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Identification of a covert evolutionary
pathway between two protein folds

Devlina Chakravarty1, Shwetha Sreenivasan2, Liskin Swint-Kruse 2 &
Lauren L. Porter 1,3

Although homologous protein sequences are expected to adopt similar
structures, some amino acid substitutions can interconvert α-helices and
β-sheets. Such fold switching may have occurred over evolutionary history,
but supporting evidence has been limited by the: (1) abundance and diversity
of sequenced genes, (2) quantity of experimentally determined protein
structures, and (3) assumptions underlying the statistical methods used to
infer homology. Here, we overcome these barriers by applying multiple sta-
tistical methods to a family of ~600,000 bacterial response regulator proteins.
We find that their homologous DNA-binding subunits assume divergent
structures: helix-turn-helix versus α-helix + β-sheet (winged helix). Phyloge-
netic analyses, ancestral sequence reconstruction, and AlphaFold2 models
indicate that amino acid substitutions facilitated a switch from helix-turn-helix
intowinged helix. This structural transformation likely expandedDNA-binding
specificity. Our approach uncovers an evolutionary pathway between two
protein folds and provides a methodology to identify secondary structure
switching in other protein families.

Life is sustained by the chemical interactions and catalytic reactions of
hundreds of millions of folded proteins. The structures and functions
of these proteins are determined by their amino acid sequences1. As
such, sequence changes have various functional effects, ranging from
none to intermediate impairment to complete loss2,3, with biological
outcomes ranging from no observable effect to debilitating disease4–6.
While many historical studies indicate that amino acid variation can
locally orgloballyunfoldprotein structure7,8, such changes typically do
not remodel secondary structure, such as converting α-helices to β-
sheets. These findings support the well-established observation that
proteins with similar sequences have similar folds and execute similar
functions. In turn, these similarities are used to classify protein folds
into families9–11 and underlie state-of-the-art protein structure predic-
tion methods12–14.

Nevertheless, recent work shows that a subset of amino acid
changes can switch secondary structure. This process has been
called “evolutionary metamorphosis15” and “evolved fold switching16”.

For instance, the most frequent non-Hodgkin-lymphoma-associated
mutation observed in human mycocyte enhancer factor 2 (MEF2)
switches a C-terminal α-helix to a β-strand, likely impeding MEF2
function17. Furthermore, numerous single mutations deactivate the
cyanobacterial circadian clock by preventing a transformation that is
critical for its normal function – the switch of its C-terminal subdomain
from a βααβ fold to anαββα fold18. Finally, for an engineered proteinG
variant, a single mutation or incorporation into a larger protein
domain can switch the 3-α-helix bundle that binds human serum
albumin toother foldswith altered functions, such as anα/β-grasp fold
that binds immunoglobulins or an α/β-plait ribosomal protein
domain19–23.

These examples suggest that evolved fold switching of secondary
structures, via stepwise amino acid changes, may be one mechanism
by which new protein folds originate in nature. If so, this evolutionary
mechanism should be identifiable by searching for homologous pro-
tein sequences with different experimentally determined structures
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(Fig. 1a). Similar approaches have successfully identified evolutionary
relationships between protein fold families with conserved secondary
structures but different tertiary arrangements24,25.

However, observations of evolved secondary structure inter-
conversion have been impeded by several technical barriers: (1) the
limited abundance and diversity of sequenced genes, (2) the limited
quantity of experimentally determined protein structures, and (3) the
assumptions underlying the statistical methods used to infer homol-
ogy. Indeed, all three limitations impacted the pioneering work of
Cordes and colleagues, who identified a likely evolutionary relation-
ship between the two distinctly folded transcription factors, P22 Cro
and λ Cro26–28. Structurally, these two proteins share a 3-helical N-
terminal core but have divergent C-terminal regions: P22 Cro’s
C-terminal region folds into two α-helices, whereas λ Cro’s C-terminal
assumes a β-hairpin. Although these differences could have arisen
from evolved fold-switching, the data available were too limited to be
conclusive: at the time of their study, the protein family comprised
only 55 sequences and 5 solved structures (barriers (1) and (2)). The

authors also proposed the existence of barrier (3): since whole-
database PSI-BLAST searches did not identify P22 Cro and λ Cro as
homologous, the authors concluded that27, “profile-based methods
might be intrinsically ill suited…when wholesale structural change has
occurred, since sequence conservation patterns will change in
such a case.”

Since the aforementioned study was performed nearly 20 years
ago, the number of available sequences in the RefSeq29 database has
increased by three orders of magnitude, and the number of experi-
mentally determined structures deposited in the Protein Data Bank
(PDB) has increased by a factor of 730,31. Thus, we hypothesized that
sufficient protein sequence and structure information are now avail-
able to detect stepwise amino acid changes that lead to evolved fold
switching.

To that end, we searched for evidence among a large family of
bacterial response regulators comprising ~600,000 sequences and 76
unique, experimentally determined structures. Each homolog in this
family constitutes one-half of a bacterial “two-component system”; the
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Fig. 1 | A combined sequence-structure search indicates that mutations may
have switched some secondary structures between tetrahelical helix-turn-
helix (HTH4) andwingedhelix (wH) proteins. aQuerying the full sequence of FixJ
(HTH4) against the PDB with one round of BLAST yielded a significant match with
full-length KdpE (wH). Notably, in two regions, experimentally determined α-
helices aligned with β-sheets. b A subsequent PSI-BLAST search confirmed a likely
evolutionary relationship between the full-length FixJ and KdpE sequences; full-
length structures are shown with conserved NTDs in gray, linkers in orange, HTH4

CTD in black, and wH CTD in yellow. The resulting PSI-BLAST alignment includes

the NTD and CTD (starting where KdpE sequence is highlighted in yellow); bold
amino acids are identical (black) or similar (gray), regions were α-helices align with
β-strands are pink; gaps are denoted ‘-‘. c Regions of three-dimensional structure
(left) and secondary structure (right) where PSI-BLAST aligns α-helices in the HTH4

fold with sequences of β-strand in the wH fold (pink). Gray regions indicate con-
served secondary and tertiary structure; beige regions in the wH correspond to its
additional amino acids in the alignment, indicated as open spaces in the aligned
secondary structure of FixJ (right). Source data are provided as a Source Data file.
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other half is a cognate sensor protein32. These protein pairs work
together to allow bacteria to respond to their environments through
chemotaxis33, antibiotic resistance34, oxygen sensing35, and more36. To
carry out its function, each sensor protein has an extracellular domain
that binds a triggering ligand, thereby activating the sensor’s histidine
kinase domain to phosphorylate its cognate response regulator at a
conserved aspartate in the N-terminal receiver domain. In turn, this
modification causes the response regulator’s C-terminal “output”
domain to mount the organism’s response, such as altered transcrip-
tion regulation37.

Structurally, the response regulator proteins share a common
N-terminal domain architecture, whereas structural differences among
their C-terminal domains have been used to divide them into
subfamilies37,38. Nearly 50% of the C-terminal domains fold into either
helix-turn-helix (HTH) or winged helix (wH) DNA-binding domains37.
(This ~50% corresponds to the ~600,000 sequencesmentioned above).
Both C-terminal domain folds comprise a core 3-helix bundle flanked
byeither (1) anN-terminal helical linker and a 4th C-terminal helix (e.g., a
tetrahelical HTH, or HTH4) or (2) a four-stranded N-terminal β-sheet
(here called a linker for ease of comparison) and a C-terminal β-hairpin
(or “wing”, Fig. 1b and c). On average, response regulators with HTH4

output domains are ~30 residues shorter than their wH counterparts.
Common evolutionary descent of the response regulator HTH4

and wH domains was suggested previously39. However, an evolu-
tionarymechanism could not be detected, againmost likely due to the
paucity of sequence and structure information available at the time of
study. Thus, it has been unclear whether the differences in CTD sec-
ondary structures resulted from sequence insertions, complete or
partial domain recombination, stepwise amino acid changes (e.g.,
evolved fold switching), or some combination of the three.

