across genome scaffolds,
but the majority of them are supported by paired-end short reads. We
expect that a transcript-informed targeted gene reconstruction40,
using a long-read reference-free transcriptome assembly by RNA-
Bloom2, may significantly improve the discovery of new splice iso-
forms and the annotation of genes.

In summary, we illustrated theperformance of RNA-Bloom2with
respect to state-of-the-art long-read transcriptome assembly meth-
ods, highlighting the strengths and weaknesses of each. We showed
that RNA-Bloom2 is suitable for both ONT and PacBio sequencing
technologies and it is competitivewith reference-basedmethods.We
expect RNA-Bloom2 to be scalable to increasing volumes of long-
read data, and we anticipate RNA-Bloom2 will facilitate the gene
annotation and transcriptome analyses of many species to be
investigated.

Methods
Alignment-free error correction
We have modified the error correction routine for short reads in RNA-
Bloom to support error correction in long reads. RNA-Bloom2 uses a k-
mer size of 25 by default unless specifiedotherwise by the user. First, k-
mers and their multiplicities in the input reads are stored in a Bloom
filter de Bruijn graph, which uses the same memory-efficient data
structure introduced in our previous work19. However, paired k-mers
that were utilized in the short-read assembly algorithm are not used
due to higher error rates of long reads. Reads are then split into fixed-
length tiles (default: 500 nt) that are evaluated independently of each
other. To account for varying transcript expression levels, a multi-
plicity threshold is dynamically determined (See Supplementary Fig. 4
for more details about this procedure) within each tile to identify
“weak” and “solid” k-mers, which have multiplicities lower and higher
than or equal to the threshold, respectively. Weak k-mers represent
potentially erroneous regions in the read while solid k-mers represent
error-free regions in the read. To avoid introducing incorrect edits to
the read, weak k-mers are replaced with an alternative path of solid
k-mers in the de Bruijn graph only if this path shares a high sequence
identity (default: 70%) as the target region spanned by the weak
k-mers. The tiling nature of this routine ensures that more refined
multiplicity thresholds are set for sub-regions in the read. The error
correction process for each read may be repeated for additional
iterations if at least one tile was modified in the previous iteration. In
each successive iteration, the tiling positions are shifted by half a tile
length to allow errors at tile boundaries in the previous iteration to be
corrected. After error correction is completed for the read, k-mers

from all neighboring tiles are joined together and are assembled into
an edited read sequence.

Digital normalization with strobemers
Digital normalization is intended to reduce the overall read depth to a
much lower target depth (default: 3) by identifying theminimal longest
reads set (MLRS) supporting the target depth. Digital normalization
reduces the computational resource requirements of subsequent
stages, and it is most effective in reducing the number of reads for
high-expressed transcripts, which are the main culprit for long run-
times and high memory usage in read-to-read alignments. The read
depths represented by theMLRS are approximated bymultiplicities of
strobemers, which is an error-tolerant alternative to k-mers for
sequence comparison. Three variants of strobemers have been intro-
duced in previous work18: minstrobes, randstrobes, and hybridstrobes.
In RNA-Bloom2, we used randstrobes of order three because it was
shown to perform favorably on transcriptome data. Strobemer multi-
plicities are tracked by a counting Bloom filter, which is populated as
reads are added to the MLRS.

Digital normalization begins by first sorting the input reads by
their length in descending order. Only one read is evaluated at a time
to maintain proper tracking of read depth in the MLRS. A read is
designated as represented by the MLRS if nearly the entire read
(default threshold of 50 nt from the read extremities) contains over-
lapping strobemers with multiplicities at or above the target depth
(Supplementary Fig. 5). A read is designated as not represented by the
MLRS if it has a region not containing any strobemers with multi-
plicities at or above the target depth. Each non-represented read is
added to theMLRSand its strobemermultiplicities (that are lower than
the target depth) would be incremented by one before the next read is
evaluated. Represented reads are not included in the MLRS and their
strobemer multiplicities are not incremented.

Read trimming and splitting
RNA-Bloom2 relies on minimap2 for overlapping reads against each
other to identify sufficiently covered regions of each read. By default,
the minimum required read depth for long-read assembly is set to
three in RNA-Bloom2; a sufficiently covered region of a read must
overlap with at least two other reads. Insufficiently covered head and
tail regions of the reads are trimmed. Reads containing insufficiently
covered internal region(s) are potentially chimera artifacts. Therefore,
reads are also split at these internal regions into shorter segments that
are still sufficiently supported by other reads (See Supplementary
Fig. 6 for more details). Completely contained reads are removed.

Unitig assembly
Trimmed reads are overlapped against each other with minimap2 to
construct an overlap graphwhere the vertices and edges are reads and
their overlaps, respectively. As was done in the read trimming stage,
contained reads are removed. If the input data is strand-specific (e.g.
ONT dRNA), only alignments on the same strand are retained and the
overlap graphwould only contain vertices for the forward strand. If the
input data is not strand-specific (e.g. ONT cDNA), then vertices for
both strands are created in the overlap graph and the overlap graph is
pruned based on whether each read contains poly(A) tail or poly(T)
head (Supplementary Fig. 7). The overlap graph is simplified by
removing transitive edges. Unitigs are derived by assembling reads
along unambiguous paths in the overlap graph.

