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In-memory photonic dot-product engine
with electrically programmable
weight banks

Wen Zhou1,6, Bowei Dong1,6, Nikolaos Farmakidis 1, Xuan Li1,
Nathan Youngblood1,5, Kairan Huang1, Yuhan He1, C. David Wright 2,
Wolfram H. P. Pernice 3,4 & Harish Bhaskaran 1

Electronically reprogrammable photonic circuits based on phase-change
chalcogenides present an avenue to resolve the von-Neumann bottleneck;
however, implementation of such hybrid photonic–electronic processing has
not achieved computational success. Here, we achieve this milestone by
demonstrating an in-memory photonic–electronic dot-product engine, one
that decouples electronicprogrammingof phase-changematerials (PCMs) and
photonic computation. Specifically, we develop non-volatile electronically
reprogrammable PCMmemory cells with a record-high 4-bit weight encoding,
the lowest energy consumption per unitmodulationdepth (1.7 nJ/dB) for Erase
operation (crystallization), and a high switching contrast (158.5%) using non-
resonant silicon-on-insulator waveguide microheater devices. This enables us
to perform parallel multiplications for image processing with a superior
contrast-to-noise ratio (≥87.36) that leads to an enhanced computing accuracy
(standard deviation σ ≤0.007). An in-memory hybrid computing system is
developed in hardware for convolutional processing for recognizing images
from the MNIST database with inferencing accuracies of 86% and 87%.

Non-von Neumann computing architectures, which physically
collocate the data storage and analogue signal processing func-
tionalities, are exceptionally suited to artificial intelligence (AI)
applications and outperform digital processors especially in
computer vision, achieving higher energy efficiency and fidelity1–3.
Notably, in-memory computing hardware in the electronic
domain based on transistor-programmed memristive crossbar
arrays can be massively scaled to form ‘1T1R’ type architectures4,
which enables selective access and precise multilevel con-
ductance programming of non-volatile memory elements in large-
scale systems4–6. Recent interest has shifted towards in-memory
photonic processing, where the clock frequency can be extended
significantly beyond the GHz range7.

In-memory photonic computing based on photonic integrated
circuits (PICs) represents a paradigm shift in harnessing parallelised
data processing with appealing features such as ultrahigh clock fre-
quency, massive parallelism, picosecond signal latency and ultrabroad
bandwidth in optical signal processing7–9. Compared with digital
electronic accelerators, in-memory photonic computing systems pro-
mise 1−3 orders of magnitude improvement in both compute density
and energy efficiency7,10, which are critical in dealing with the heavy
workload associated with running deep learning algorithms. Lever-
aging a silicon optoelectronic platform offers an opportunity for sys-
tem scale-up based on low-cost, wafer-scale, and complementary
metal–oxide–semiconductor (CMOS) compatible manufacturing11.
Recent progress in implementing photonic neural networks (PNNs) is
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based on reconfigurable photonic–electronic hybrid PICs12,13, such as
universal unitary networks and diffractive networks composed of
Mach–Zehnder interferometers (MZIs)14–16, broadcast-and-weight net-
works composed of microring resonators17, and deep optoelectronic
networks18. These PNNs display key metrics including dense through-
put and low latency using reliable electronic control of synapses with
high-bit precision19 and spiking neurons20. Photonic–electronic hybrid
AI hardware implementations are more practical and competitive
candidates than all-optical networks21 for efficient in situ training22 and
self-calibration of weight banks23 so as to suppress error accumulation
in deep PNNs with good reproducibility.

In contrast to volatile optoelectronic PICs12, photonic non-von
Neumann architectures leverage non-volatile waveguide memory
cells24 as functional layers integrated with silicon photonics to carry
out computational tasks within the waveguide memory25. The key
technology is developing a non-volatile photonic computing system
using waveguide memory component that achieves multi-bit pro-
gramming and thereby enables one to carry out in-memory computing
with high precision. This has been done so far using phase-change
materials (PCMs), mostly of the absorbing variety, such as Ge2Sb2Te5
(GST)7,25,26, which is more reliable for photonic computing than those
relying on precise phase control27,28. The change in effective refractive
indices of these PCM cells can be achieved using optical or electrical
pulses to induce a phase transition between the crystalline and
amorphous states10. Optical programming of PCMs has been widely
studied24,26,29 and exploited for scalar and matrix-vector
multiplication7,25,30,31 due to high encoding precisions and reliable
operations32. All-optical in-memory tensor cores have been recently
developed with the capability of processing trillions of multiply-
accumulate (MAC) operations per second using PCM-cladded Si3N4

