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Amethod for restoring signals and revealing
individual macromolecule states in
cryo-ET, REST

Haonan Zhang1,2,3, Yan Li1,3, Yanan Liu1,2, Dongyu Li1,2, Lin Wang1, Kai Song1,
Keyan Bao1 & Ping Zhu 1,2

Cryo-electron tomography (cryo-ET) is widely used to explore the 3D density
of biomacromolecules. However, the heavy noise and missing wedge effect
prevent directly visualizing and analyzing the 3D reconstructions. Here, we
introduced REST, a deep learning strategy-based method to establish the
relationship between low-quality and high-quality density and transfer the
knowledge to restore signals in cryo-ET. Test results on the simulated and real
cryo-ETdatasets show that RESTperformswell in denoising and compensating
the missing wedge information. The application in dynamic nucleosomes,
presenting either in the form of individual particles or in the context of cryo-
FIB nuclei section, indicates that REST has the capability to reveal different
conformations of target macromolecules without subtomogram averaging.
Moreover, REST noticeably improves the reliability of particle picking. These
advantages enable REST to be a powerful tool for the straightforward inter-
pretation of targetmacromolecules by visual inspection of the density and of a
broad range of other applications in cryo-ET, such as segmentation, particle
picking, and subtomogram averaging.

Cryo-ET has emerged as a powerfulmethodwhich could record the 3D
information of the biological macromolecules; however, many chal-
lenges still remain to be addressed1,2. First, the noise level of the
tomogram is very high due to the radiation sensitivity of the samples,
hence the low-dose electron tomography hinders human eyes to
identify the features in it3. Second, during thedata collection, tilt-series
images can only be collected within a tilt angular range of approxi-
mately ±70° because of the limitation of the specimen holder. This
could lead to incomplete 3D information in the Fourier space, resulting
in a so-called missing wedge in the tomogram. The effect of the
missingwedge is clearly visible in the 3DFourier transformof thebeam
direction. The most obvious artefact caused by a missing wedge is the
anisotropic resolution, in which objects appear elongated in the
direction of the beam axis, i.e., in the Z direction4. The EM density in
the 3D and 2D slices related to the Z-plane are distorted as a result of

this elongation. Therefore, most of 3D segmentation was unable to
entail in Z direction and render a highlight extended structure.

To address these challenges in cryo-ET, a variety of methods have
been proposed to recover the information and produce high contrast
tomograms5. During the data collection, dual-axis tomography, in
which the tilt series are collected using two perpendicular axes, could
be applied6. However, this method is limited by the use of a higher
electron dose, which may damage the biological specimen7. In other
studies that have focused on the data processing procedures, a series
of algorithms, including the algebraic reconstruction technique
(ART)8, simultaneous ART (SART)9 and simultaneous iterative recon-
struction technique (SIRT)10, have been proposed to improve the
quality of tomograms. These methods, which are mainly based on
mathematic calculations, reduce the differences between the calcu-
lated projections of the reconstructed tomogram and the tilt series. By

Received: 4 August 2022

Accepted: 8 May 2023

Check for updates

1National Laboratory of Biomacromolecules, CASCenter for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing
100101, China. 2University of Chinese Academy of Sciences, Beijing 100049, China. 3These authors contributed equally: Haonan Zhang, Yan Li.

e-mail: zhup@ibp.ac.cn

Nature Communications |         (2023) 14:2937 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2648-3170
http://orcid.org/0000-0003-2648-3170
http://orcid.org/0000-0003-2648-3170
http://orcid.org/0000-0003-2648-3170
http://orcid.org/0000-0003-2648-3170
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38539-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38539-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38539-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38539-w&domain=pdf
mailto:zhup@ibp.ac.cn


using these algorithms, high contrast for visualizing 3D structures can
often be achieved from the tomogram. In addition to the above algo-
rithms, the compressed sensing (CS)-based method has also been
proven to be effective in recovering the information in electron
tomograms11–13. It introduces a few priori assumptions in the tomo-
gram, e.g., density positivity and solvent flatness, to constrain the
structural features and allow the high-fidelity reconstructionof signals.
By applyingCS on biological samples, ICONwas found to be capableof
reconstructing tomograms with high contrast and successfully
restoring the missing information12. A more recently proposed
method, CS-TV2, which uses an advanced CS algorithm, could increase
the contrast while retaining high-resolution information13. However,
CS-basedmethods rely heavily on sufficient signal-to-noise ratio (SNR)
and thus require high-contrast tomograms.

In recent years, deep learning algorithms have been
increasingly applied in cryo-EM and cryo-ET workflows14–16.
Learning-based methods, e.g., Topaz-Denoise17, have been shown
to be advantageous in denoising tomograms. It presents a general
3D denoising model of noise2noise (N2N) for improving tomo-
gram interpretability. In addition to denoising tomograms, deep
learning has also been used to recover missing-wedge informa-
tion. In a recent study, a joint model that was designed to recover
the missing-wedge sinogram was proposed18. It required a U-Net
structure combined with a generative adversarial network (GAN)
to reduce the residual artefacts. However, the proposed joint
model was still limited to 2D data due to the lack of ground truth
for the training network model in cryo-ET. In addition to the
aforementioned joint model, an application named IsoNet19,
which learns from the information scattered in the original
tomograms with recurring shapes of molecules based the U-Net
framework, is used to recover missing wedges in cryo-ET. How-
ever, in the processing of IsoNet, its ground truth still preserves
noticeable artefacts with a high noise level. Since the training
does not employ the real ground truth of each density directly,
the effect of restoring relies on the feature and SNR in the density
mask. Actually, the raw tomogram suffers from noise and missing
wedge which are irreversible; thus, it makes the acquisition of
ground truth very challenging. Therefore, for deep learning
strategies aiming at information restoration, it is critical to gen-
erate suitable training datasets to train the neural network.