In this work, we report strong statistical support for evolved fold
switching of C-terminal secondary structure in HTH4 and wH domains
and propose a putative evolutionary pathway between the two folds.
First, we showed that the C-terminal α-helix of the HTH4 shares an
evolutionary relationshipwith theβ-sheetwing of thewH (Figs. 1 and 2).
This relationship was then reinforced through multiple statistical ana-
lyses of phylogenetic relationships, ancestral sequence reconstruction
with AlphaFold2 models, and functional analyses. All lines of evidence
consistently point to an evolutionary trajectory by which an α-helix
transformed into a β-sheet through stepwise mutation(s). Our results
suggest how stepwise mutations can switch protein secondary struc-
ture and provide methodology to identify evolved fold switching in
other protein families.

Results
Apparent homology between bacterial response regulatorswith
HTH4 and wH CTDs
We previously used protein BLAST40 to search the PDB for pairs of
protein sequences with high sequence identity (≥70% though not
identical) but divergent, experimentally determined secondary
structures41 (Fig. 1a). This study supports the hypothesis that homo-
logous proteins can switch folds through stepwisemutation but could
not provide a detailed description of how the structural transitions
occurred. Indeed of the fold-switching proteins reported, NusG had
the largest sequence set, with ~16,000 non-redundant sequences42;
however, these sequences are unreliably annotated42 and the fold
transition/s is/are difficult to identify43, confounding phylogenetic
analyses that could potentially reveal the fold-switch transition.

Here, we reasoned that searching families with larger numbers of
sequences would enhance the statistics underlying homology infer-
ence, boost fold annotation accuracy, and enable the statistically sig-
nificant phylogenetic analyses required to identify homologous but
distinctly folded proteins. Larger families may also afford the ability to
identify evolved fold switching pathways among sequences with ≤70%
identity. To that end, we used all ~150,000 sequences in the PDB to

query all other sequences with divergent secondary structures
(“Methods” section) and identified sequence matches with e-values of
1e-04 or lower. Lower e-values indicate that a match is increasingly
unlikely to arise by chance, allowing homology to be inferred44. Our
threshold of 1e-04 is conservative; 5e-02 is often used to infer
homology40 and some sequences with even higher e-values are also
homologous40.

Among the pairs of potential fold-switching homologs in the PDB,
we identified a match between the full-length structures of FixJ from
Bradyrhizobium japonicum (query) and KdpE from Escherichia coli,
with an e-value of 1e-07. Importantly, FixJPDB and KdpEPDB are defined
as having different folds by several independent annotators, including
Pfam, ECOD, and SCOP (“Methods” section). Both FixJPDB and KdpEPDB
are response regulators of bacterial two-component systems. These
proteins are highly abundant within and among myriad bacterial spe-
cies. Sequences for >1,000,000 diverse genes are present in the nr
database, which is nearly 2 orders of magnitude larger than the NusG
family mentioned before.

Structurally, the N-terminal domains (NTDs) of FixJPDB and
KdpEPDB showedhigh sequence and structural similarities (Fig. 1b, left),
whereas their linkers and DNA-binding C-terminal domains (CTDs)
showed modest sequence similarities and striking differences in sec-
ondary structure: FixJPDB’sCTDcomprises a tetrahelical helix-turn-helix
(HTH4) architecture, whereas KdpEPDB’s CTD comprises a winged helix
(wH, Fig. 1). The KdpEPDB CTD is also 15 aa longer than that of FixJPDB.
Nonetheless, FixJ’s helical linker aligned partially with the four β-sheets
ofKdpE’sCTD. (For easeof comparison,we call both regions, “linkers”.)
Furthermore, the C-terminal α-helix of FixJPDB aligns with the
C-terminal β-hairpin of KdpEPDB’s CTD, also known as its “wing”.

In contrast to queries with the full-length proteins, BLAST and PSI-
BLAST searches of the PDB using the sequences of isolated CTDs from
either FixJPDB or KdpEPDB as queries only identified sequences from the
same fold families (HTH4 or wH). Sequences encoding the alternative
structure were not identified.

Two possibilities could explain these conflicting results. First, in
the full-length sequences, the strong similarities of the NTD could
erroneously give rise to the CTD alignment through “homologous
overextension”, in which flanking, non-homologous sequences are
erroneously included in a local sequence alignment45. In this case, the
distinctly folded CTDs would not share a common ancestor. Instead,
genes encoding the separate CTDs likely recombined with genes
encoding the NTDs of response regulators. Consistent with this pos-
sibility, the alignment coverage after our initial BLAST search included
only 52% of the CTD sequence. Alternatively, the HTH4 and wH
domains could share a common ancestor that is difficult to robustly
infer from the isolated, divergent CTD sequences. In this case,
searching with complete sequences (NTD+CTD) produced statisti-
cally significant alignments that correctly suggested an evolutionary
relationship between alternatively folded CTDs. Indeed, the second
phenomenonwasproposed forboth theCroproteins26–28 andbacterial
NusG transcription factors46.

To further discriminate whether our initial FixJPDB/KdpEPDB
HTH4/wHmatch indicated a true evolutionary relationshipor resulted
from faulty homologous overextension, we next used full-length
FixJPDB to query the PDB with 3 rounds of PSI-BLAST40, an iterative
algorithm that identifies conservation patterns among homologous
protein sequences. Unlike the faster BLAST algorithm (which identi-
fies matches using pairwise identities between the query sequence
and entries in a sequence database), PSI-BLAST searches for sequen-
ces that match conservation patterns within a set of homologous
sequences used to generate a position-specific scoring matrix. This
matrix stores scores for substituting one amino acid for another in
each sequence position and is updated after each PSI-BLAST iteration
if new sequences are hit in the search. As such, PSI-BLAST identifies
hidden conservation patterns characteristic to a given protein family
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that cannot be detected by BLAST. Indeed, PSI-BLAST identified
stronger conservation patterns between sequences encoding HTH4

and wH folds. This alignment approach also shifted the alignment
registers of the CTDs, so that 97% of the FixJPDB sequence alignedwith
KdpEPDB with an e-value of 6 × 10−39 (Fig. 1b, right). This result sup-
ports the hypothesis that the HTH4 and wH folds of the FixJ and KdpE
CTDs are distant homologs rather than alignment artifacts.

Furthermore, for 11 of the top 20 PSI-BLAST matches from this
search, the CTDs assumed the same wH fold as KdpEPDB, whereas the
other 9 matches assumed the same HTH fold as the FixJPDB query
(Supplementary Table 1). A reciprocal, three-round PSI-BLAST search
using the full-length KdpEPDB sequence as query aligned 90% of this
protein with FixJPDB, with an e-value of 10−29. Notably, sequences of
isolated DNA-binding domains with HTH folds were matched with the
CTDofKdpEPDB (wH), and sequences of isolatedDNA-bindingdomains
withwH foldswerematchedwith the sequence of FixJPDB’s CTD (HTH4,
Supplementary Table 2). Together, these results indicate that: (1) HTH4

and wH domains share a common ancestor39 and (2) the use of full-
length sequences in our analyses, rather than isolated domains, is both
legitimate and necessary to identify the relationship. Thus, all sub-
sequent searches used full-length sequences as queries, unless
otherwise noted.

Further examination of the aligned FixJPDB HTH4 and KdpEPDB wH
folds revealed regions of structural similarity and dissimilarity: both
folds share a conserved trihelical core39 (Fig. 1c). By contrast, striking
regions of dissimilarity are evident between (1) FixJPDB’s α-helical inter-
domain linker and KdpE’s corresponding quadruple-stranded β-sheet;
long gaps in this alignment suggest that KdpEPDB’s linker region was
extended through an insertion, and (2) FixJPDB’s C-terminal helix aligned
with KdpEPDB’s C-terminal β-hairpin “wing” (Fig. 1c); the ungapped
alignment of this region suggests that one of these two secondary
structures may have evolved into the other through stepwisemutation.

Alignments between response regulator sequences with HTH4

and wH folds indicate evolved fold switching
To further test whether stepwise mutations could have engendered a
switch from α-helices to β-sheets (or vice versa), we next used an
alternative sequence search algorithm, jackhmmer, to assess the
potential evolutionary relationship between response regulators with
HTH4 and wH output domains. Although more computationally
intensive, iterative Hidden Markov Model (HMM)-based searches are
typically more sensitive than PSI-BLAST47 and may better avoid
homologous overextension45. To that end, sequences for 23 non-
redundant, full-length response regulators with HTH4 (11) and wH (12)
domains were identified from the PDB using the ECOD database.