waveguide crossbar arrays7. Due to the nonvolatility of the PCM cells,
there is no additional energy consumption in weight holding, which is
beneficial for convolutional operations with fixed kernels. For a small-
scale silicon-on-insulator (SOI) tensor core, reconfigurable MZIs have
been utilized for routing energetic optical pump pulses generated by a
wall-plug or an integrated laser and an amplifier to optically pro-
gramme individual PCM cells30. Yet, as reconfigurable circuits, opera-
tion of these all-optical systems relies on two sequential steps: (i)
optical programming for weight bank setting, (ii) optical signal prob-
ing for computing, i.e., separating the programming and computing.
This complicates the system architecture and the inherent working
mode, hindering its programming flexibility and scalability for a large-
scale system. On the other hand, the mainstream SOI waveguide
platform should be adopted for the CMOS-compatible optoelectronic
integration with well-developed high-speed transceivers and mature
ion-implantation technology. Considering all-optical programming on
a SOI platform, itwould be difficult to realize a large switching contrast
and high-bit operation. The reported contrast is merely 15% with a
small-area (a few μm2) PCM switching and nearly 10 distinguishable
memory levels33. To be more practical, it is conceivable to have a
photonic processor that interfaces with electronic microcontrollers,
and thus electrically programmable PCM cells are of paramount
importance to set the multistate in a non-volatile manner for realizing
the in-memory photonic computing.

To date, electrical pulse induced Joule heating has enabled the
large-area phase switching of PCMs atop ion-implanted waveguide
microheaters28,34–36, graphene microheaters37,38, ITO microheaters39,
and plasmonic nanogap devices40,41. These device-level demonstra-
tions have been exploited for optical switches34,35 and tunable optical
couplers36. Their functionality for in-memory photonic computing is,
however, absent due to a limited number of encoding levels addres-
sable (≤8) in the non-resonant straight waveguide microheater
devices28,34–41, which substantially limits the precision. Crucially, the
following metrics arguably remain key and are required for advance-
ment from a single PCM device to a computing system:

(i) Multi-bit non-volatile electrical programming on the SOI wave-
guide platform

(ii) Low energy consumption per unit modulation depth (unit: nJ/dB)
for energy-efficient electrical programming

(iii) Large switching contrast to enhance the contrast-to-noise ratio
(CNR) and the computing accuracy

(iv) Non-resonant and broadband operation of a PCM device for
parallel computing

Here we report demonstration of an in-memory
photonic–electronic computing system, which consists of high-
performance computational memory cells based on the PCM-
cladded microheaters with electrical control. Our PCM device and
system resolve all the above critical issues, opening a promising ave-
nue toward high-performance phase-change in-memory computing
chips. The system features decoupled electronic programming of
PCMs and optical probing of processed signals, which can be per-
formed simultaneously. Specifically, the electronic circuits complete
the weight bank setting and storage, and the optical circuits execute
the scalar multiplication and MAC operation. This scenario could
essentially combine the advantages of programming flexibility and
scalability, high-speed optical signalling, and optoelectronic packa-
ging synergies. Our electrically reprogrammable PCM cells achieve the
following metrics: (i) a record-high 4-bit weight encoding, which out-
performs 3-bit encoding of the previously developed SOI waveguide
microheater devices28,34–37,39, (ii) the lowest energy consumption per
unit modulation depth of 1.7 nJ/dB for the Erase operation (crystal-
lization) of GST among waveguide microheater devices34–37,41, (iii) a
very high switching contrast of 158.5% (modulation depth of 4.13 dB),
which shows over ten times improvement compared with those using
all-optical programming33, leading to enhanced CNRs (≥87.36) and
reduced computation error by 8.9 times achieved in our image pro-
cessing experiment, (iv) parallel scalar multiplication using multiple
wavelengthdivisionmultiplexing (WDM) channels in imageprocessing
for brightness scaling, blurring andSobelfiltering. Lastly, a compact in-
memory photonic–electronic computing system was electrically pro-
grammed to achieve edge detection for the implementation of con-
volutional neural networks (CNNs). Our experiments demonstrated
high inferencing accuracies of 86% and 87% for recognizing images
from the MNIST database, which compare favourably with previous
PNNs15,16,21. We further estimated a compute density of 7.3 TOPS/mm2

(Tera-operations per second per mm2 chip area), a compute efficiency
of 10.0 TOPS/W, and the energy consumption per MAC operation of
0.2 pJ/MAC at a data rate of 25Gb/s and 16 WDM channels for an
integrated in-memory photonic–electronic chip. Thus, our prototype
system provides a viable path for the in-memory photonic–electronic
computing with flexible programming, high-bit operation, low energy
consumption, and high computational accuracy based on the SOI
waveguide platform with prospective applications in intelligent edge
devices for computer vision, speech recognition, autonomous driving,
and signal processing.