In this work, motivated by the joint model and IsoNet, we pro-
posed a knowledge transfer method for restoring the signal in tomo-
grams (REST) to denoise the tomograms and compensate for the
missing-wedge information in cryo-ET. To address the issue of the
nonexistence of ground truth, two strategies, i.e., subtomogram
averaging based strategy (Strategy 1) and simulation-based strategy
(Strategy 2), are proposed to generate training pairs. By applying the
REST method to different tomogram datasets, we find it is highly
robust to noise and performs well in denoising and compensating for
the missing wedge effect. Significantly improving the direct visualiza-
tion of the target macromolecules and their structural dynamics in
noisy tomograms, REST can help to identify the target macro-
molecules in both in vitro and in situ tomograms. Our parallel single
particle analysis (SPA) and sub-tomogram averaging (STA) analysis
shows thatREST-restored densities present highly similar structures to
those revealed by the averaging techniques. These results indicate that
REST can greatly enhance the visualization of macromolecules and
improve the structural interpretability of cryo-ET.

Results
Workflow of REST
We use U-Net modified from IsoNet19, from which the relationship
between the input volume (low-quality density) and the ground truth
(high-quality density) can be learned, as amodel for segmenting dense
volume from sparse annotation. The general workflow of REST is

comprised of three parts, i.e., generating training pairs, training the
model and restoring information, as depicted in Fig. 1. A detailed
guideline and tutorial of REST can be found at the GitHub [https://
github.com/Zhang-hn1125/REST].

Generating training pairs
In REST, two strategies are used to generate training pairs. In Strategy
1, subtomogram averaging (STA) density map of the target object
(high-quality density) and its corresponding raw particles (low-quality
density) are used. In Strategy 2, density map generated from PDB
structure (high-quality density) and its corresponding simulated par-
ticles with imposed noise and flexibility (low-quality density) are used.

Strategy 1: Subtomogram averaging based strategy
Step 1: Subtomogram averaging
Subtomogram averaging was first performed by using a routine

STA technique with limited amounts of particles. The generated CTF
andmissingwedge corrected averagingmapwith higher SNRwas then
used as the ground truth for the training pairs established between the
individual raw particle and the STA density in the orientation corre-
sponding to that raw particle. Here, assigning each raw particle a
relatively accurate orientation parameter is critical for establishing an
effective training pairs. The accurate alignment parameters for each
particle could be used to efficiently reduce the loss in training.

Step 2: Extraction of subtomograms
The rawsubtomograms thatparticipated in the averaging in step 1

were extracted as the input of the training data.
Step 3: Generation of the ground truth
According to the alignment parameters from each subtomogram,

the averaged map was rotated and shifted to generate the ground
truth. By coupling the input of training data from step 2 and the
ground truth, the training pairs were obtained.

Strategy 2: Simulation-based strategy
Step 1: Generation of dynamic models using normal mode

analysis (NMA)
When a structure of the target object is available, Strategy 2 is

recommended. Here, Normal mode analysis (NMA), a method for
molecularmechanics simulation20, wasfirst used to generate a series of
dynamic conformational changing models from the static (pseudo)
atomicmodel of targetmolecules. Basedon theprior knowledgeof the
targetmolecule, the conformations of interest were selected among all
of the dynamic models for the next steps.

Step 2: Generation of the ground truth
The selected dynamic models were converted to EM density,

rotated and shifted in the 3D space using random Euler angles and
shifts, and taken as the ground truth of the training pairs.

Step 3: Generation of the simulated data
The projection images covering different tilt angle ranges were

generated using the EM density (ground truth) in step 2. The projec-
tion images were superimposed with different degree of noise to
adjust the SNR and modulated with the contrast transfer function
(CTF). The tomogram volume was then reconstructed from the
modulated projection images and taken as the input of the training
data. Details of the method used to simulate the data are provided in
theMethods section. By coupling the input of the training data and the
ground truth from step 2, the training pairs were obtained.

Typically, Strategy 1 is useful in the situation that an STA averaged
map can be obtained for the target object, while Strategy 2 is more
useful when a structure is available for the target object. The later
strategy also has the potential to reveal the structure variations of
target object by using NMA and/or other methods to simulate the
structural changes.

Training the model
We employed a U-Net-based voxel-wise network derived from IsoNet.
One of the advantages of U-Net is its ability to segment the dense
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volume from sparse annotation21. Therefore, U-Net is particularly sui-
table for segmenting parse features from cryo-electron tomograms
containing heavy noise and elongated artefacts due to the missing
wedge effect. Themainblocks inU-Net are built fromstackingmultiple
layers, which are used for 3D convolution and deconvolution. The
convolution and deconvolution layers are used for extracting the
features of target objects and recovering the high-resolution features.
After training, the mapping relationship is established between the
low-quality particles and the ground truth (i.e., the high-quality parti-
cles) with their corresponding orientations. The mapping relationship
and knowledge learned from the training pairs can then be transferred
to restore the low-quality real density.

Restoring information
To evaluate the robustness of REST when it is influenced by missing
information andnoise, we tested the restoring capability of RESTusing
a series of datasets, including the simulated tomograms under differ-
ent conditions (SIM1, 2, 3, 4). Interestingly, we found that REST could
handle the disturbances of noise and missing wedges well, and good
performance was achieved in restoring information even when the
SNRwas reduced to 0.01 and the tilting range covering only −40° ~40°.
The correlation coefficient (CC) between the prediction and the
ground truth was close to 1.0 (Supplementary Fig. 1), suggesting an
almost complete restoration from the noisy volume in the predicted
particle. Notably, the input volume for restoration does not require
preprocessing steps such as deconvolution or filtering to improve the
SNR, that is, the raw reconstructed tomogram fromWBPcould be used
as the input directly. Using the raw WBP reconstructed tomograms as
the input has an advantage when retaining the high-resolution fea-
tures, as most of the preprocessing or denoising steps in tomograms,

such as low-pass filtering, removes these high-resolution signals and
results in an adverse influence on restoration.