In this round of analysis, our goal was to determine whether
sequences of all the experimentally determined full-length response
regulators with HTH4 and wH folds could be matched to sequences
encoding the alternative fold (i.e., HTH4 to wH matches, and vice
versa). Using jackhmmer47, each full-length sequence was used to
query all sequences from the PDB (“Methods” section). As expected,
the pairwise sequence identities of 23 full-length response regulators
clustered into two subfamilies based on their CTD architectures
(HTH4 and wH, Fig. 2a), indicating that CTDs in the same fold families
have closer evolutionary relationships than those in different fold
families (Supplementary Fig. 1). Nonetheless, the C-terminal helices
of the HTH4 domains consistently aligned with a region in the
C-terminal β-hairpin wings of wH fold domains (Fig. 2b). Further-
more, the α-helical interdomain linkers of the HTH4 consistently
aligned with the four N-terminal β-strands of the wH domain. In
further support of the cross-fold relationship, another 19/34 CTD-
only structures were identified by the full-length queries, again with
cross-fold recognition.

The possible relationship betweenHTH4 andwH folds was further
supported by assessing the e-value distributions from alignments

between the full-length proteins with (1) homologs from their own
subfamily and (2) homologs from the alternatively folded subfamily
(Fig. 2c, gray/yellow backgrounds, respectively). Median e-values of
the alignments between the sequence of a given experimentally
determined fold (HTH/wH) and the set of sequences with the alter-
native fold (wH/HTH) ranged from e-33 to e-43, suggesting significant
evolutionary relationships across all members of the two subfamilies
(Fig. 2c). As expected, themedian e-values among sequences of similar
folds ranged from e-54 to e-72 (Supplementary Fig. 2a), indicating
closer evolutionary relationships.

Statistically significant alignments were also identified between
full-length query sequences and isolatedCTDswith the alternative fold
in 22/23 full-length response regulators. Median e-values of these
alignments ranged from e-04 to e-09, whereas median e-values of
aligned sequences from the same fold family ranged from e-17 to e-30
(Supplementary Fig. 2b). These domain-specific alignments further
support the evolutionary relationship betweenHTH4 andwHdomains.

Thus, the jackhammer results (Fig. 2) are consistent with the PSI-
BLAST alignment (Fig. 1b), and suggest two types of evolutionary
events: (1) The linker may have been extended/shortened through an
insertion/deletion; and (2) stepwise mutation may have induced a
structural interconversion between the C-terminal α-helix of the HTH4

and the C-terminal β-sheet of the wH.

Phylogenetic analyses of HTH4 and wH proteins
Although these structure-based sequence searches were consistent
with evolved fold switching in the C-terminal HTH4 and wH domains,
the mechanism of secondary structure conversion was obscured by
the alternative locations of sequences inserted into the longer wH
homologs. PSI-BLAST fully aligned the C-terminal α-helix of the HTH4

with the β-hairpin of the wH (Fig. 1b), suggesting a full secondary
structure conversion. By contrast, jackhmmer aligned the C-terminal
α-helix of the HTH4 with only the first β-strand of the wH (Fig. 2b),
suggesting a partial conversion along with an insertion. To dis-
criminate between these options, we next collected a large set of
response regulator sequences with HTH4 and wH output domains. To
that end, the FixJPDB and KdpEPDB sequences were queried against the
nr database using protein BLAST to identify 581,791 putative homo-
logs. Given the size of this sequence set, we developed several stra-
tegies for curating and sampling the data (“Methods” section) so that
the final subset of sequences would be small enough for various phy-
logenetic analyses but large enough to adequately represent the large
family of response regulators.

To that end, the 581,791 sequenceswere grouped into 367 clusters
using a greedy clustering algorithm and filtered to 85% redundancy for
a final number of 23,791 sequences. Clusters were then compared to
identify 13,006 FixJ-like sequences and 10,785 KdpE-like sequences.
Sequences within each group readily aligned; however, the two groups
had overall low sequence identities with each other. Several approa-
ches were attempted to align these groups. One attempt identified a
“transitive homology pathway” of 7 sequences connectingHTH4 towH
sequences (Supplementary Table 3, “Methods” section) that was used
tomatch the FixJ-like (HTH4) andKdpE-like (wH) alignments. However,
when a phylogenetic tree was constructed in IQ-Tree for the combined
23,791 sequences, its quality was poor (i.e., 140 gaps/360 positions in
the KdpEPDB sequence) and failed to converge after 3 rounds of
bootstrapping.

Nevertheless, the transitive homology path suggested the exis-
tence of additional sequences thatmight bridge the HTH4 andwH fold
families. Thus, we searched the original sequence set with an alter-
native approach. First, we categorized clusterswith ≥100 sequences by
their CTD architectures to identify 74,741/387,276 sequences with
HTH4/wH output domains. These sequence sets were used to con-
struct BLAST libraries. Next, the sequences with HTH4 output domains
were filtered to 50% redundancy, and the remaining 4520 sequences
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were queried against thewH librarywith protein BLAST. If amatchwas
statistically significant, we searched NCBI sequence records of both
sequences for CTD structure annotations, which are typically inferred
from Hidden Markov Models. These results were used to distinguish
BLAST matches between different fold families (sequence pairs with 1
annotatedHTH4 and 1 annotatedwH) frommatches between the same
fold family. Sequence pairs with annotations from different fold
families were retained; this process identified 3136 matches between
664 HTH4 and 2541 wH proteins with mean/median e-values of

4 × 10−10/5 × 10−16. Reciprocal BLAST searches, using the wH sequences
as queries, were successfully performed in all 3136 cases, with mean/
median e-values of 1 × 10−8/2 × 10−16; these higher e-values likely reflect
the smaller size of the HTH4 database or the longer lengths of wH
sequences relative to HTH4.

Next, we aligned the 3205 sequencesusing twodifferentmethods,
Clustal Omega48 and MUSCLE49 (Supplementary Data 1). Again, a key
difference between these cross-family multiple sequence alignments
(MSAs) was the location of sequences inserted into/deleted from the
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helices that align with β-sheets and vice versa are colored from pink to yellow,
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data are provided as a Source Data file.
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longer wH/shorter HTH4 homologs. Nevertheless, in both cross-family
MSAs, the C-terminal helix of the HTH4 aligned fully with the
C-terminalβ-sheet wing of thewH, indicating evolution fromα-helix to
β-sheet by stepwise mutation rather than insertion or deletion (Fig. 3a
and Supplementary Fig. 3). In the Clustal Omega alignment, a two-
residue gap found in > 99% of HTH4 folds was also found in an anno-
tated wH fold (wHwing_gap), further suggesting that the α-helix ↔ β-
sheet interconversion occurred through stepwise mutation.

Furthermore, severalHTH4 sequenceswith linker lengths similar towH
sequences were identified (e.g., HTH4_ insert in Fig. 3a), demonstrating
that long linkers are not exclusive to wH folds. Sequences within the
alignment were diverse, with mean pairwise identities of 31% among
HTH4 folds, 40% among wH folds, and 31% across folds. Notably,
evolutionary conservationpatterns differedbetween theHTH4 andwH
folds (Supplementary Fig. 4). Particularly, the C-terminal helix of the
HTH4 did not show strong conservation patterns, whereas the β-strand