Results
In-memory photonic–electronic computing platform
Figure 1a illustrates a 3D schematic of an in-memory
photonic–electronic dot-product engine consisting of an array of
electrical programmable non-volatile GST memory cells, which act as
reconfigurable weight banks [w1,w2,…wN] for dot-product operation.
The input vector [x1, x2, … xN] is encoded in the amplitudes of probe
light at different wavelengths (λ1, λ2,… λN) generated by a broadband
light source. Such probe energy is well below the power required to
induce a phase transition in the GST cells. After encoding, the optical
signal is transmitted through the GST cell and is subsequently and
partially absorbed. Mathematically, it performs scalar multiplication
with output amplitude ofwi·xi, in which the multiplicandwi is mapped
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to the transmittance of the i-th GST cell defined by its material state25.
At the output ports of this dot-product engine, optical fields are
combined incoherently in the optical domain to complete the sum-
mation of optical signals Σwi·xi by using a N-to-1 wavelength division
multiplexer (MUX), thus implementing a dot-product operation: [x1,
x2, … xN]·[w1, w2, … wN]

T. Crucially, our proposed scalable in-memory
photonic–electronic computing platform features decoupled electro-
nic programming of weight banks and optical probing of weighted
addition. As a critical component in this platform, a waveguide mem-
ory cell as shown in Fig. 1b is based on a boron-implanted SOI wave-
guide microheater (grey region) cladded with GST and SiO2 thin films
for non-volatile electrical programming. It is designed with a narrow
doping strip covering a portion of a straight waveguide for efficient
local Joule heating. Chip fabrication includes 120-nm shallow etching
of the 220-nm-thick silicon device layer, heavily P++ doping and alu-
minum (Al) pads (thickness = 300nm) deposition as ground-signal
(GS) electrodes for probe contact or wire bonding. Current–voltage
(I–V) scanning shows a linear response due to Ohmic contact between
Al pads and doped silicon (see Supplementary Fig. 1). GST and SiO2

thinfilms (thickness= 30/50nm)were last depositedon topof a doped
SOI waveguide by radiofrequency (RF) magnetron sputtering. A 50-
nm-thick SiO2 capping was used to protect the GST thin film to avoid
oxidation and delamination, thus enabling reliable operation (For
detailed fabrication steps, see Methods and Supplementary Fig. 2).
Top left of Fig. 1b shows our programming scheme using a single shot
of short and high (long and low) amplitude electrical pulse for amor-
phization (crystallization) of a GST cell. As a result, transmission of the
probe light can bemodulated due to varied attenuation of the GST cell
after programming. Figures 1c, d, respectively, show top-view of a
fabricated andwire bonded SOI photonic chip (1 cm× 1 cm), an optical
micrograph of a small-scale in-memory photonic–electronic dot-
product engine, a zoom-in optical micrograph and a scanning

electron microscopic (SEM) image of an electrically reconfigurable
GSTmemory cell with a measured doping length (Ldope) of 5.4 μm and
a total resistance of 238 Ω. Measured length of the GST/SiO2 thin film
(LGST) is 3.5 μm (For detailed geometric parameters of our design, see
Supplementary Fig. 3). There is an offset of patterned electrodes with
respect to the waveguide due to overlay misalignment in electron-
beam lithography. After programming by electrical pulses, large
amorphization areas embedded in the crystallinematrix can be clearly
observed in Fig. 1d due to the difference in conductivity between aGST
and cGST. And the weight (wi) is determined by the amorphous-to-
crystalline ratio of the i-th GST cell, which can be electrically pro-
grammed by choosing proper electrical pulse parameters. Please note
that only low-energy electrical pulses (<9 nJ) were applied to avoid
ablation of GST cells34,42.

Multilevel GST cells for scalar multiplication
First, we demonstrated reversible binary and multilevel opera-
tions of GST cells based on an experimental setup elaborated in
Supplementary Fig. 4. Figure 2a shows the temporal optical
waveform when a GST cell is switched back and forth upon
sending electrical pulses. A single 50-ns-wide rectangular pulse
with pulse amplitudes of 6.1 V (orange), 6.4 V (blue) and 6.8 V
(red) partially amorphized the GST cell with incremental
amorphous-to-crystalline ratios. A single 200-ns 3 V rectangular
pulse fully recrystallized the GST cell with transmission (T) back
to the baseline (Tbase). Considering the photodetection noise25,
Tbase is the measured and averaged transmission baseline for a
fully crystallized GST cell, and T is measured and averaged
transmission after a switching event for a partially amorphized
GST cell. The switching contrast is defined as ΔT/Tbase, where
change in transmission is defined as ΔT = T − Tbase. A switching
contrast was measured as high as 158.5% for a microheater with a
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SiO2

P++ Si
GST
i-SicGST aGST

(b)(a)

(d)

LGST Ldope

WWG

Al pad
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(c)