REST shows the capability to enhance SNR and reduce
resolution anisotropy in real data
To evaluate the restoration capability of REST on the (sub)tomograms
after training, we first applied it to the EMPIAR-10045 dataset (EM1),
which contains the tomograms of ribosomes (~25 nm), a stable sample
with high abundance in vivo. For this dataset, strategy 1, i.e., the sub-
tomogram averaging (STA)-based strategy, was used to generate the
training pairs. We directly extracted the particles from the raw tomo-
grams as input, calculated an STA averaged map and rotated and shif-
ted the average map corresponding to the orientation of each particle
as the ground truth (Fig. 2A). After training the model and restoring
information using REST, we found that the corresponding missing-
wedge information was significantly recovered in the Fourier space
(Fig. 2B) and the restored tomograms were highly visible (Fig. 2C).

Compared with other denoising methods, such as the Gaus-
sian filter, Wiener filter, Topaz-Denoise, nonlinear anisotropic
diffusion (NAD), we found that REST achieved a stronger noise
removal performance and reserved more signals in the 2D slices
(Fig. 2C). We quantitatively assessed the denoising performance
by measuring the SNR of raw slices and slices denoised with these
methods. Since the ground truth was not available for the data-
sets, the SNR was estimated in a similar approached that in
Topaz-Denoise17. First, we averaged ten slices into one micro-
graph. Then, we selected 10 paired signal and background regions
across the micrographs. Given the signal N and background pairs
xis , x

i
b, the mean and variance of each background region is μi

b, v
i
b.

We defined the signal for each region as si = xis � μi
b and calculated

Fig. 1 | The workflow of the REST method for restoring signal. A Strategy 1
consists of generating the training pairs using subtomogram averaging (STA),
training the model and restoring information. B Strategy 2 consists of generating

the training pairs using simulated data, training the model and restoring informa-
tion. The noise volume images appear distorted. The clean volume images have no
distortion with high SNR.
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the mean and variance of the signal region, μi
s,v

i
s. The average SNR

in dB for the regions is defined as:

SNR=
10
N

XN

i = 1

log10ðvisÞ � log10ðvibÞ ð1Þ

As shown in Supplementary Table 1, the SNR was improved by
approximately 0.5 dB over the raw micrographs when using the con-
ventional methods. Notably, the SNR was improved by 7 dB over the
raw slices and approximately 6 dB over other methods when using
REST, which indicates that a significant improvement in SNR
enhancement is achieved.

Additionally, after restoration by REST, we found that each par-
ticle could be identified clearly not only in the XY-plane but also in the
XZ-plane, with few elongation artefacts (Fig. 3A). Thus, REST enables
the accurate identification of particles in all directions. In addition to
the 2D slices, compared with the density processed byWiener filtering
(in order to visualize the density), REST was able to restore the 3D
density of the particle (e.g., the green and yellowparticles) with almost
no visible elongation and distortion (Fig. 3B). However, it was worth
noting that REST could perform good restoration only toward the

targetmolecules. For other non-trained objects in the tomogram (such
as those of carbon films in the tomogram, Fig. 3A), the restoring would
not be accurate.

In addition to strategy 1, strategy 2, i.e., the simulation-based
strategy, was also tested. This strategy was applied to the dataset of
nucleosomes (~10 nm) that we reconstituted (EM2). The reason we
selected nucleosomes is that nucleosomes have area notably smaller
size than the ribosomes studied above, and are known to be highly
dynamic (see below). A similar improvement in terms of compensating
for the missing wedge and denoising the tomogram was noted on the
nucleosome dataset (Supplementary Table 1, Supplementary Fig. 2).
These results suggest that both strategy 1 and strategy 2 could be
implemented to achieve an enhanced SNR and reduced resolution
anisotropy and could be successfully applied to real tomograms.

Application of REST to simulated flexible sample revealed
conformational changes in the individual particles
It is known that most macromolecules are not strictly rigid but are
flexible entities with continuous conformational transitions when
performing their biological functions22,23. Although the STA method
can be used for classification to study different conformations,

Fig. 2 | Results from the real datasets of ribosomes (EMPIAR−10045) using
REST. A Examples of three training pairs. Left: the raw particles extracted from the
tomograms (input); Middle: the denoised particles (filtered byWiener filter), which
are easier to observe;Right: the averagedmap that rotated and shiftedbasedon the

alignment parameters. B Fourier transforms of the raw data and restored tomo-
gram. C Comparison of the raw data (WBP) and the denoised data using the
Gaussian filter, Wiener filter, NAD, Topaz-Denoise and REST methods. The REST
method could significantly remove noise that appears in the tomographic slices.
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particles with continuous conformations in the subtomograms are
rarely assigned to the same class24,25. In addition, the number of par-
ticles in each class is typically insufficient to obtain a high-quality
averaged result. Thus, the complicated cell environment and con-
tinuous conformational changes of the specimen make disentangling
the data heterogeneity by STA difficult. Here, by using NMA, we gen-
erated a simulated dataset of 177 bp nucleosomes (SIM5) that have
flexible flanking linker DNA and continuous conformational changes
as a test object (Fig. 4A). The training pairs were obtained using
strategy 2 as shown in Fig. 4B. After training, the test densities restored
by REST were highly consistent with those of the ground truth (Sup-
plementary Fig. 3).

Remarkably, using strategy 2, we found that REST could be also
used to discern a series of conformational changes in the tomogram.
For example, in the simulated tomogram of dynamic nucleosomes
dataset (SIM5), the REST-restored tomogram was highly consistent
with the ground truth, and the contrast was significantly improved
comparedwith the raw data. In the Fourier space, themissing wedge is
also compensated well (Supplementary Fig. 3). In addition to the 2D
slices, REST can also restored the 3D density, while the structural
variation, e.g., the linkerDNAbreathingmotionsbetween theopen and
closed states26, could be clearly visualized and unambiguously identi-
fied (Fig. 4C,D). Byanalysing themissing-wedge information,we found

that REST could effectively eliminate elongation and distortion, which
showed a significant improvement compared with IsoNet (Fig. 4E).
These results suggested that REST could be used to directly identify
and display the conformational changes of the dynamic structures.