KdpEPDB VKFS-DVTVDLAARVIHRG-EEEVHLTPIEFRLLAVLLNNAGKVLTQRQLLNQVWGPNA-VE-SHYLRIYMGHLRQKLEQDP-RPRHFITATGIGYRFML---

-TLSKSFIW-DLELNC---NNKLIRLTNKEKKVFVLFV---NKILSTNEIIYEVWNNE-NEGNSTGLKTIIKNLRKKLP---RNSIENIF--GIGYKLNI---wHwing_gap

LDAGCELLWDPAREQV---LQEKFGLSAREAEVLLWI----S----SRDIAEILGVSP------RTIQ-----LYNKGG---FSGRAAAA--AAASRVLGDDDHTH4_insert

-KS-------EAVQDI---AARVASLSPRERQVMEGLI---A----NKLIAREYDISP------RTIEVYRANVMTKMQ---ANSLSELV--RLAMRAGMLNDFixJPDB

HTH4 wHwing_gap

Linker insertion/deletion

Possible β-sheet insertion/deletion

wH with longer/shorter sequence 

a

b

Distance
Fig. 3 | Phylogenetic analyses identify bridge sequences adjoining families of
response regulators with tetrahelical helix-turn-helix (HTH4) and winged helix
(wH) CTDs. a Clustal Omega alignment of 3205 HTH4 and wH sequences indicates
complete conversion of C-terminal secondary structure over evolutionary history.
Secondary structure diagrams were generated using the structures of FixJPDB
(black) and KdpEPDB (yellow). Background colors of the four sequences match
those in the phylogenetic tree. Notes in the spaces between sequences show
important changes: (1) orange linker insertion (or deletion, depending upon the
properties of ancestral sequences) (2) fold conversion (3) sequence elongation/
deletion. The word in front of a slash represents what happens if a sequence
changes from top to bottom; theword following the slash representswhat happens

if a sequence changes frombottom to top. A common ancestor between the FixJPDB
and KdpEPDB sequences is also possible. Source data are provided as a Source Data
file. b Maximum-likelihood phylogenetic trees suggest an evolutionary path
between response regulators with HTH4 and wH folds. Sequences with C-terminal
domains annotated as HTH/wH from NCBI protein records are gray/yellow. The
clade containing the 12 identified bridging sequences is highlighted in pink.
HTH4_insert provides an example of an annotated HTH4 sequence whose linker
length was similar to wH; wHwing_gap provides an example of a wH sequence with a
2-residue deletion similar to those found in >99% of the C-terminal helices of
aligned HTH4 sequences. Distance units are arbitrary, though sequences further in
space have more distant evolutionary relationships.
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wing of the wH did. As suggested by Cordes and colleagues27, such
distinct conservation patterns may explain why homology between
sequences for the isolated wH and HTH4 domains could not be infer-
red from the PSI-BLAST and jackhmmer searches against the PDB.

Finally, we generated a bootstrap-supported, phylogenetic tree
for the cross-family MSA. Strikingly, results revealed a sequence clade
that appears to bridge the two fold families (Fig. 3b and Figs. S5 and
S6). The 12 sequences of this clade include one identified in the tran-
sitive homology path; all 12 have output domains annotated as HTH4

and originated from several bacterial phyla (Supplementary Table 4).
In the phylogenetic tree, these 12 sequences adjoin branches with wH
and HTH4 CTDs (Fig. 3b), suggesting that their ancestors might be
evolutionary intermediates between the two folds. To assess the sta-
tistical robustness of the HTH-bridge-wH interface, we quantified the
frequency of its occurrence using trees rooted in all 6393 possible
branch points. The log-likelihood of each rooted tree was calculated
using the approximately unbiased test50 (p-AU, Supplementary
Fig. 7A). Of the 6393 possible rootings, 18 had a p-AU score ≥0.8
(Supplementary Fig. 7B), indicating statistical significance. In all 18
cases, the bridge sequences adjoined branches with annotatedwH and
HTH4 domains (Supplementary Fig. 8), strongly supporting the role of
this clade as an evolutionary bridge between the two folds.

A mutational pathway between two folds
We next examined the predicted structural properties of sequences in
the bridge clade. To that end, structural models of each bridge
sequence were produced with AlphaFold214 (AF2). Strikingly, all mod-
els assumed theHTH4 fold (Supplementary Fig. 9). This result suggests

a few possibilities. First, some bridge sequence(s) might interconvert
between HTH4 and wH folds; previous work has shown that AF2 gen-
erally predicts only one dominant conformation of proteins that can
switch between two folds42,51. Second, the AF2 predictions could be
unreliable, and someor all bridge sequences could, in fact, assumewH
folds. Thirdly, the fold transition might have occurred in earlier
ancestors located at nodes linking most HTH4 and wH sequences.
These nodes connect the two fold families in the tree (Supplementary
Fig. 5), suggesting that their corresponding ancestral sequences may
have had properties of both HTH and wH folds.

Thus, we next performed ancestral sequence reconstruction and
generated additional AF2models for the ancestral sequences bridging
the HTH4 and wH folds (Figs. 4 and S5). Note that the linkers of all
ancestral sequences were as long as the wH linkers. Our rationale was
that the linkers of some HTH4 sequences near the bridge region were
equally long as the linkers of wH sequences (Fig. 3 and Supplementary
Fig. 3), suggesting that these linkers may have already been modified
by a large insertion.

Intriguingly, results from ancestral reconstruction suggest that
the ancestor sequences may have had structurally plastic regions that
could switch between α-helices and β-sheets in response to mutation
(Fig. 4 and Supplementary Table 5). Notably, Ancestor 0’s most
C-terminal secondary structure element is an α-helix, Ancestor 1’s is a
β-hairpin, and Ancestor 2’s switches back to an α-helix (Fig. 4, pink).
Interestingly, the sequence of Ancestor 1’s β-hairpin is 83% identical to
the sequences of both Ancestor 0’s and Ancestor 2’s C-terminal heli-
ces, which are 75% identical to one another. These results suggest that
just two mutations can switch the C-terminal α-helix to a β-sheet and
back again through a different set of sequence substitutions.

The N-terminal linker region (Fig. 4, yellow) also appears to be
plastic. In Ancestors 0–2, this linker is partially folded into a β-hairpin
structure, whereas in Ancestor 3 the linker assumes a fully folded 4-β-
sheet structure. In contrast, the linker assumes a partially helical
structure in Ancestors 4–5 and in the modern-day bridge
sequence (Fig. 4).

Taken together, these results suggest that ancestors of sequences
in the bridge clade may have had propensities for both wH and HTH4

folds. To further test this possibility, both PSI-BLAST and jackhmmer
searches were carried out between the ancestral CTD sequences and
PDB structures with both HTH4 and wH folds. Statistically significant
cross-fold matches were identified in all cases except for Anc. 3 (Sup-
plementary Data 2). By comparison, the earlier PSI-BLAST and jackhm-
mer searches of the isolated CTDs of existing HTH4 and wH sequences
matched homologs with the same but not the alternative fold.

Evolution from HTH4 to wH may have expanded DNA-binding
specificity
Finally, we sought to identify whether the shift from HTH4 to wH folds
may have had some evolutionary advantage. Examination of experi-
mentally determined HTH4 and wH response regulator structures in
complex with their cognate DNA partners suggests that one benefit of
the structural transformation might have been expanded binding
specificity. On average, the HTH4 folds contact 17 unique nucleotides,
whereas the wH folds contact 22 (Fig. 5a). Both HTH4 and wH folds
have a single recognition helix that binds the major grove, and the
C-terminal β-hairpin of winged helices also contacts the minor groove
(Fig. 5b). As such, wH domains can likely recognize more unique
nucleotide sequences than HTH.

Discussion
Decades of research suggest thatprotein secondary structure is largely
conserved over evolutionary history52,53. Accordingly, a variety of stu-
dies have shown that new protein folds can evolve through various
mechanisms that keep secondary structure fixed, such as insertions,
deletions, and circular permutation54. Others have shown that proteins

Fig. 4 | AlphaFold2predictions for theC-terminaldomainsof the reconstructed
ancestors appear to switch folds in response to 2–3 mutations in the most
C-terminal secondary structure element. The earliest ancestor appears to be the
longer version of a tetrahelical helix-turn-helix (HTH4), from which winged helix
(wH) folds evolved. The fold-switching C-terminal helix/β-hairpin is shown in pink,
and the structurally plastic linker is shown in yellow. The bridge sequence used in
this plot was TME68356.1, the one nearest the ancestral node in Fig. 3b.
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with conserved secondary structures can evolve different tertiary
arrangements24,25,55.