100 μm

x2 w2·x2x1 w1·x1 x3 w3·x3 x4 w4·x4

Fig. 1 | An in-memory photonic–electronic computing platform. a Conceptual
illustration of an in-memory photonic–electronic dot-product engine and its
working principles. b Schematic of an ion-implanted silicon-on-insulator (SOI)
waveguide microheater cladded with a Ge2Sb2Te5 (GST) thin film as a memory cell
and a weight bank, simultaneously. c/aGST: crystallized/amorphized Ge2Sb2Te5; i-
Si: intrinsic silicon. c Top-view of a fabricated and wire bonded SOI photonic chip

(1 cm× 1 cm) with a printed circuit board, and zoom-in optical micrographs of a
small-scale in-memory photonic–electronic dot-product engine and a non-volatile
waveguide memory cell. d A SEM image of an ion-implanted SOI waveguide
microheater (measured doping length = 5.4 μm)with GST/SiO2 (measured length =
3.5μmand thickness = 30/50 nm) thinfilms (blue) andaluminum(Al) ground-signal
(GS) electrodes (yellow).
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doping length of 3 μm and 2.5-μm-long GST/SiO2 cell atop.
Measured total resistance of the device is 261.5 Ω. Loss of
0.59 dB/μm was measured due to free carrier absorption in the
heavily doped silicon waveguide (Supplementary Fig. 5). Hence,
due to P++ doping, the insertion loss of a 3-μm-long waveguide
microheater is 1.78 dB. Based on a 3D finite element method
(FEM) modelling, we found that the heating area expands with
increasing doping length (Ldope ≤ 10 μm) of the waveguide
microheater, which can be used for switching a larger area of GST
if required (Supplementary Fig. 6). However, we chose Ldope of 3
μm to balance the trade-off between switching contrasts and
optical losses. Binary operation can be used for optical switching
applications as demonstrated by previous works34,35,37,41. However,
multi-bit programming of waveguide memory cells is a basic
requirement for photonic computing to obtain a high numerical
accuracy. We further evaluated the performance of addressing
deterministic multiple states by exploiting pulse amplitude
modulation (PAM). A sequence of 17 Write pulses was sent with
monotonically decreased amplitudes from 6.8 V to 5.2 V and a
fixed pulse width of 50 ns followed by a recrystallization pulse
with fixed amplitude of 3 V and pulse width of 200 ns. PAM
enables precise controlling of the amorphous-to-crystalline ratio
of a GST cell. Figure 2b shows time traces of multilevel operation
repeated by 3 cycles. 18 unique levels indicated by shaded green
and red areas were resolved. Each level corresponds to a partially
crystalline state, which was addressed with Write pulse energies
between 5.2 and 8.8 nJ. And each 200-ns 3 V Erase pulse consumes
6.9 nJ. The capacitive energy consumption is negligible43,44.
Energy consumptions of 6.9 nJ (Erase) and 8.8 nJ (Write) are lower

than those of reported microheater devices10. Such over 4-bit
data encoding and storage capability may provide a leap forward
for the in-memory photonic computing with electrical control.
Figure 2c shows switching dynamics of the GST cell. Upon send-
ing electrical pulses, readout voltage of a high-speed photo-
detector first drops due to thermo-optical effect24. At the end of
the pulse heating, transmittance of the GST cell reaches the
minimum and subsequently rises to another equilibrium state.
The post-excitation dead times were measured to be 232 and
356 ns for Write and Erase, respectively. In terms of operational
speed, it here requires 282 ns and 556 ns for Write and Erase,
respectively. Supplementary Fig. 7 also shows operation of our
device with repetitive optical switching over 100 cycles and
repetitive I–V scanning of microheater. Supplementary Table 2
compares performances of our experimentally demonstrated
devices with the previously reported non-resonant straight
waveguide GST cells with electrical controlling34–37,41. Our
GST cells exhibit the highest encoding/storage levels reported so
far and the lowest energy consumption per unit modulation
depth in the Erase (recrystallization) process. With these advan-
tages, our devices can be applied to in-memory photonic com-
puting, instead of only optical switching.

Scalar multiplication is essential for neuromorphic computing
due to heavy MAC workloads in PNNs14. We next demonstrated in-
memory scalar multiplication operation of our GSTmemory cells with
over 4-bit encoding precision. T is the measured absolute transmit-
tance of a GST cell with 16 discrete values between Tbase and Tmax. Pin
between 0 and Pmax (=0.35mW) is the input power generated by a
continuous wave (CW) probe laser after VOA modulation, which was
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Fig. 2 | Electrically reprogrammable photonic waveguide memory cells with
over4-bit encoding levels for scalarmultiplication. aReversible electrical binary
programming of a GST/SiO2 cell (LGST = 2.5 μm, thickness = 30/50 nm and Ldope = 3
μm) by 6.8 V (red), 6.4 V (blue), and 6.1 V (orange) 50-ns Write pulses and fixed 3 V
200-ns Erase pulses. b Multilevel operation of a device showing over 4-bit non-
volatile memory levels using pulse amplitude modulation (PAM). c Temporal
switching dynamics (red curves) showing amorphization to a higher transmission
level achieved with a single 50-ns 7 V rectangular Write pulse (black curve), and
recrystallization back to the baseline achieved by a single 200-ns 3 V rectangular