Interestingly, in REST, the data for training does not necessarily
include all the possible conformations of the particles. In this study, we
only used limited amounts of conformations generated by strategy 2
to train the network. Nevertheless, many conformations that were not
included in the training dataset could still be identified. This result
indicates that REST could transfer knowledge from limited prior
information to analogous information of a broad cast.

Applying REST to real nucleosome data with different lengths of
DNA reveals the individual characteristics of the particles
In addition to the simulated nucleosome dataset, real tomograms of
nucleosome samples with linker DNA were also tested. We recon-
stituted nucleosome with linker DNA particles, mixed them with
nucleosome core particles (NCP) without linker DNA as a control, and
collected a series of electron tomography datasets (EM3) for testing
REST. According to the result, we found REST also presented a notable
improvement in SNR and recovering the missing wedge in Fourier
space (Fig. 5A). The restored tomogram was shown in Supplementary
Fig. 4. We used the combination of Topaz-Denoise and IsoNet to

Fig. 3 | REST enabled the restoration of 3D density and the accurate identifi-
cation of particles in all directions. A Left: Views of the XY-slice of the tomogram
restored by REST; Right: Two XZ-slice views of conventionally denoised (Wiener
filter) tomogram (top) and REST restored tomogram (bottom). The red arrows
indicated the corresponding ribosomes (target signal). The red ellipse indicated the

edge of the carbon film (non-target signal).B Left: A 3D rendering of the tomogram
restored by REST. Right: The tomogram restored by REST (top) had a better
restoration capability than that in the conventionally denoised tomogram (Wiener
filtering) (bottom). Both the tomograms were rotated around the x-axis by 45°
corresponding to left panel.
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denoise and compensate for themissing wedge in tomogram, which is
referred to as the T-I density hereafter. Compared with T-I density, the
3D density of each subtomogram after REST restoration was less
elongated and distorted, and thus, closer to the real structure (Fig. 5B).
We also statistically analysed the CC value between the density
restored by REST and the T-I density (Supplementary Table 4). The
high CC value achieved by REST indicated that the restored densities
were authentically derived from the raw tomogram. As a consequence,
nucleosomeswith linker DNA could be readily distinguished fromNCP
by visualizing the flanking linker DNA out of the nucleosome (Fig. 5B).
Compared with the wrapped DNA on the NCP, the extra unwrapped
linker DNA was apparently flexible, and thus, showed versatile con-
formations. By applying REST to the nucleosomes with flanking linker
DNA, we could distinguish the symmetric and asymmetric linker DNAs
with extended or curved conformations that coexist within the
nucleosomes (Fig. 5B). This kind of structural flexibility is consistent
with the nucleosome variations in interphase and metaphase
chromosomes27. These results indicated that interpretable informa-
tion, such as dynamically changing nucleosomes with different con-
formations, could be directly derived from the elongated and noisy
subtomogram after restoration by REST.

In addition to the REST method, we also applied conventional
single particle analysis (SPA) to reveal the 3D structure of reconstituted
nucleosomes with linker DNA. Subjecting approximately 200,000
particles to averaging, the structure was resolved at a resolution of

3.7 Å, which showed an asymmetric linker DNA at one end of the
nucleosome (Fig. 5C). Interestingly, this specific conformation, as
shown in the structure resolved at high resolution by SPA, was also
found in the architectures discerned by REST without averaging.
Therefore, the results indicated that REST could directly reveal ver-
satile characteristics of target macromolecules, thus had a great
practical application in cryo-ET.

Application of REST in lamellae of frog erythrocyte nuclei
improved the interpretation of nucleosome
Besides the above purified and reconstituted samples in vitro, we also
applied REST to the cryo-ET of lamella produced by cryo-FIB, which
represented the molecular structures in vivo. The lamella often has a
dominant thickness of ~150–200 nm which is much thicker than the
molecular layer on the grid (usually <50 nm). Thus, the cryo-ET of
lamella has a heavier background noise due to multi-layered samples
and complexed cell environment. Therefore, the interpretation of
cryo-ET of lamella is typicallymuchmore challenging. In this study, we
acquired the 3D cryo-ET of lamellae of frog erythrocyte nuclei pre-
pared by cryo-FIB and applied REST to them (Fig. 6A).

Interestingly, the REST-restored tomograms clearly rendered
nucleosome densities dispersed inside of nuclear envelope (Fig. 6B).
Different from the reconstituted nucleosomes, the nucleosomes in situ
had heterogeneous composition including different DNA sequence,
histone modifications, histone variants, etc. These differences could

Fig. 4 | REST revealed continuous conformational changes of nucleosome lin-
ker DNA in simulated dataset (SIM5). A A series of dynamic nucleosomes gen-
erated by using NMA. B Examples of four training pairs. Top: the input of training
pairs generated from the corresponding ground truth particle with noise (SNR 0.1)
and amissing wedge (±40°) superimposed (low-quality). Bottom: the ground truth
of the training pairs generated from the atomic model (high-quality). C A 3D ren-
dering of the restored tomogram. Each nucleosome could be identified with

different linkerDNAconformation.D Eight representative particles fromA showing
the motion of linker DNA from closed state (cyan) to open state (pink) via middle
transitions (gray).EComparedwith the 3Ddensity improvedbyTopaz-Denoise and
IsoNet (left), REST could effectively clean the noise density and eliminate elonga-
tion and distortion (right). The regionwas from simulated tomogramof particles in
A and rotated around the x-axis by 45°.
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lead to the irregular structure of nucleosome. In the REST-restored
tomogram,we found thatmost of densities presented a clear feature of
classic nucleosomestructure (Fig. 6B,C, pink),while someof themwere
less obvious but still with nucleosome-like features (Fig. 6B, grey).
Interestingly, we found that some densities could be clearly recognized
as nucleosomes with linker DNA, which presented variant conforma-
tions after REST restoration (Fig. 6B, C, cyan).

