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Topological defects reveal the plasticity of
glasses

Matteo Baggioli Check for updates

Mixing theoretical topological structures with
cutting-edge simulationmethods, a recent study
in Nature Communications has finally confirmed
the existence of topological defects in glasses
and their crucial role for plasticity.

In a crystalline solid, atoms are not randomly arranged. On the con-
trary, they sit in preferred positions, forming a periodic and ordered
structure as depicted by the white sheeps in Fig. 1a. In technical words,
this is known as long-range order, and it is the key behind several of the
physical properties of crystals, from their rigidity to the propagation of
sound and heat transport. Whenever such an organized configuration
exists, it is almost immediate to find out a particle which does not
follow the rules and breaks the order. In physics, we call such a rebel,
like the blue sheep in Fig. 1a, a defect.

If all solids were similarly well-behaved, the life of a physicist
would be rather boring. Nevertheless, many solids in Nature are
amorphous, and they do not respect the ordered and periodic atomic
arrangement described above. Glasses are the most famous example
of that sort. The structure of a glass is disordered andmore akin to the
colorful and heterogeneous herd of sheeps shown in Fig. 1b. As a
consequence, identifying a defect therein appears as an almost
impossible task, if not an ill-defined concept altogether.

The reason why we should care about finding defects in thatmess
is very practical. In crystalline solids, defects play a fundamental role in
predicting mechanical failure and the onset of plasticity1, the irrever-
sible deformations which bring to the breakdown of the elastic
response. In other words, they are critical to connect structure with
dynamics, and to predict when andwhere a certainmaterial will break.
A common idea is that, even in glasses, plastic deformations take place
in soft spots with abnormally low elastic constants and increased
mobility, analogous to dislocations in crystalline systems. The
remaining question is how to locate those weak zones from structural
information, or even better how to relate them to the presence of
defects which potentially control the plastic flow. In order to under-
stand the difficulty behind this task, we need to dive into the mathe-
matical tools that physicists use to define and quantify order and
disorder.

Topological defects appear in many disparate areas of physics
from cosmic strings in the universe, to vortices in superfluids and even
in the patterns of human fingerprints. They represent a beautiful
bridge between physics and a branch of mathematics known as
topology. Given an ordered medium, like the sheeps in Fig. 1a, its
configuration can bemathematically described by an order parameter,
whichdefines amapbetween static structures in the real space and the
allowed ground states in the energy space of the system. Defects are
singularities of this order parameter field which cannot be removed by

a smooth deformation, without gluing and tearing parts. They are
characterized by a winding number, which corresponds to the total
angle throughwhich the order parameter rotates as one surrounds the
defect with a closed loop. This number can be thought as a (topolo-
gical) charge for the defects, by analogy with point-like charged par-
ticles in electromagnetism. More mathematically, defects can be
classified by their homotopy group, which measures the topological
properties of a certain manifold, such as the number of holes in it. A
practical application of these concepts leads mathematicians, and
quirky potters (see Fig. 2a), to conclude that a coffee mug and a
doughnut are equivalent, since they share the same type of defect.

To avoid confusion, let us clarify that with the word topological
wedonotmeandefects in coordination or in the number of neighbors,
as sometimes used in the context of disordered materials. In the
mathematical terms outlined above, those are not topological since
they can be removed by a continuous transformation. Beside all the
jargon, the main point is that the definition of defects necessitates the
existence of an unbroken subset of symmetries that leaves the ground
state of the system invariant. For crystalline solids, these are just the
rigid translations of the ordered lattice. For amorphous systems, there
is no remaining isotropy group. Thewhole shebang collapses from the
start. To iterate the concept, a certain degree of order is needed to
define disorder.

The search for topological defects in amorphous solids has a long
and controversial history. The idea that dislocations lines could exist in
glasses is almost 50 years old2, and has been extensively scrutinized
and questioned using theoretical arguments and numerical
simulations3–5. Studies have shown that the properties of amorphous
systems are undeniably structure sensitive and that regions of high
stress and low symmetry, resembling dislocation cores in crystals, can
be identified in glasses5.