Erase pulse (black curve). d Measured scalar multiplication results versus exact
results by performing 784 multiplication operations (w(i) × x(t)) mapped by 16
different encoding levels (w(i), i = 1 to 16) of aGSTcell asmultiplicand (reachedwith
write pulse energy between 5.2 nJ and 8.8 nJ), and 49 random input amplitudes of a
probe light (x(t), t = (j − 1)·Δt, Δt = 1ms, and j = 1 to 49) as multiplier modulated
sequentially by a variable optical attenuator (VOA) at a frequency of 1 kHz. e A
histogram of computational error calculated by subtracting the measured scalar
multiplication from the exact. The histogram is fitted by a Gaussian distribution
(red solid curve). SD standard deviation.
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sent down to a GST cell. We calibrated and normalized input power
(Pin/Pmax) of a VOA versus bias voltage and transmittance [(T−Tbase)/
(Tmax−Tbase)] of our GST cell versus Write pulse amplitude with a fixed
pulse width of 50 ns (Supplementary Fig. 8) to obtain the exact x(t) ×
w(i) (x(t) and w(i)∈ [0, 1]). Transmittance of a GST cell versus Write/
Erase event needs to be calibrated independently due to fabrication
error ofmicroheater devices. In our testing, an electricWrite pulse was
first sent to aGST cell to reach a transmission level (T) followedby light
probing, which was encoded sequentially with 49 random values of Pin
between 0 and 0.35mW. We noted that x(t) ×w(i) can be also
expressed as: (Pin·T − Pin·Tbase)/(Pmax·Tmax – Pmax·Tbase), in which
absolute transmission through the device including Pin·T, Pin·Tbase,
Pmax·Tmax, Pmax· Tbase were recorded to calculate measured results of
scalarmultiplication in a post-processing step. A subtraction of (Pin·T −
Pin·Tbase) was performed on a digital computer to correct offset
(Tbase ≠0). Instead, offset correction can be implemented by using the
balanced photodetection method with estimated reduced energy
consumption and signal processing time in the circuits (see Supple-
mentary Note 10 for details). Accuracy of multiplication was then
examined. Figure 2d shows a good matching between the exact and

measured results of multiplication. The standard deviation (SD) of the
residual error is as low as 0.0034, which is almost one order of mag-
nitude lower than those reported in ref. 25, and the mean error is
−0.0034 fitted by a Gaussian distribution as shown in Fig. 2e.