In addition to the REST restoration, we also applied the averaging-
based STA method to reveal the 3D structure of nucleosomes in the
same tomogramof frog erythrocyte nuclei (Supplementary Fig. 5). The
averaged results also showed a similar structure of classic nucleosome
(Fig. 6D, pink) and the nucleosome with flexible linker DNA (Fig. 6D,
cyan). These results indicated that the REST-restored densities could
render fundamental featureswhichwere compatiblewith the averaged
map and help the structural interpretation of target macro-
biomolecules in vivo.

Restoration by REST facilitated particle picking and orientation
determination of subtomogrms in STA
To free researchers from particle picking work on tomograms, a
number of methods have been proposed15,16. Usually, the template
matchingmethod is the first choice if a template is available. However,
this method suffers from missing wedges and noise; thus, the calcu-
lated CC value between the subtomogram and template is relatively
low. Consequently, false-positive hits and unreliable results often
occur. Since the REST method can be used to achieve both enhanced
SNR and missing wedge compensation, it can also be used as a pre-
processing method in particle picking before template matching. We
tested both simulated data and the corresponding REST-restored data
for template matching. The statistical offset from the ground truth
centre and the CC value between the subtomogramand template were
compared to evaluate the performance of REST restoration on picking
particles.

Fig. 5 | REST could directly reveal versatile characteristics of dynamic
nucleosomes. A The 2D slices of the raw tomogram (left) and REST-restored
tomogram (right). The Fourier transforms are shown in the right corners. B Com-
parison of volumes denoised by the combination of Topaz-Denoise and IsoNet (T-I
density, left) and REST-restored density (right). For clarity, each nucleosome core

particle (cyan) or nucleosome with linker DNA (pink) contains two different views:
the XY-view and the tilted viewwith the elongation (elongated view).C The 3Dmap
of the reconstituted nucleosome with linker DNA by conventional single-particle
reconstruction shows the asymmetric linker DNA.
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As shown in Fig. 7A, the coordinates calculated from the REST
restored tomograms are extremely consistent with the ground truth
centre. In contrast, the coordinates calculated directly from the raw
tomogram present variant deviations, although most centres of par-
ticles are identified right. However, as shown in Fig. 7B, the CC values
calculated from the two tomograms are noticeably different. The CC
value, which reflects the confidence of the particle centre and the
orientation, was significantly improved in the tomogram restored by
REST. This was most likely contributed to the high consistency
between the restored density and the real signal. These results indicate
that using tomograms restored by REST could greatly improve the
reliability of particle picking with a very high CC value (Fig. 7A, B).

To validate the accuracy of the orientation calculated by REST-
restored particles, we used the in situ ribosome data from
pneumococcus28 (EMPIAR-10499) as an example (Fig. 7C). We
manually picked 892 particles and calculated the orientation para-
meters of each REST-restored particle using the averagedmap EMD-
1199928 as reference. The orientation parameters obtained in the
last step were then directly applied to the raw particles for direct
reconstruction (Fig. 7C, purple). The reconstruction is compared

with the filtering results of EMD-11999 (Fig. 7C yellow). We found
that they are highly consistent. These results suggest that the
orientations of REST restored particles, including those particles
in situ, can be accurately calculated, and the parameters can be
directly used to assist STA process (Supplementary Fig. 6). Mean-
while, we also made a reverse evaluation. All of the picked raw
particles were first subjected to a conventional STA process without
an initial orientation assigned. The averaged map (Fig. 7C red) was
then mapped back to the position of each raw particle, which
reflects the ‘ground truth’ of the particle. The mapped back aver-
aged map of each particle is then compared with that of REST-
restored one, which shows that they are highly consistent in terms
of particle shape and orientation (Fig. 7D). These results suggest a
reliable restoration by REST. Meanwhile, it also indicates that the
restoring parameters are accurate which could assist the process of
STA to obtain the right orientations of particles quickly. That is, the
REST-restoration method has the potential to facilitate the STA
process by taking advantage of the REST-restored subtomograms
containing higher SNR and relatively accurate initial orientations
which can be used in the substantial steps (Supplementary Fig. 6).

Fig. 6 | REST could directly improve the interpretation of nucleosome in vivo.
A Tomographic slice of frog erythrocyte nuclei thinned by cryo-FIB. B 3D REST-
restored view of the tomographic data in A. Yellow circle labelled the particle
displayed in C. C The densities of nucleosome which were directly extracted from

REST-restored tomogram. D The different conformation of subtomogram aver-
aged map calculated from the same sample. Nucleosomes without (pink) or with
linker DNA (cyan), and other non-classic nucleosome-like densities (grey) are
coloured differently in B–D.
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Discussion
Cryo-ET has been increasingly used in 3D structural studies of native
biological samples29–31. By reading reconstructed tomograms, bioma-
cromolecule information, including its spatial arrangement, archi-
tecture, or even specific orientation, is expected.However, due to both
the low SNR and missing wedge effect, the interpretation of the
tomogram is largely limited. Sometimes even the identification or

classification of the target biomacromolecule is notoriously difficult.
To overcome this drawback, subtomogram averaging, which is labor-
ious and challenging, hasoften beennecessary. In addition, this kindof
averaging method usually requires disentangling the continuous
architecture from the flexible samples. In contrast, the REST method
presented in this study could be used to significantly enhance the SNR
and reduce resolution anisotropy without averaging. This could

Fig. 7 | REST could facilitate particle picking and assist the determination of
orientation in STA. A Comparison of particle picking accuracy in the raw tomo-
gram and in the REST-restored tomogram. The offsets of each picked particle in the
X-, Y-, and Z-directions to the ground truth either in the raw tomogram or in the
REST-restored tomogram are shown. B Comparison of the CC values calculated
between the picked particles and templates in the raw tomograms and in the REST
restored tomograms, respectively. C REST-restored particles present roughly

accurate orientations. Left: Direct reconstruction result of the 892 raw particles
using the orientation calculated fromREST-restored density, Middle: The averaged
map calculated from the same raw particle set using the traditional STA strategy.
Right: EMD-11999 filtered to 15 Å for comparison. D Top: Raw subtomograms
(contrast enhanced by NAD filtering). Middle: Subtomograms restored by REST.
Bottom: Remapped averaging density map in the position of raw particle corre-
sponding to the orientations determined by STA.