The conviction that plasticity in glasses could still be related to
structure led to the introduction of a plethora of structural, thermo-
dynamic andmechanical indicators, including the local shearmodulus,
energetically favoured regions, linear and non-linear vibrational
modes, local thermal energy and more abstract measures of softness.
A throughout study6 concluded that most of these indicators are
excellent at locating plastic events over short strain scales, but they do
not provide a first principles understanding of plasticity, as in crystals.
On the other hand, several successful theories such as shear trans-
formation zones7, and elasto-plastic models8, have postulated the
existence of such defects without any precise definition.

Against this background, one could just rely on these successful
but phenomenological structural indicators or search for defects in
glasses beyond their real-space structure. This second choice is what
all these new developments are about. The first idea in ref. 9 was to
hunt for defects in the dynamical displacement field rather than in the
static structure, and look for singularities upon deforming the system.
The inspiration came by thinking about the incompatibility of the
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deformation, which naturally arises because of non-affinity, and which
can be related using mathematical objects known as higher-form
symmetries to a strain-free formulation of elasticity10. The results of
ref. 9 indicated that standard topological concepts applied to the
dynamical displacement field allow for a precise identification of
defects, which well correlate with the major plastic events and suc-
cessfully predict the location of the global yielding instability.

Still, the study in ref. 9 gave up on probing the static structure. In
other words, the problem of relating structural defects to dynamics
was bypassed focusing only on the dynamics itself. That was still
unsatisfactory, until Wu and colleagues’ recent paper, published in
Nature Communications11, came out and provided a potential break-
through in this story.

Wu and colleagues11 discovered that the long sought structural
defects in glasses were hiding in the topology of the vibrational
eigenmodes. Differently from the original idea of Baggioli et al.9, that is
still a property of the static and undeformed configuration, but not of
the real-space structure. Wu and colleagues noticed that the spatial
distribution of the eigenvectors display a collection of whirls and curls
and eye-visible vortex structures (see Fig. 2b), with manifest singular
behavior. By surrounding these defects with closed loops, and mea-
suring the angular decifit of the vectorial field around them, they were
able to obtain the corresponding topological charges and identify

positive and negative defects. Positive ones are just perfect vortices,
like those in the swirling water of your bathtub. Negative ones corre-
spond to frustrated interfaces with a saddle shape. Using advanced
statistical methods, Wu and colleagues were able to show a solid cor-
relationbetween thedensity ofnegative defects and the locationof the
plastic events, definedusing thewidely accepted concept of non-affine
displacement7. In Fig. 2c, visual evidence of this result is presented,
where the plastic events, shown with white crosses, nicely correlate
with the darker area with higher density of negative defects.

Tomake it short,Wuandcolleagues11managed for thefirst time to
identify topological defects in the static structure of glasses and to
provide a direct link between the properties of glasses before defor-
mation and the plastic behavior during it. As for the case of disloca-
tions in crystalline solids, this realizes a connection between structure
and dynamics in amorphous systems which goes far beyond all the
phenomenological structural indicators considered before and high-
lights the role of topology and geometry in the context of disordered
systems and their plastic behavior.

The revealed topological information displays striking similarities
with the quadrupolar Eshelby-like structures believed to be funda-
mental for the plasticity of amorphous solids12, and the vortex-like
formations possibly constituting the shear transformation zones in
glasses13. Finally, these defects could be formally related to geometric

Fig. 1 | Finding defects in disorder systems is a difficult task. a It is rather simple
to find a defect (blue sheep) in a periodic ordered structure (white sheeps), as in
crystalline matter with long-range order. b It is (almost) impossible to define a

defect in a disordered structure like this herd of colored sheeps, or like in a
real glass.

Fig. 2 | The revealed link between topology and plasticity. a A doughnut can be
continuously deformed into a coffee mug, hence the two objects are topologically
equivalent: they both have one hole. Ceramic model by Keenan Crane and Henry
Segerman. b The identification of topological defects with positive (red) and

negative (blue) charges in the normalmodes eigenvectors in theworkbyWu et al.11.
c The correlation between the plastic events (white crosses) and the density of
topological defects with negative charge (color map) presented in the work by Wu
et al.11.
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charges in the metric formulation of elasticity14, and to magnetic cur-
rents in the gauge theories for emergent elasticity in granularmatter15.

In summary, the topological defects discovered by Wu and col-
leagues could play a pivotal role in our understanding of glasses, from
the boson peak feud, to the nature of the glass transition as a topo-
logical phase transition, up to the fundamental origin of yielding. We
just need to sit with a coffee mug and a doughnut and wait to see how
topology will help us to make order out of disorder.
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