In-memory parallel multiplication operations for image
processing
One of the predominant advantages of photonic computing is parallel
data processing enabled by theWDM scheme. We therefore study this
property in image processing applications. Figure 3a shows an
experimental setup for four-channel parallel multiplication as a proof-
of-concept demonstration (see Methods). By this multiplexing, the
processing time of an entire image can be reduced by a factor of four.
As shown in Fig. 3b, an input imagewith a size of 128 × 128 showing the
Clarendon Building at the University of Oxford (photographed by the
authors) was decomposed into RGB channels, which were pre-
processed to allow for re-arranging into a 4 by 12,288 (=128× 96)
matrix for data flattening. In each timeframe of the computation,
probe light at four separated wavelength channels (λ1 to λ4) generated
by a broadband light source was encoded as one row of this flattened
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as (T − Tbase)/SD(T) and SD(T) is the standard deviation of the detected and nor-
malized transmissionmixingwith photodetectionnoise, versus switching contrasts
(ΔT2/Tbase) of a GST cell (f).
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matrix using VOAs. These separated channels were multiplexed and
combined to pass through a single GST cell. At the output of the
device, channels were demultiplexed into four paths and detected by
photodetectors simultaneously. Light in parallel channels was probed
with nearly identical switching contrast after passing through the same
GST cell upon electronic programming (Supplementary Fig. 10).
Weight of the GST cell (w) was used to scale the amplitudes of signals
(x1(t)–x4(t), t = (j − 1)·Δt,Δt = 1ms, and j = 1 to 12,288). The scaling factor
(S) is defined as [(T1−Tbase)/(T2−Tbase)], where T1(2) is the transmittance
of a GST cell after electrical programming. The scaling factor can be
rewritten as ΔT1/ΔT2, and ΔT1 can be set as 0.5·ΔT2 or 2·ΔT2 to achieve
brightness scaling with scaling factors of 0.5 or 2, respectively. We also
note that S × xi(t) (i = 1 to 4) can be expressed as: [(T1−Tbase)/
(T2−Tbase)]·(Pin/Pmax) = (Pin·T1 − Pin·Tbase)/(Pmax·T2 – Pmax·Tbase), inwhich
absolute transmission through the device including Pin·T1, Pin·Tbase,
Pmax·T2, and Pmax·Tbase were recorded to calculate brightness scaling
results in a post-processing step. In the experiment, the parallel mul-
tiplication process of an entire RGB image was repeated for various
switching contrasts of a GST cell (ΔT/Tbase = 0%, 4%, 8%, 16%, 32%, 64%,
128%) with multiplication results stored for post-processing and ima-
ging plotting. As a direct comparison in Fig. 3c,we plotted images after
applying brightness scaling (scaling factor = 0.5 or 2) using a GST cell
with programmed (ΔT1/Tbase, ΔT2/Tbase) = (4%, 8%), (8%, 4%), (64%,
128%) or (128%, 64%). The measured images with higher contrasts of
(64%, 128%) and (128%, 64%) match well with the theoretically calcu-
lated results, showing SDs of 0.019 and 0.007, respectively. However,
the change of hue and noise are high in the measured images with
contrasts of (4%, 8%) and (8%, 4%). Thus, a large ΔT1(2)/Tbase, and
therefore, a correspondingly high CNR, which is defined as (T − Tbase)/
SD(T), leads to a lower computational error. SD(T) is the standard
deviation of the normalized detected transmission, attributed mainly
to photodetection noise. To provide quantitative analysis on the
computational error of brightness scaling, Fig. 3d shows three sets of
measured results versus the exact results at switching contrasts (ΔT2/
Tbase) of 4%, 8% and 32% for doubling the brightness. Figure 3e shows
histograms of computational error calculated by subtracting the
measured results from the exact results. Histograms were further fit-
ted by Gaussian distributions to extract SD as shown in Fig. 3f. We
observed a sharp decrease in SD versus switching contrast (ΔT2/Tbase).
SD is suppressed from0.060 to 0.007 and CNR is enhanced from 5.46
to 87.36 by increasingΔT2/Tbase from4% to64%. Errors aremainly from
shot noise and thermal noise in photodetection (0.79%, 0.74%, 0.81%
and 1.07% for the four channels) with a 3-dB bandwidth of 11.6 kHz and
light source power drift over time (1.82%, 3.59%, 2.89% and 4.31% for
the four channels) due to instability of our broadband light source (see
Supplementary Note 12 for details). Boxcar averaging and error dis-
tributions of the three colour tones indicate that the change of hue is
not caused by noise, but mainly caused by laser power drift (see
Supplementary Note 13 for details).

As a further example, we exploited parallel multiplication for
realizing advanced image filtering (Supplementary Note 14). Similarly,
it exhibits good matching between the measured and theoretical
results from applying kernels of blurring and edge detectionwith large
switching contrasts. In the image blurring application, SD is reduced
from 0.071 to 0.008 by increasing ΔTstep/Tbase from 4% to 64% (Sup-
plementary Fig. 18). Thus, large switching contrasts achieved by elec-
trical programming of PCMs using waveguidemicroheaters are crucial
for image processing and feature extraction in CNNs based on the
above comparison.

An in-memory photonic–electronic dot-product engine for
image recognition
Having demonstrated the parallel multiplication function for image
processing, we next performed convolutional operations in the optical
domain by exploiting a compact in-memory photonic–electronic

system consisting of four GST cells, which represent a 2 × 2 kernel
matrix and can be addressed with flexible electronic programming. As
shown in Fig. 4a, four different wavelength channels were demulti-
plexed from a broadband light source, and were separately encoded
by VOAs to represent a 2 × 2 patch of a 14 × 14 8-bit grey-scale image in
each timeframe of the computation. As a result, 169 (13 × 13 for valid
padding) patches were generated and organized into a 4 × 169 matrix
for data encoding in amplitudes of probe light. At outputs, probe
signals were combined incoherently to obtain a time series of kernel-
patchdot-product results (Σwi·xi(t), i = 1 to 4, t = (j − 1)·Δt,Δt = 1ms, and
j = 1 to 169). Please note that four scalar multiplications w1·x1(t),
w2·x2(t),w3·x3(t), andw4·x4(t) were performed in parallel in the optical
domain. And 169 repetitions of dot products of Σwi·xi(t) were imple-
mented sequentially by updating xi(t) (i = 1 to 4). Thus, there are 169 × 4
MAC operations in total in the optical domain for convolving an image
of 14 × 14 pixels. To map wi of ±1 onto a positive range of light trans-
mittance, wi is defined as 2·(Ti–Tave)/ΔT and Ti∈[Tmin, Tmax], where
Tave = (Tmin + Tmax)/2, ΔT = Tmax – Tmin, and Tmax (Tmin) is themaximum
(minimum) transmittance of aGSTcell by electrical programming. And
the convolutional operation can be expressed as: Σ [2(Ti–Tave)/ΔT]·(Pi/
Pmax), where Pi ∈ [0, Pmax] (i = 1 to 4) and xi(t) = Pi/Pmax. With this
mapping, 2-quadrant multiplication can be implemented and weights
of GST cells represent bipolar signals by offsetting the background
value of Tave.