Article https://doi.org/10.1038/s41467-023-38539-w

Nature Communications |         (2023) 14:2937 9



greatly help to reveal the individual characteristics of each bioma-
cromolecule. The rendered architecture also produces a clean density
that is sufficient enough for us to distinguish fundamental features,
thus making the (sub)tomogram directly interpretable.

It is well known that deep learning relies heavily on training data-
sets. Thus, using real data with the ground truth for training is the best
choice to ensure the network performance. However, the raw tomo-
gram suffers from noise and an irreversible missing wedge, making the
acquisition of the ground truth very challenging. STA provides an
alternative approach to obtain the ground truth of the raw data. This
approach, Strategy 1, could be used to consequently establish a map-
ping relationship between the raw data and an averaged map for
restoration. Nevertheless, as most macromolecules are flexible, the
averaged structures present insufficient features, and thus, a valid
mapping relationship is rarely established. To address this situation, in
this study, we found an alternative strategy, Strategy 2, that conversely
degrades high-quality data to simulate low-quality data that are close to
the raw data and establish a relationship between them. As long as the
neural network can learn the mapping relationship well, the model can
be migrated into raw data to generate the corresponding high-quality
data. Apparently, the most challenging issue is how to make the simu-
lated data closely related to the raw data. We found that the analogous
contrast and elongation are the keys to simulating subtomograms in
cryo-ET. Interestingly, introducing the conformational changes in
training datasetswould enable REST learnmore knowledgeofflexibility
and greatly improve the restoration ability. This step could also make
the simulated data look closer to real data and greatly help the identi-
fication of polymorphic structures of macromolecules, especially
in vivo. To our experience, it is worth noting that RESTmethod canonly
reliably capture the analogous variability presenting in the training data
generated by NMA or other structure dynamics simulation methods. It
would not be able to capture drastic changes, which are likely not well
learned and transferred by the current network.

It is alsoworth noting that REST is based on the U-Net framework,
which contains complex layers (Supplementary Fig. 7A). During the
restoration, REST goes through a process from downsampling for
extracting the features to upsampling for recovering the information,
which could be considered as a nested non-linear filter that transited
the input to the output based on the established training model
(Supplementary Fig. 7B, C). Therefore, the restoring process is com-
pletely different from the matching or replacement process which is
usually subject to a searching or scoring calculation. InREST, like in the
other deep learning strategies, after a model has been trained with
limited number of training pairs, the knowledge canbe transferred and
applied to other similar objects.

In most segmentation methods, e.g., EMAN32, the features are
manually or automatically labelled in 2D slices. In theRESTmethod, the
receptive field is boarded to 3D. The perceptron synchronously glob-
ally to locally learns the relationship of the two maps in 3D; thus, the
model could eliminate the artefact found in 3D. Moreover, most of the
methods for segmentation are highly sensitive to the SNR. Interest-
ingly, in REST, the preprocessing of the input dataset is not needed, i.e.,
the raw tomograms from WBP could be directly used for restoration.

Attributed to the improved visualization of the 3D densities, REST
could be used in the following situations: 1) when the structure of the
target molecule is known (either from PDB, SPA, STA or Alpha Fold
prediction), REST could be used to directly achieve a significantly
improved visualization of target macromolecules and/or identify the
contextual information (conformation, orientation, spatial distribu-
tion, etc.); 2) if the training pair datasets of target molecules could be
established by either STA (strategy 1), or using known structures from
PDB (strategy 2), REST could be used to extend the dataset by showing
where the target particles locate in the (other) tomogram(s), which
could greatly facilitate the particle picking; 3) when there is a
requirement of analyzing the heterogeneity of the target particles or

structural dynamics, REST could be used to disentangle the data het-
erogeneity and reveal continuous conformational changes of the spe-
cimen, which might not be resolved by averaged-based methods; 4)
REST could be applied to other cryo-ET tasks such as assisting in the
determination of orientation in STA.

Compared to the sub-tomogram averaging (STA), REST presents
several noticeable benefits: 1) Once the model of the target was
established, it could be used for nearly all the tomograms which con-
tain the target particle; 2) Various particle states, even the con-
tinuously changing conformations, could be directly revealed without
the classification process; 3) The restored particles by REST could be
displayed with accurate conformation, orientation, and spatial dis-
tribution without the remapping process.

As mentioned above, REST can be used to reveal each particle
state without the need for time-consuming STA. However, it is worth
noting that REST cannot retain the high-resolution information from
raw data. This is because the process of training, which is essentially a
regression problem, needs to reduce the error between the ground
truth and restored volume. In practice, the low-frequency information
accounts for the majority of the signal, whereas the high-frequency
signal is under the noise and hardly to be labelled accurately. Incorrect
resultswill backproject andupdate theweight in network. This process
leads the loss of high-frequency information in order to converge the
loss function. Nevertheless, in many situations, the restored density is
sufficient for the distinction of the shape and other fundamental fea-
tures, as shown in the above examples.

In addition to the loss of high-frequency information, there are
also potential limitations of themethod: 1) REST is only able to reliably
restore known objects because the establishment of training pairs
required a persuasive ground truth whose structuremust be obtained
in prior; 2) REST mainly shows restoring effect toward its trained tar-
get. For untrained structures or non-target signals in the tomogram,
the restoration would not be accurate; 3) REST restoration would
generate some discontinuous densities which could be removed by
simply a command like “hiding dust” inmost cases, but users should be
aware and look at the raw data when interpreting resulting structures
in REST-restored tomograms.