In contrast, several recent studies suggest that stepwise muta-
tions can switch protein secondary structures, fostering the evolution
of new protein folds19,28,56,57. Our work supports this hypothesis by
identifying a statistically significant evolutionary trajectory between
two protein folds. These folds comprise fragments of response reg-
ulator CTDs that switch from α-helix to β-sheet. Our findings are
supported by ancestral sequence reconstruction, structural models,
and several sequence alignment methods. Furthermore, this evolved
fold switching likely had a functional consequence: expanding DNA-
binding specificity. Notably, HTH4 and wH folds are not limited to the
superfamily of response regulators. In other families, the wHs could
have evolved from HTH4 ancestors through different or additional
mechanisms (and the evolutionary order may differ).

Since the fold-switching region observed here comprises a frag-
ment of the whole protein, we compare our proposed stepwise
mechanism to other mechanisms for protein evolution that involve
protein fragments, such as “words”58 and “bridging themes”59–61. The
work presented here differs from these studies in several important
ways. First, “words” were defined as protein fragments with “local
similarities in sequence and structure within globally different folds”58,
and bridging “themes” each comprise a set of “homologous protein
fragments found in different sequential and structural contexts”59. As
such, the isolated sequences of these fragments have discernable
homology without the context of the rest of the protein. In contrast,
the fold-switching sequences ofHTH4 andwH fragments reported here
only exhibited discernible homology within the context of the whole
protein. Practically speaking, the searches used to identify words and
themes, which rely on matches between homologous sequence of
protein fragments in different protein contexts, could not be used to
identify the evolved fold switching transition proposed here.

Second, the evolutionary mechanism underlying words and
bridging themes differs from the stepwise mutation that likely caused
the HTH4 domains of response regulators to evolve into wH folds.
Words and bridging themes are conserved protein fragments

proposed to either recombine with or accrete non-homologous seg-
ments of protein structure to form distinct domains. In contrast, the
fold-switching transition proposed here occurs within a conserved
protein context. In this case, stepwise mutations appear to have
caused a protein fragment to switch from α-helix to β-sheet without
fragment recombination or accretion. Importantly, fragment recom-
bination, accretion and stepwise mutation are all valid evolutionary
mechanisms that occur in different situations.

Third, although some bridging themes switch folds61, their
switching likely depends on their larger protein context. That is, within
differently folded domains, the same bridging thememay also assume
different folds. This is also true of chameleon sequences62,63, identical
protein fragments with different folds in different protein contexts. In
contrast, the homologous sequences in this work assume different
structures within homologous protein contexts: both folds are
C-terminal to a conserved trihelical helix-turn-helix39. It cannot be
overstated that the fold switch we report was covert: homology
between the sequences of the fold-switching region could not be
identified without the context of the rest of the protein, including the
N-terminal receiver domain. This critical point distinguishes our find-
ings from previous studies of words and bridging themes, as well as
from the “creative destruction”mechanism by which new folds evolve
through fusions of genes encoding distinct domains64.

Although outside the scope of this study, experimental testing of
the reported bridge sequences and reconstructed ancestors may
reveal mechanistic details of the transition fromHTH4 to wH.Whether
any of these sequences populate both folds – as has been observed for
other fold-switching proteins57,65– would be of particular interest. For
the reconstructed ancestors, structural interconversion would be
analogous to functional studies of reconstructed ancestors of green
and red fluorescent proteins that emit both green and red light66 or
promiscuous glucocorticoid receptors reconstructed from extant
receptors with unique binding specificities67. As previous work has
shown57,68,69, structural interconversion can be observed with nuclear
magnetic resonance (NMR) spectroscopy. Indeed, NMR studies of the
Arc repressor70,71 and XCL157 identified a handful of key mutations that

Fig. 5 | Tetrahelical helix-turn-helix (HTH4) domains contact fewer nucleotides,
on average, than winged helix (wH) domains. a Simplified box-and-whisker plot
with overlaying datapoints for the number of contacts between HTH4 and DNA
(black) and wH and DNA (yellow). On average, HTH4 domains have 5 fewer DNA
contacts thanwH domains. Central bars correspond tomeans, upper/lower bars to
standard deviations. Statistics were derived from 16/15 independently determined
structures of HTH-DNA/wH-DNA complexes. Source data are provided as a Source

Data file. b Examples of DNA (gray) interactions with HTH4 andwH domains, above
and below, respectively. TheC-terminalα-helix of theHTH4 (black, above) does not
contact theDNA,whereas the β-hairpinwing of thewH (yellow, below) contacts the
minor groove. Structurally similar parts of the HTH4 (PDB ID: 1h0m, chain D) and
wH (PDB ID: 4hf1, chain A) folds are light gray. This result and the corresponding
increase in the possible numberof uniqueDNAsequences that could be recognized
by the wH might explain why it evolved from the HTH4 in response regulators.
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switch protein folds. Accordingly, it would be interesting to experi-
mentally identify minimal mutational pathways that switch HTH4

sequences to wH and vice versa.
Biophysically based computational approaches may also provide

insights into the mechanism and evolution of response regulator
proteins with HTH4 and wH domains. Such studies successfully pre-
dicted fold transitions between engineered protein G variants with
high levels of sequence identity but different folds72,73. Other biophy-
sical models or hybrid theoretical-experimental approaches can be
used to infer the roles of point mutations, multifunctionality, selective
pressure, and epistasis in protein evolution74–76.

Secondary structure switching, such as the instance identified
here, may be more common in the evolutionary record than currently
realized. Among our results, an evolutionary pathway from HTH4 to
wH was consistently observed, with a clade of “bridge sequences”
occupying a key location in the pathway. Notably, these bridge

sequences were identified from metagenomic sequencing performed
primarily in 2018 and2019,whichdemonstrates the importanceof new
sequencing techniques and initiatives for advancing evolutionary
studies77 and suggests that more instances of evolved fold switching
might now be identifiable.

Thus,we closebyoffering the following step-by-step guide (Fig. 6)
to aid future computational searches for evolved fold switching:
(1) Identify pairs of homologous sequences with distinct folds. Here,

we achieved this by performing anall-against-all searchof the PDB
using protein BLAST (Fig. 1, “Methods” section). Additional
instances of evolved fold switching may be identified as more
structures are deposited. Alternatively, structural models gener-
ated by predictive algorithms such as AlphaFold214, ColabFold78,
RGN213, or ESM-fold79 could be used instead of experimentally
determined predictions. Though less certain than experiment,
thesepredicted structures couldprovideuseful startingpoints for

Fig. 6 | A step-by-stepguide to identifyingmore evolved fold switchers. 1. Query
a sequence of interest (black) against the PDB (or database of predicted structures)
with one round of protein BLAST (or phmmer) and search for hits with distinct
secondary structures (yellow). Hits may indicate evolved fold switching. 2. Cross-
validate results from step 1 by performing more sensitive sequence searches (e.g.,
jackhmmer) of all homologous sequences with experimentally determined struc-
tures. Black sequences=Fold1; yellow sequences=Fold2. Black regions of Fold2 have

the same folds as Fold1 to allow for the possibility that Fold2 is a protein sub-
domain. 3. If cross validation is successful, find all sequences homologous to Fold1
(black) and Fold2 (yellow); cluster sequences by likely fold family. 4. Obtain a cross-
family sequence alignment by searching all sequences fromFold1 against Fold2 and
reciprocally searching Fold2 hits against Fold1. 5. Use cross-family alignment for
downstream analyses including, but not limited to, IQ-Tree, ConSurf, and Alpha-
Fold2. Complete descriptions of each step can be found in the main text.
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sequence analyses and subsequent experimental testing. Notably,
successful identification of the evolutionary pathway reported
here required that the whole protein sequence be searched (N-
terminal+C-terminal domains) rather than the fold-switching C-
terminal domain only.

(2) Cross-validate findings using homologous sequences with experi-
mentally determined structures. Here, we performed jackhmmer
searches of all response regulator sequences with HTH4 and wH
domains whose structures had been experimentally determined.
We found signs of cross-fold homology for all sequences (Fig. 2).
This approachprovides confidence that the evolutionary relation-
ship identified in Step 1 spanned both protein families rather than
being a single hit obtained by chance. Similar analyses could be
performed on experimentally determined structures of putative
evolved fold switchers from other protein families. If such
structures are not available, they could be generated using
predictive algorithms. If many predictions need to be made, we
recommend using ColabFold78 because of its high accuracy and
superior performance.