We benchmarked our dot-product engine with classification tasks
on elementary datasets such as MNIST fashion product45 and hand-
written digits46 using a CNN architecture as shown in Fig. 4b. As an
example, ten-class fashion products were fed into the input layer of a
CNN for optical signal encoding. The data were then convolved with
four 2 × 2 kernels with elements of ±1 to generate four activationmaps
with an image size of 13 × 13 showing four detected edges. The com-
puting accuracy and error distributionof the convolutional processing
results are shown in Supplementary Fig. 20. The convolved data was
then post-processed. After nonlinear activation by a rectified linear
unit (ReLu) function, four activationmaps were flattened into a 676 × 1
vector, which was then fed into a fully connected layer with ten neu-
rons to output a final 10 × 1 vector for showing classification results.
400 images of fashion products/handwritten digits were convolved
with four different kernels using our photonic–electronic dot-product
engine, and their output data were used for training the 676 × 10
weight banks of a fully connected layer in our CNN by a digital com-
puter. In this way, computational errors due to noise and drift were
included in the training step to obtain a robust CNN. And another 100
images were fed into a trained CNN for generating a confusionmatrix.
To elaborate, edge detection results of grey-scale images with labelled
SDs were examined with visualized examples of T-shirt and digit zero
as shown in Figs. 4c, d, respectively. These measured results of high-
lighted edges (bright outlines) match well with those of theoretically
calculated results. Inferencing accuracies for fashion product and digit
(Figs. 4e, f) show good agreement between experimental measure-
ment (86% and 87%) and theoretical calculation (87% and 88%). Sup-
plementary Fig. 21 shows detailed evolution of loss and accuracy
versus epochduring neural network training for both Fashion-MNIST45

and digit-MNIST46 datasets. We noted that prediction accuracies were
improved with the help of a convolutional layer compared with those
of the fully connected neural networks without any convolutional
layer. The computational load of the optical processing in the pre-
sented CNN is discussed in Supplementary Fig. 22. And our CNN
exhibits oneof thehighest prediction accuracies for theMNIST fashion
product compared with those of the start-of-the-art PNNs previously
reported15,16,21 (see Supplementary Table 4 for details).

Discussion
In summary, we have demonstrated an in-memory photonic–electronic
hybrid computing system based on the non-volatile GST memory cells,
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which support flexible electrical programming and high-throughput
optical computing. Our electrically reprogrammable GST cells show
record-high 4-bit encoding levels, the lowest energy consumption per
unit modulation depth for the crystallization process (1.7 nJ/dB), and a
high switching contrast (158.5%) using non-resonant SOI waveguide
microheater devices. We then exploited parallel scalar multiplication
using a GST cell with a very low error (SD=0.007) and enhanced CNR
for image processing. We have experimentally revealed the key role of
enhancing the CNR in reducing the computation error by 8.9 times in
image processing tasks. For neuromorphic computing, we implemented
convolutional layers in CNNs based on an in-memory
photonic–electronic dot-product engine with inferencing accuracies of
87% and 86% for MNIST handwritten digit and fashion product recog-
nition, respectively, whichwere comparablewith software calculation. In
PNNs, a large switching contrast produces a wide variable range in
summed energy to drive the cascaded artificial neuron crossing its
threshold. An accumulated energy (Emin) estimated as 270.8 pJ, which is
far below the switching threshold (420 pJ) of an integrate-and-fire

artificial neuron47, can be reached based on Emin = Emax/(ΔTmax/Tbase + 1)
when the contrast (ΔTmax/Tbase) is 1.585 and the maximally accumulated
energy (Emax) is 700 pJ corresponding to the on-state of neuron. A large
contrast enabled by electrical programming is a key advantage in the
operation of PNNs with reliable cascading with neurons. Our results
show that implementing the in-memory photonic–electronic hybrid
platformsoffer scalable and flexible programming, parallel optical signal
processing, and CMOS-compatible wafer-scale fabrication. We believe
that further advances may come from the following aspects: reducing
insertion losses by optimizing design of ion implantation (e.g., using
lightly doped microheaters), system scaling up using crossbar array
networks7 or resonator-based broadcast and weight networks with low
insertion losses17, and boosting data throughput by monolithic inte-
grating the state-of-the-art silicon photonic modulators and germanium
photodetectors, which may drive the system at tens of Gigabits
per second (Gb/s) perWDMchannel. Our presented dot-product engine
can be scaled up to photonic tensor cores that implementmatrix-matrix
multiplication in a single clock, as described in Supplementary Note 16.
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Fig. 4 | Fashion product and digit recognition using CNNs. a An experimental
setup for implementing the dot-product operation. b A CNN architecture for both
fashion product and handwritten digit recognition. Insets of fashion products are
shown for illustration purpose. The photonic–electronic dot-product engine per-
forms the convolution for MNIST fashion products45 and handwritten digits46 with
an image size of 14 × 14. c, d Extracted features showing measured results with