If there are two or more targets of interest, e.g., ribosome and
HBV viral capsid (~3.8MDa and ~30 nm in diameter), to be restored,
one could use REST to establish a separate model for each target,
restore each of the targets respectively, and combine them toge-
ther (Supplementary Fig. 8). When the HBV capsid structure33

(EMD-20670) was used as the training model, a ball-like density
very similar to the HBV capsid structure can be well restored (blue
arrow in Supplementary Fig. 8A and pink density in Supplementary
Fig. 8C), while the other restored densities appear mostly junk-like
and discontinuous (Supplementary Fig. 8A, yellow arrow) which
can be removed by a ‘hide dust’ operation. Vice versa, when the
ribosome structure34 (PDB: 4V8M) was used as the training model,
a lot of ribosome-like densities (cyan, Supplementary Fig. 8C) can
be seen in the REST restored tomogram. The separately restored
tomograms can then be combined to get the restored densities
with two or more target structures (Supplementary Fig. 8B). Fur-
ther study, for example, establishing a multi-targets oriented
network which could be used to train multiple samples simulta-
neously, would be necessary to better deal with the situation.

In conclusion, REST presented in this study provides a way to
enable the direct observation of fundamental architectures and con-
formational changes for functional interpretation without the labor-
ious and challenging averaging process. Thus, it could be of broad
utility to the cryo-ET community by the function of restoring a clear
signal like picking particles in a noisy background, segmenting the
target feature, identifying dynamic or flexible architectures, obtaining
the densitywithout elongation as the initial reference for STA and even
guiding the particles to be classified and aligned for STA.
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Methods
Implementation specifics of the REST method
In strategy 1, to process the ribosome data used in this study, the STA
steps were followed according to the protocols in Relion35. Five
tomograms in EMPAIR-10045 were used to perform STA while 3006
particles were used for averaging. The 2578 averaged subtomograms
were first extracted using Relion36 and then used as the input to the
training data. According to alignment parameters in star files,
e2proc3d.py37 was used to rotate and shift the averaged map to gen-
erate the ground truth. By combining the raw particles and the aver-
aged maps, which were reset to the corresponding orientation, the
training pairs were obtained.

In strategy 2, NMA was implemented in the target object.
According to the prior of the target model, a series of atomic models
were generated by NMA in HEMNMA-3D24, in which possible con-
formations were selected. The atomic model was converted to the EM
density using e2pdb2mrc.py37, and the density was then rotated and
shifted in the 3D space using random Euler angles and random x, y, z
shifts as the ground truth. The simulated data and training pairs were
then generated.

Simulating datasets based on experimental parameters
To generate the simulated dataset for each subtomogram or tomo-
gram, the following steps were performed:
a. Rotate the obtained averaged map or the density from the atom

model at random Euler angles, with random x, y, and z displace-
ments (e2proc3d.py). For example, by using the density converted
from the atom model, 3000 subtomograms (64 voxels, 4.4 ang-
stroms) were generated.

b. Project the ground truth according to the corresponding collec-
tion conditions (e.g., ±60°, 2°) by using the relion_project toolbox.

c. Perform CTF modulation on each projection. Gaussian noise is
added by using xmipp_phantom_simulate_microscope, and then
the CTF phase is inverted.

d. Reconstruct the tilt series using relion_reconstruct to obtain the
simulated data with missing wedges and noise.

Preparation of test samples and cryo-vitrification
For the recombinant nucleosomes, the histone octamers were recon-
stituted as previously described38. Briefly, the H2A, H2B, H3 and H4
were mixed at the equimolar amounts in unfolding buffer (7M gua-
nidinium HCl, 20mM Tris HCl, pH7.5, 5mM 2-mercaptoethanol), and
then dialyzed in refolding buffer (2M NaCl, 10mM Tris HCl, pH 7.5,
1mMEDTA, 5mM2-mercaptoethanol). The resulting histone octamers
were purified through a size exclusion chromatography column
(Superdex 200, GE Healthcare), and the peak fractions were collected
and stored. We used 147bp and 177 bp 601 DNA to reconstitute
nucleosomewhichwasperformed as described. Thenwemixed 147 bp
and 177 bp nucleosome core particles in an 1:1 molar ratio for freezing.
For cryo-EM analysis, 3 µl of sample was applied to Quantifoil R2/1 Au
300 mesh grids which were glow-discharged for 90 sec, then the
samples were blotted and vitrificated by plunging into liquid ethane
with a Vitrobot (FEI) operated at 4 °C and 100% humidity.

The frog erythrocyte nuclei were isolated from an erythrocyte
suspension of Rana catesbiana (gift from Qin lab, Research centre for
eco-environmental sciences). Erythrocytes were pelleted by cen-
trifugation at 800g and suspended in 110mM PBS buffer (diluted by
ddH2O). For lysis of the cytoplasmic membrane, erythrocytes were
resuspended in 110mM PBS buffer, containing 0.5% Nonidet P-40. The
resuspensionwas then incubated at room temperature for 5min. Nuclei
were collected at 1000g and washed twice and resuspended in 35mM
PBS buffer waiting for freezing. The frog erythrocyte nuclei were also
chemically fixed by 0.5% glutaraldehyde and 1% paraformaldehyde. The
nuclei were further cryo-protected by glycerol at a final concentration
of 3%. Aliquots of 1.5μl sample (~ 700 cells) were applied onto glow-

discharged Quantifoil R2/1 300mesh holey carbon grids, incubated for
10 s at 37 °C and 20% humidity, blotted for 8 s with a filter paper and
then plunged into liquid ethane using an FEI EMGP (Thermo Fisher Sci).

Cryo-FIB milling
Cryo-FIB milling were performed using Helios NanoLab 600i Dual
Beam SEM (FEI, Netherlands) with a field emission electron source,
gallium ion source and the in-lens electron detector. The frozen grids
of nuclei were transferred with the cryo-transfer shuttle into the SEM
chamber by using Quorum PP3000T cryo-transfer system (Quorum
Technologies, East Sussex, UK) under −180 °C.