(3) Identify and cluster sequences homologous to the two fold famil-
ies. Identify. For the FixJ/KdpE sequences, BLAST searches of the nr
database returned >1,000,000 sequences. We used BLAST
because of its efficiency in searching such a large database, though
a more sensitive high-efficiency method such as HHBlits80 could
alsobeused.Curationof the sequence set (“Methods” section)may
be required to remove anomalous sequences. Cluster. Althoughwe
used a custom-written greedy clustering algorithm, MMSeqs281

could alsobeused.Next,we associatedeach remaining clusterwith
a given fold by BLASTing the sequences of FixJPDB and KdpEPDB
against each cluster and calculating which sequence yielded more
matches with ≥200 residues and e-values ≥ 1e-04.

(4) Obtain a cross-family sequence alignment containing sequences
with high e-values but different structural annotations. For
successful completion of downstream analyses, this “Goldilocks”
step is key: overly large alignments can lead to uninterpretable
results (“Methods” section), but alignments that are too small
could inadvertently omit important evolutionary intermediates.
For this work, we extracted and constructed the relevant cross-
family alignment by searching all sequences from clusters
assigned to one fold (Fold1) against all sequences from clusters
assigned to the other (Fold2). Since this process involved
thousands of independent searches, protein BLAST was used for
efficiency. For consistency, reciprocal searches of Fold2 matches
against the Fold1 database are necessary. As a final validation step,
it is advisable to discard sequences from Fold1/Fold2 clusters that
were not annotated as Fold1/Fold2 in their NCBI sequence
records. The remaining set of cross-family sequences can then
be aligned using multiple algorithms. In this case, we used both
Clustal Omega48 and MUSCLE49.

(5) Perform downstream phylogenetic analyses. Here, we did phylo-
genetic analyses on our cross-family sequence alignment with IQ-
Tree82 and Consurf83 and ancestral sequence reconstruction with
IQ-Tree. A cross-family alignment should be compatible with a
range of other phylogenetic analysis methods.

Methods
BLAST and PSI-BLAST searches of the PDB
To identify the putative evolutionary relationship between FixJPDB and
KdpEPDB, we performed protein BLAST searches with maximum
e-value of 1e-04 on all sequences within the Protein Data Bank (PDB)
against all other PDB sequences16,41. To determine whether homo-
logous sequences folded into different structures, secondary structure
annotations of each PDB, by DSSP84, were aligned in register with their
corresponding BLAST alignments and compared one-by-one, position-
by-position. This approach allowed us to quantitatively assess the

similarity of aligned secondary structures. A potential match was
required to have a continuous region of at least 15 residues in which at
least 50% of the residues showed α-helix ↔ β-sheet differences. Using
this approach, the sequence of FixJPDB matched the sequence of
KdpEPDB with an e-value of 1e-07; differing secondary structures in the
C-terminal output domains were identified through DSSP comparison.
Subsequent three-round PSI-BLAST searches of FixJPDB and KdpEPDB
sequences against all PDB sequences were performed with a gap open
penalty of 10 and a gap extension penalty of 1. In CTD PSI-BLAST
searches, the sequences for FixJPDB and KdpEPDB spanned residues
124–205 and residues 129–225, respectively. Importantly, FixJPDB and
KdpEPDB were defined to have different folds by several independent
annotators: Pfam85 (http://pfam.xfam.org): PF00010 (helix-turn-helix),
PF02319 (winged helix). ECOD86 (http://prodata.swmed.edu/ecod/)
puts them in different T-groups (tetrahelical HTH andwinged), SCOP10

(https://scop.mrc-lmb.cam.ac.uk): HTH: 8034563 (Superfamily
C-terminal effector domain of the bipartite response regulators)
Winged helix: 8075578 (Superfamily: PhoB-like).

jackhmmer alignments of structures with response regulator
sequences
To test the PSI-BLAST results obtainedpreviously, jackhmmer searches
were also performed on HTH4 and wH sequences with experimentally
determined structures. Accordingly, structures of 23 full-length
response regulators with HTH4 (11) and wH (12) output domains
were identified from the Evolutionary Classification of Protein
Domains (ECOD) database86. Five rounds of jackhmmer were run on
each of the 23 sequences with gap open/extension probabilities of
0.05 and 0.5, respectively, using a database of all sequences down-
loaded from the PDB (7/15/2021) and removing sequence duplicates
post-search. Sequence identities from each row of Fig. 2a were calcu-
lated from each sequence alignment generated by jackhmmer run on
the sequence of the PDB entry with ID labeling each respective row.

DSSP annotations were aligned in register with each jackhmmer-
generated sequence alignment to compose the secondary structure
diagrams in Fig. 2b. In further detail, secondary structure annotations
of each of the 11 HTH4s were compared with secondary structure
annotations of 48 wHs identified from ECOD; likewise, secondary
structure annotations of each of the 12 wHs were compared with sec-
ondary structure annotations of 35 HTH4s identified from ECOD
(Supplementary Data 3). Similarities of each pair of aligned secondary
structure (46pairs for eachof the 11HTH4proteins, 30pairs for eachof
the 12 wH proteins) were scored as follows: +1 for a position with
identical secondary structures (helix:helix [H,G,I in DSSP notation] or
strand:strand [E in DSSP notation]) and −1 for a position with alter-
native secondary structures (helix:strand or strand:helix using the
same DSSP notations as above). Position-specific scores were nor-
malized by the frequency of ungapped residue pairs in each position,
including coil-secondary structure alignments, effectively scored as 0.
These normalized position-specific scores were used to generate the
colormaps of each secondary structure diagram.

Identifying large sets of response regulators’ genomic
sequences
The full sequences of both FixJPDB (PDB ID 5XSO, chain A) and KdpEPDB
(PDB ID 4KFC, chain A) were searched against the nr database (10/8/
2020) using protein BLAST with a maximum e-value of 1e–04 and a
maximum of 500,000 alignments per search. Full sequences from
each alignment were retrieved by their NCBI accession codes using
blastdbcmdon thenr database. All sequences fromboth searcheswere
combined, which totaled 999,912 after sequence duplicates were
removed. Sequences with either fewer than 162 or more than 300
residueswere removed because they likely lacked the proper response
regulator domain structure, leaving 581,791 sequences. This was too
many to curate using standard tools, and many sequence identities
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were well below the ~40% identity threshold, below which many
alignment tools become unreliable87. Thus, to further analyze these
sequences, we performed the clustering and sampling methods
described in the following sections.

Generating sequence clusters
Fromset of 581,791 sequences, a basis set of 367 sequences – eachwith
<24%pairwise identity to all othermembersof the set –was selected to
seed sequence clustering. Above this threshold, response regulator
sequences would be expected to assume similar structures52. To
identify this set of seed sequences, the first sequence in the list of
581,791 sequences (FixJPDB) was chosen. Subsequent sequences were
aligned with FixJPDB’s sequence using Biopython88 pairwise2.align.lo-
calxs with gap open/extension penalties of −1, −0.5, respectively. If a
sequence’s pairwise identity with the FixJPDB sequence <24%, it was
added to the basis set. Sequences in the list were aligned with all
sequences previously added to the basis set and included only if the
identities of all pairwise alignments were <24%, yielding 367 total basis
sequences. The remaining 581,424 sequences were clustered with the
basis sequence to which they had the highest aligned pairwise
identity, determined exhaustively by aligning all sequences with all
basis sequences using pairwise2.align.localxs, with parameters as
before.

To further reduce the total number of sequences, we disregarded
the 251 clusters with fewer than 50 sequences. The remaining 116
clusters comprised 103 “medium” clusters (<5000 sequences) and 13
“large” clusters (> 4000 sequences). Of the large clusters, one con-
tained the sequence of FixJ (PDB ID 5XSO) and 283,762 other
sequences, and another contained the sequence of KdpE (PDB ID
4KFC) and 25,035 other sequences.