Unitig polishing
Although alignment-free error correction has been performed on the
reads that were used to generate unitigs, there are still residual base
errors that can be polished using an alignment-based approach. Out-
put reads from the error correction stage are aligned to the unitigs
with minimap2. To avoid unintentional removal of short alternatively
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spliced exons during polishing, only alignments with large indels
(default: > 50nt) or low sequence identity (default: <70%) are removed.
The filtered alignments are passed to Racon41 for polishing the unitigs.

Transcript assembly
An overlap graph of polished unitigs is constructed based on mini-
map2 overlaps between polished unitigs. Reusing the read alignments
from the unitig polishing stage, the overlap graph is annotatedwith: (i)
length-normalized read counts for the unitigs, and (ii) the number of
reads spanning across the unitig overlaps. The length-normalized read
counts for unitigs are measured as the number of aligned bases divi-
ded by the total length of the unitig. The length normalization is pri-
marily intended to account for reads that align partially to more than
one unitig, where a higher count is attributed to the unitig with more
aligned bases. Without length normalization, read counts tallied from
reads aligned to unitig overlaps would be double-counted, which is
particularly detrimental when reads align to false-overlaps between
unitigs. Therefore, the normalized read counts provide a means to
discern false overlaps between unitigs that belong to transcripts with
different expression level magnitudes.

If the input data is not strand-specific, then the overlap graph is
pruned as it was done in unitig assembly, and the read alignments are
also examined for poly-A tail reads that are aligned to the unitigs. The
unitigs are reoriented based on the poly-A tail read alignment orien-
tations and the overlap graph is filtered accordingly (Supplementary
Fig. 7). This procedure is crucial in discerning transcripts originating
from overlapping genes on opposite strands of the chromosome. In
addition, edges in the overlap graph arefiltered by applying a binomial
test on the number of reads supporting the edge with respect to the
normalized read counts of the incident vertices (Supplementary
Method 8).

After all filtering on the overlap graph has been performed, ver-
tices are sorted by their read counts in descending order. Each vertex
serves as the seed for a bidirectional greedy extension path with each
extension choosing the neighbor vertex with the highest read count.
Greedy extension terminates upon reaching either a dead-end, a cycle,
or a vertex with a read count of zero. The reads along this path are
assembled into a transcript. All vertices along this path would be
flagged from seeding new extension paths, and their read counts are
decremented by the minimum read count in the path. Transcript
assembly is complete when all vertices have been visited.

Benchmark dataset simulation
We used Trans-NanoSim v3.1.0 to simulate ONT cDNA and dRNA
datasets based on the mouse annotation for GRCm39 from LRGASP
(Synapse accession “syn25683629”). Two mouse samples from the
LRGASPConsortium (accessions “ENCFF232YSU” and “ENCFF349BIN”)
were selected for training Trans-NanoSim sequencing profiles for
cDNA and dRNA data, respectively. Sequencing adapters were trim-
med from raw reads using Pychopper v2.5.021 (Supplementary
Method 1). Since no adapters were detected in the dRNA data, the raw
reads were supplied to Trans-NanoSim for training the dRNA profile.
On the contrary, adapters were found in the cDNA data; the adapter-
trimmed “full-length” and “rescued” reads, as defined by Pychopper,
were supplied to Trans-NanoSim for training the cDNA profile. We
discarded all simulated reads defined as “unaligned” by Trans-
NanoSim and we subsample the “aligned” simulated reads to 2, 10,
and 18 million reads using seqtk42. All software command parameters
are documented in Supplementary Method 4.

Spike-in control reads extraction
For the ONT cDNA samples, we only used the adapter-trimmed “full-
length” and “rescued” reads, as definedby Pychopper.Usingminimap2
2.24-r1122, reads from three replicates for each platform were aligned
against the hybrid reference genome of mouse and spike-ins provided

by LRGASP. Only reads that are aligned uniquely to ERCC and SIRV
sequences are kept (Supplementary Method 5).

Transcriptome assembly benchmarking
The command parameters for each assembler are documented in
Supplementary Method 6. For the simulated datasets, transcriptome
assemblies are aligned against the mouse reference transcriptome
from LRGASP with minimap2. The output alignment PAF files are
processed with our in-house Python script ‘tns_eval.py‘, which is
available at https://github.com/bcgsc/rnaseq_utils. Only alignment
segments of at least 100 nt in length, at least 95% sequence identity,
and indels smaller than 70 nt in length are considered. The ground
truth transcript set is determined using the transcript identifiers in the
simulated read names. Since not all known transcripts were simulated,
the truth set is a subset of the annotation. Any transcripts that are not
in the truth set are designated as false positives. If an assembled
sequence aligns equallywellwith both a truth set transcript and a false-
positive transcript, the assembled sequence would be assigned to the
truth set instead of the false-positive. Any assembled sequences that
have split alignments to more than one transcript are designated as
misassemblies.