During the cryo-FIBmilling process, themilling angle between the
FIB and the specimen surface was set to 5–10°. The milling was per-
formed parallel from two sides to produce vitrified cell lamella39. The
accelerating voltage of the ion beam was kept at 30 kV, and the ion
currents were in the range from 0.43 nA to 40 pA. The rough milling
utilized a strong ion beam current of 0.43 nA and the final fine milling
was operated with a small ion beam current of 40 pA. The thickness of
the residual thin lamella with a good quality was <150 nm.

Datasets
Five simulated tomogram datasets and six real tomograms were used
to evaluate the performance of REST. We produced four simulated
sub-tomograms datasets (SIM1-4) of containing one nucleosome par-
ticle generated from the PDB:3AFA and one simulated tomogram
(SIM5) containing 64 nucleosome particles generated from the atom
model of 177 bp nucleosome (see above for details). Real tomograms
datasets were either downloaded from the EMPIAR (EMPIAR-10045,
the purified ribosome dataset, EM1; EMPIAR-10499, ribosome dataset
in situ from pneumococcus, EM6) or collected by ourselves (tomo-
gram of the 147 bp recombinant nucleosome, EM2; tomogram of the
mixed recombinant nucleosome core particle and nucleosomes with
linker DNA, EM3; tomogram of the lamella of frog erythrocyte nuclei
thinned by cryo-FIB, EM4, and mixed samples including ribosome and
HBV particles, EM5). All images were recorded using SerialEM40. The
detailed information of these datasets is summarized in Supplemen-
tary Table 2. The detailed information of training dataset used for
model training is summarized in Supplementary Table 3.

Detailed implementation in real nucleosome datasets
NMA of nucleosomes. For the NMA data processing of nucleosomes
in this study, a series of atomic models were generated from nucleo-
somes with 147 bp DNA (PDB: 3AFA) by using a linear relationship
between the amplitudes of normalmodes 7 and 13. A gradual transition
between the two ends, which represented a continuum of nucleosome
conformations, was simulated. Equal random amplitudes uniformly
distributed in the range [−250, 250] were used for the two normal
modes 7 and 13. To visualize obvious continuous conformational
changes, nucleosomes with long linker DNA were also studied. The
atomic model of the 177 bp nucleosome was generated from PDB
(7DBP) by removing the chain ofH1. The followingNMAwasperformed
in a similar process as in the study of nucleosomes with 147 bp DNA.

Training model for restoration
To restore the tomograms of real nucleosome data, we used the
simulated data that mimicked the real collection conditions to
train themodel. The SNR of the simulated data was also ensured to
be close to the real data. Specifically, the training data were
deposited into cubic subvolumes of 64 voxels at a pixel spacing of
4.44 Å. The training pairs were normalized before training. The
other steps are described above.

Tomogram reconstruction
For the recombinant nucleosome datasets, the tilt movies were pro-
cessed inWarp41, and the generated stacks were aligned using IMOD42.
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The reconstructions were generated from Warp using a pixel spacing
of 4.44 Å, which was as same as that in the training dataset.

Restoring the real tomograms
The tomograms were normalized before restoration. After training,
the model was used to restore the tomogram reconstructed in
Warp. The IsoNet strategy of predictionwas implemented and used for
restoration. We split the entire tomogram into small subvolumes in 64
voxels to predict them separately. Then, output 3D chunks were
combined to produce the final output.

Single-particle analysis of the mixed nucleosomes
We collected and processed the same mixed samples with the single-
particle method. After 2D classification and 3D classification with
Relion, we selected one class which had the feature of nucleosome
with DNA. After refinement in Relion, a 3.7 Å map was obtained as the
reference for REST-restored density.

Subtomogram averaging of nucleosomes in frog erythrocyte
nuclei
After the 3D tomogram reconstruction, an atomic structure of
nucleosome core particle (PDB: 3AFA) was filtered to 60Å and used as
the template todetermine theposition of presumptive nucleosomes in
the erythrocyte nuclei by template-matching inWarp. The determined
nucleosome densities within the tomograms were extracted in Warp
with a box size of 36 voxels (194 Å). These volumes were then pro-
jected into 2D slices (36 slices) and sorted into different classes
through 2D classification in Relion. Particles in the good looking 2D
classes were then subject to multi-round 3D classification in Relion.
After the iterative 3D classification, classes with clear nucleosome
features were selected and displayed (Fig. 6D and Supplementary
Fig. 5). The particles in the class with clear feature of nucleosome with
linker DNAwere selected and subjected to further 3D classification. Six
classes were finally achieved which showed the difference of linker
DNA (Fig. 6D and Supplementary Fig. 5).

Template matching in simulated tomograms
Since the ground truth of the real coordinates in the simulated
tomograms has been already known, the calculated coordinate
can be obtained through template matching in Dynamo43. Thus,
by subtracting the real coordinates from the calculated coordi-
nates in the X-, Y- and Z- directions, the shift of the corresponding
particle coordinates could also be determined. At the same time,
each particle returned a CC value during the calculation, and
further comparison was made between the raw data and the
result using REST.

The 3D visualization
IMOD was used to visualize the 2D slices, and UCSF Chimaera44 and
UCSF ChimeraX45 were used to visualize the 3D tomograms and sub-
volumes. Schematics were drawn using Adobe Illustrator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. Datasets used in this study, including raw
tomograms, restored tomogram and the trained model are deposited
into the publicly available repository Figshare [https://doi.org/10.
6084/m9.figshare.22591465.v1]. Structural for training and compar-
isons were performed with 147 bp human nucleosome structure (PDB
accession 3AFA), 177 bp human nucleosome structure (PDB accession
7DBP), Trypanosoma brucei ribosome (PDB accession 4V8M), M.

pneumoniae 70 S ribosome (EMDB accession EMD-11999 (ref. 28.)) and
HBV particle (EMDB accession EMD-20670 (ref. 33.)).

Code availability
The code and tutorial are available at the GitHub repository [https://
github.com/Zhang-hn1125/REST].
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