Curating sequence clusters
Medium clusters. Sequences within each medium cluster were first
aligned using Clustal Omega48. Visual inspection revealed that some
alignments were biased by sequences that were either substantially
shorter or longer than majority of the homologs in their cluster. To
computationally identify and filter out such sequences, we identified
(i) “sparse zones” by searching for windows of 8 positions wheremore
than 95% of the sequences contained gaps, and (ii) “populated zones”
by searching windows of 10 positions where more than 90% of the
sequences contained amino acid residues. Sequences with (1) ≥10% of
their amino acids in sparse zones or (2) <10% of their amino acids in
populated zones were removed from the cluster. The 10% thresholds
were determined empirically to best perform this “culling” step. Next,
we performed ~2–7 successive iterations of culling and Clustal Omega
alignments, until the number of sequences in each cluster converged.
During this process, 9 medium clusters shrunk to fewer than
50 sequences and were subsequently ignored, leaving 94 medium
clusters.

Finally, since Clustal Omega’s global alignment algorithm does
not accurately report phylogeny or suggest structure, the multiple
sequence alignments were further aligned using PROMALS89, which
first groups sequences based on phylogeny and then performs local
alignment of recognized structural domains. The quality of all cluster
alignments was inspected visually.

Large clusters. The large clusters, with thousands of sequences,
required different strategies to appropriately generate a subsample
that was tractable for additional sequence analyses. To determine
subsample sizes that adequately represented the sequence composi-
tion within clusters, three independent, random subsamples of 1000
and 5000 sequences were extracted from the FixJ cluster, and three
5000 sequence subsamples were extracted from the KdpE cluster.
These subsamples were subjected to iterative culling and alignments
like the medium clusters (described above).

Next, the multiple sequence alignments (MSAs) of these sub-
samples were uploaded to ConSurf83 (https://consurf.tau.ac.il/consurf_
index.php). Resulting scores were compared to determine how many
sequences were required to give consistent evolutionary rates. Results
indicated that 5000 sequences were required for an adequate repre-
sentation of the both the FixJ and KdpE clusters. Visual inspection of
heatmaps generated from sequence identity matrices of these
sequence alignments supported the conclusion that 5000 sequences
evenly sampled the sequence space. Thus, to represent the FixJ and
KdpE clusters, we randomly chose one of its 5000 subsamples
sequence sets. For 8 of the 11 large clusters with >5000 sequences, we
similarly subsampled 5000 sequences. The 3 large clusters with
<5000 sequences were curated as described for the medium clusters.

Constructing FixJ and KdpE-specific MSAs
The high sequence diversity between clusters, with cross-cluster
pairwise aligned sequence identities often <24%, impeded MSA
assembly of the FixJ-KdpE superfamily. Thus, we looked for strategies
to assemble sequences from the 94 medium clusters, 11 large cluster
subsamples, and the 5000-sequence subsamples of the FixJ and KdpE
large clusters into one combined MSA. First, we classified the clusters
into two half-families with sequences resembling those in either the
FixJ or KdpE large clusters. To that end, we matched sequences from
each cluster with all sequences from the FixJ and KdpE large clusters
with protein BLAST. Sequences from these clusters tended to align
with high statistical significance to one of the large clusters but not
both, simplifying cluster classification. This approach showed promise
because sequences from each cluster aligned to sequences from other
clusters with identities ≥38%, fostering reliable alignments. After
completing all BLAST searches, 45 medium and 6 large clusters were
assigned to the FixJ half-familiy for a total of 13,006 sequences and 49
medium and 5 large clusters to the KdpE half-family for a total of
10,785 sequences.

Despite sampling and curation, both half-families were too large
to create an MSA using conventional tools. Thus, we used an alter-
native approach in which two reference alignments were generated
using Clustal Omega to align representative sequences from each
cluster (51 sequences for FixJ and 54 for KdpE). PROMALS was then
used to refine the two half-family reference MSAs. Upon visual
inspection, 7 sequences were removed from the KdpE reference MSA
because they generated many gaps in the alignment; their clusters of
origin were subsequently ignored. The remaining sequences in the
KdpE reference MSA were realigned using Clustal Omega and PRO-
MALS. Finally, upon visual inspection, the registers of prolines and
charged amino acids were manually edited to match in 3 sequences
(PSQ94266, HBD38673, and KEZ75144) between the registers 225 and
270 in the KdpE reference MSA. No such manual curation was needed
in the FixJ MSA. Sequences within each of the remaining 98 clusters
were then (i) independently aligned with PROMALS and (ii) integrated
into the appropriate half-family reference MSA using MARS (Main-
tainer of Alignments using Reference Sequences for Proteins90). The
MARS program allows curated sequence alignments with at least one
sequence in common tobemergedwith eachotherwithout re-aligning
the whole sequence set. Using this program, all sequences of the 51
FixJ-matching clusters and the curated subsample of the FixJ cluster
were merged, using the FixJ half-family reference MSA as a guide.
Similarly, all sequences of the 47 KdpE-matching clusters along with
the curated subsample of the KdpE cluster were merged.

Constructing a FixJ-KdpE superfamily MSA
The pairwise identities of sequences across the two half-families were
too low to reliably create an MSA. Thus, we tried a “transitive homol-
ogy” approach to combine the half-family alignments into one align-
ment for the superfamily. First, we identified a “path” of related
sequences91,92 following the logic that, if sequences A and B are
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homologous and sequences B and C are homologous, then homology
between sequences A and C can be assumed through the “bridge”
sequence B. To carry out this strategy, we used protein BLAST to
search for the highest sequence identity match between the unsam-
pled FixJ and the KdpE large clusters (i.e., the clusters with >250,000
and >25,000 sequences). This hit was then queried against the data-
base of the opposite fold and soonuntil we identified7 sequenceswith
pairwise sequence alignments each with ≥38% sequence identity that
connected the FixJ sequence to the KdpE sequence (Supplementary
Table 3). Note that the “bridge” sequence TME68356 (Supplementary
Table 4) could align well with another sequence in either half-family,
although it was originally assigned to the KdpE half-family. The top/
bottom four sequences in Supplementary Table 3 were aligned with
the FixJ/KdpEhalf-families usingClustalOmega.Wenext usedMARS to
combine half-family alignments using the bridge sequence as the
reference. The resulting whole family MSA contained 45,199 sequen-
ces. These sequences were filtered to 85% redundancy with CD-HIT,
ultimately yielding an MSA with 23,791 sequences. However, when a
phylogenetic tree was constructed in IQ-Tree for this sequence set, its
qualitywaspoor (i.e., 140gaps/360positions in theKdpEPDB sequence)
and failed to converge after 3 rounds of 1000 bootstrapping
iterations each.

Constructing a cross-family MSA
The transitive homology path identified above (Supplementary
Table 3) suggested the existence of additional sequences that might
bridge the HTH4 and wH folds. Accordingly, the five/six previously-
assigned FixJ/KdpE sequence clusters with >4000 sequences were
each combined and converted into two BLAST databases representing
HTH4 (FixJ-like) and wH4 (KdpE-like) sequences. Sequences within the
combined FixJ sequence clusters were reduced to 50% redundancy
using CD-HIT93 with a word size of 2, as recommended. Protein BLAST
searches were performed on each of the remaining 4520 sequences
with a maximum e-value of 1e–04 using the full KdpEPDB database. All
8607 alignments with minimum sequence identities and lengths of
33% and 200 residues, respectively, were considered significant. To
ensure that these alignments truly matched HTH4 with wH sequences,
NCBI records of 1793 HTH4, and 4995 wH sequences were retrieved
using NCBI’s efetch. Each record was searched for structural annota-
tions of its CTD (HTH or wH). Ultimately, 3074 BLAST matches, each
with one annotated HTH and one annotated wH CTD were retained.

To identify additional HTH sequences that might match with wH
sequences, additional BLAST searches were run on all 4 HTH4

sequences in our set of 3074 matches that aligned with wH sequences
with ≥38% pairwise identity. This time, the database comprised all
581,791 length-limited sequences identified from the initial FixJ and
KdpE BLAST searches. These searches, intended to identify additional
HTH4 sequences regardless of how they were clustered, yielded 66
putative HTH sequences that might match well with additional wH
sequences. Finally, 66 additional Protein BLAST searches were per-
formed by querying each of the 66 putative HTH sequences against all
sequences from the 47 KdpE-matching clusters identified previously.
The resulting 62 matches with minimum sequence identities and
lengths of 33% and 200 residues and HTH/wH annotations from their
NCBI records, identified as before, were included, totaling 3136 mat-
ches between 3203 sequences. For reference, the sequences of FixJPDB
and KdpEPDB were also included; these two sequences had minimum
aligned identities and lengths of 32% and 198, respectively, to
sequences encoding the alternative folds.