For the spike-in datasets, transcriptome assemblies are aligned
against the ERCC and SIRV sequences with minimap2. Since the
ground truth transcript set is identical to the spike-in annotated tran-
scripts, there are no false-positives. However, misassemblies are still
detected as it was done for the simulated datasets.

Calculating isoform assembly precision
The isoform assembly precision metric is calculated based on SQAN-
TI3’s isoformclassification. The commandparameters for SQANTI3 are
documented in Supplementary Method 11. SQANTI3 classifies assem-
bly contigs into different categories according to how they match the
reference transcript models. Full splice match (FSM) and incomplete
splice match (ISM) are the only two categories that correspond to
reference isoform with matching splice junctions. To determine iso-
form assembly precision for simulated data, the transcriptome anno-
tation is filtered to include only isoforms that were simulated. Note
that a total of six filtered transcriptome annotations were generated
for the simulated data (two protocols, three read set sizes). When
SQANTI3 is run with the filtered transcriptome annotation, any incor-
rect assemblies would be assigned to categories other than FSM or
ISM. Therefore, isoform assembly precision is calculated as (FSM+
ISM)/(FSM+ ISM + other categories).

Sitka spruce transcriptome analysis
All software command parameters are documented in Supplementary
Method 7. The ONT cDNA reads were base called with Guppy v5.0.15.
Since there are non-standard adapter and primer sequences, we used
Porechop instead of Pychopper. We assembled the adapter-trimmed
reads with RNA-Bloom2 v2.0.0 and short-read RNA-seq data (See Data
Availability statement) from previous work31 were also included only
for error correction of the ONT reads. The transcriptome complete-
nesswas benchmarkedwith BUSCO v5.3.232 and the embryophyte core
gene set (odb10). The resulting RNA-Bloom2 assembly was supplied to
PASA v2.5.235 for gene structure annotation, using minimap2 for tran-
scriptome alignments against the draft genome. The figure for alter-
native splicing was generated with UpSetR43. The transcriptome
assembly was annotated with EnTAP v0.10.8-beta37 using TransDeco-
der v5.3.044 for protein sequence translation. Functional annotation
was assigned based on Swiss-prot plant proteins45, UniRef90 gene
clusters46, embryophyte orthologs fromOrthoDB1047, and high-quality
proteins derived fromNCBI RefSeq 9948.Weperformed the annotation
of TPS, CYP and NAC through a BLASTP search against target spruce
protein sequences reported previously31,38,39, with minimum match of
95% identity and 90% query coverage.
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Statistics and reproducibility
No biological sample collection was performed in this study. There-
fore, no statistical method was used to predetermine sample size and
there were no randomized experiments. Blinding of data is also not
relevant. Sequencing reads were only excluded if they are deemed as
poor quality by the adapter-trimming softwares. For reproducibility of
analyses in this study, exact software commands are provided in
Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data for generating all figures in this study are provided in
the Source Data file. The simulated data generated in this study has
been deposited in Dryad at https://doi.org/10.5061/dryad.cc2fqz68w
(ref. 49). The rebasecalled Nanopore sequencing data for the Sitka
spruce cDNA sample hasbeendeposited in the SequenceReadArchive
(SRA) with run accession “SRR19510936”. The GRCm39-based mouse
reference genome from the LRGASP is available on Synapse with
accession “syn25683365”. The GENCODE VM27-based mouse tran-
scriptome annotation set from the LRGASP is available on Synapse
with accession “syn25683629”. The sequencing data from the LRGASP
are available in the ENCODE Project repository with accessions:
“ENCFF349BIN”, “ENCFF412NKJ”, “ENCFF765AEC”, “ENCFF232YSU”,
“ENCFF288PBL”, “ENCFF683TBO”, “ENCFF313VYZ”, “ENCFF667VXS”,
“ENCFF874VSI”, “ENCFF696TCH”, and “ENCFF751FTE”. The Illumina
sequencing data for Sitka spruce froma previous study31 is available on
SRA with accessions: “SRR5949081”, “SRR5949082”, “SRR5949083”,
“SRR5949084”, “SRR5949085”, “SRR5949086”, “SRR5949087”,
“SRR5949088”, “SRR5949089”, “SRR5949090”, “SRR5949091”, and
“SRR5949092”. All other relevant data supporting the key findings of
this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
RNA-Bloom2 (v2.0.0) is implemented in Java, and it is publicly available
under GPLv3 license on GitHub at https://github.com/bcgsc/RNA-
Bloom (ref. 50). The scripts we wrote to produce and analyze our
results are also publicly available on GitHub at https://github.com/
bcgsc/rnaseq_utils and https://github.com/bcgsc/rnabloom2_
manuscript.
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