The resulting 3205 sequences were aligned in two ways, with
Clustal Omega and with MUSCLE49 version 3 using the super5 com-
mand. Columns with >75% gaps were removed from both alignments
using Geneious Prime 2022.2.2 (https://www.geneious.com) for fur-
ther analyses. The final alignments showed full overlap between the
C-terminal helix of the HTH4 and the β-hairpin wing of the wH.

Subsequent phylogenetic analyses and ancestral sequence recon-
struction were performed on the Clustal Omega alignment.

Conservation scores and rate of evolution
Aversionof ConSurf that could be run locally, Rate4Site 2.0194 (https://
www.tau.ac.il/~itaymay/cp/rate4site.html), was used to compute evo-
lutionary rates for the full alignment of 3205 sequences as well as the
separate HTH4 and wH subfamilies (664 and 2541 sequences, respec-
tively; Supplementary Fig. 4). This program requires an MSA file to
compute aphylogenetic tree.We chose the empirical Bayesianmethod
to generate the rates, which significantly improves the accuracy of
conservation scores estimations over the Maximum Likelihood
method94. The scores are represented as grades ranging from con-
served (9) to variable (1).

Phylogenetic analyses of the cross-family MSA
Constructing a maximum-likelihood tree and performing boot-
strapping. Amaximum-likelihood (ML) phylogenetic tree was inferred
from the alignment with FastTree95,96, using the Jones-Taylor-Thorton/
JTT97 models of amino acid evolution and the CAT98 approximation to
account for the varying rates of evolution across sites. This tree was
further supported by ultrafast bootstrapping (UFBoot99) as imple-
mented in IQ-Tree282. We used ModelFinder100 to identify the best
fitted evolutionary model for the MSA (chosen model - LG + F +R10),
and then evaluated branch support with 1000 UFBoot replicates. The
minimum correlation coefficient for the convergence criterion was set
at 0.99. A consensus tree was also generated (Supplementary Fig. 5).

Rooting the phylogenetic tree. The ML and consensus trees gener-
ated by FastTree and IQ-Tree2, respectively, lacked information on
root placement of the estimated phylogeny. Ideally, external infor-
mation – such as an outgroup – is used to root the tree. However, we
could not use an outgroup because it was not possible to identify a
single sequence outside of our alignment that was homologous to
both folds. Therefore, we combined the nonreversible model with a
maximum-likelihoodmodel101 used to calculated the log-likelihoods of
the trees being rooted on every branch of the tree. Bootstrapping of
10,000 replicates was performed to obtain reliable results. The
method returns a list of 6393 trees rooted at each node and sorted by
log-likelihoods in descending order, along with other scores by dif-
ferent tests, as follows; bp-RELL: bootstrap proportion using RELL
method102, p-KH: p-value of one-sided Kishino-Hasegawa test103, p-SH:
p-value of Shimodaira-Hasegawa test104, c-ELW: Expected Likelihood
Weight105 and the p-AU: p-value of approximately unbiased (AU) test50.

The AU test uses a newly devised multiscale bootstrapping tech-
nique developed to reduce test bias and to obtain a reliable set of
statistically significant trees. The AU test, like the SH test, adjusts the
selection bias overlooked in the standard use of the bootstrap prob-
ability and KH tests. It also eliminates bias that can arise from the SH
test50. Overall, the AU test has been shown to be less biased than other
methods in typical cases of tree selection and is recommended for
general selection problems50. Hence, we relied on p-AU (p-values from
AU) to get a list of 18 most-likely rooted trees with p-AU>0.8.

Ancestral sequence reconstruction. Ancestral sequence recon-
struction was performed using maximum-likelihood methods imple-
mented in IQ-Tree2, which uses the algorithm described in Yang
et al.106. Ancestral sequences were determined for all nodes of the
consensus tree (Supplementary Fig. 5) using the empirical Bayesian
method. Posterior probabilities are reported for each state (amino
acid) at each node. We scored the nodes in three steps. First, we cal-
culated the average probability considering all assigned states at the
node. Then, replacing the states by the amino acids in the bridge
sequence (TME68356.1), we calculated the total p-value. Finally, cal-
culated the pairwise sequence identity between ancestral sequence
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and the bridge sequence. Using all three criteria, we identified 6
reconstructed sequences with low p-values near the bridge sequences.
These sequences were used for downstream analysis and model
building.

Predicting structures of ancestral and bridge sequences
The FASTA sequences of the 6 reconstructed ancestors, along with the
12 bridge sequences, were used as input to the full build of the
AlphaFold2.114 structure prediction model. MSAs were generated by
the default procedure of combining sequence searches of the BFD,
MGnify, and Uniref databases. Predictions were made using templates
with amaximumdate of 4/20/2022. Structures ranked0weredepicted
in Fig. 4 and S9. To test the plausibility of the AF2-generated structures
for the reconstructed ancestors and bridge sequences, we examined
recently released AF2 predictions for 338 HTH4 and 937 wH
sequences107. AF2 predictions matched genomic annotations in every
case. Prediction qualities varied: of 1275 predicted structures, 29%
were predicted with high confidence, 58% had moderate confidence,
and the remaining 13% had low confidence.

Counting protein-DNA contacts
The unique nucleotide contacts between the response regulators and
their corresponding DNA sequences were identified using Resmap108,
a tool that uses the atomic coordinates from PDB files to calculate
intra-atomic distances for non-covalent interactions under set
thresholds. The default distance thresholds for different interaction
types that were used are: (1) Hydrogen bonds - ≤3.5 Å, (2) Hydro-
phobic interactions - ≤4.5 Å, (3) Aromatic interactions - ≤4.5 Å, (4)
Destabilizing contacts - ≤3.5 Å, (5) Ion pairs - ≤5.0 Å, (6) Other con-
tacts (which include van der Waals interactions) - ≤3.5 Å. Since the
nomenclature for DNA atoms has changed since the development of
Resmap, the PDB files were manually edited to match Resmap’s input
format with the following changes: (1) Symbol replacements of ‘ to *,
(2) the nucleotide atoms (A,C,G, or T) were appended with the prefix
‘D’ (DA, DC, DG, DT), (3) the edited nucleotide atoms were also
assigned unique atom identification numbers. The PDB files with
these changes were then inputted into Resmap to identify unique
contacts between of atoms in the protein chains with the atoms in
DNA chains.

Scripts and figures
Protein figures were generated in PyMOL (The PyMOL Molecular Gra-
phics System, Version 2.0 Schrödinger, LLC) (https://pymol.org/2/),
plots and heatmap in Matplotlib109 (https://matplotlib.org/stable/
index.html) and seaborn110 (https://seaborn.pydata.org/). Phyloge-
netic trees were visualized with ggtree (https://guangchuangyu.github.
io/ggtree-book/chapter-ggtree.html) implemented as an R package111.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including sequence alignments and
clusters, phylogenetic analyses, and AlphaFold2 models, have been
deposited in the Zenodo database under accession code https://doi.
org/10.5281/zenodo.7837636. The supporting data generated in this
study are provided in the Supplementary Information and the Source
Data file. The structural data used in this study are available in the
Protein Data Bank (PDB) under accession code 5XSO, [https://doi.org/
10.2210/pdb5SXO/pdb], chain A (FixJPDB) 4KFC, [https://doi.org/10.
2210/pdb4KFC/pdb], chain A (KdpEPDB), 1H0M [https://doi.org/10.
2210/pdb1H0M/pdb], chain D, and 4HF1 [https://doi.org/10.2210/
pdb4HF1/pdb], chain A. The structure classifications used in this
study are available from the ECOD (http://prodata.swmed.edu/ecod/),

SCOP (https://scop.mrc-lmb.cam.ac.uk), and Pfam (https://www.ebi.
ac.uk/interpro/) databases. Source data are provided with this paper.

Code availability
Code used to generate the results reported in this manuscript is
available at: https://doi.org/10.5281/zenodo.7837636 and https://
github.com/ncbi/FixJ_KdpE.
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