labelled SDs compared with those of theoretically calculated ones using a 32-bit
computer for a T-shirt (c) and digit zero (d). e, f Confusion matrices showing
comparable inferencing accuracy for fashion product recognition with 86% from
experiment and 87% from calculation (e), and digit recognition with 87% from
experiment and 88% from calculation (f).
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Using thephotonic tensor core, assuming a data rate of 25Gb/s, 16WDM
channels for parallel computation and an estimated chip area of 56.02
mm2, compute density of an in-memory photonic–electronic chip is
estimated to be 7.3 TOPS/mm2, which is significantly higher than those
of current graphics processing units (GPUs), tensor processing units
(TPUs) and application-specific integrated circuits (ASICs)48–51. The
compute efficiency is estimated to be 10.0 TOPS/W and the energy per
MAC operation is 0.2 pJ/MAC (see Supplementary Note 16 for details).

Methods
Device fabrication
In-memory photonic–electronic hybrid systems were fabricated on a
SOI wafer (SOITECH)with a 220-nm-thick top silicon device layer and a
2-μm-thick buried oxide layer. The top silicon device layer was pat-
terned by a JEOL JBX-5500 50kV electron-beam lithography (EBL)
using a 400-nm-thick positive-tone resist (CSAR). The top silicon
device layer was subsequently shallowly etched (etching depth =
120 nm) by inductively coupled plasma reactive ion etching (ICP-RIE,
Oxford Instrument PlasmaPro) with SF6 and CHF3 gases, followed by
O2 plasma etching of CSAR resist. Next, a 3-μm-thick positive tone
electron-beam resist poly(methyl methacrylate) (PMMA) 950 A8 was
spin-coated and patterned by EBL as ion implantation windows for the
heavy borondoping. The ion implantation dosagewas 3 × 1015 ions/cm2

at 10KeV. After ion implantation, the SOI chips were immersed in
acetone to remove the PMMA layer and the piranha solution to com-
pletely remove the resist residue. The SOI chips were then annealed at
950 °C for 3min in nitrogen atmosphere to activate the boron dopant
by a Jipelec Jetfirst rapid thermal annealing processor. A 2-μm-thick
double-layer PMMA (PMMA 495 A8 and PMMA 950 A8) were spin-
coated on the chip surface, and the third step of EBL was performed to
define the evaporation windows of aluminum (Al) pads on top of the
doped silicon. Buffered oxide etching was performed to completely
remove native oxide layer for achieving a good Ohmic contact
between Al pads and doped silicon. A 300-nm-thick Al was subse-
quently deposited using thermal evaporation followed by lifting off.
And the fourth step of EBLwasperformed to define theGST sputtering
windows on topof the doped siliconwaveguides. A stack of 30-nm/50-
nm GST/SiO2 was deposited using a magnetron sputtering system
(PVD, AJA International Inc.) followedby a lift-off process. TheGST and
SiO2 targets were respectively sputtered at 30WRF power with 3 sccm
Ar flow and 40W RF power with 3 sccm Ar flow at a base pressure of
10−7 torr. Finally, the sputtered GSTwere lifted off followed by thermal
annealing at 250 °C for 10mins to fully crystallize the GST.

Measurement setup
Opticalmeasurement was performed using a fibre-chip coupling setup
as illustrated in Supplementary Fig. 4. The input light generated from a
continuous wave (CW) laser (7711A, Keysight Technologies) was
aligned to an apodized waveguide grating coupler for light coupling
under anoff-vertical incident angle of 8°. Thewavelength andpower of
theCW lightwere 1570.4 nmand3.55mW, respectively. Its polarization
was optimized by a fibre polarization controller (Thorlabs, FPC032) to
match the fundamental quasi-transverse-electric mode of the SOI
waveguides. The input light power was controlled by a variable optical
attenuator (Thorlabs V1550A) for data encoding at a modulation fre-
quency of 1 kHz for demonstrating multiplication operation. Output
light was split into two separated paths by a 1 × 2 fibre-optic coupler
(TW1550R2A1) with a splitting ratio of 90:10. 10% of output light was
collected by a low-noise photodetector (Newport 2011-FC) to obtain
temporal trace of the GST cells upon phase transition for binary and
multilevel operations. 90% of output light was collected by a high-
speed photodetector (Newport 1811-FC) and a fast-sampling oscillo-
scope (TDS7404, Tektronix, Inc.) to characterize the thermo-optical
response of the GST cells upon phase transition. In the electrical pro-
gramming, RF electrical pulses were generated by a pulse generator

(Tektronix AFG3102C) and DC electrical signals were generated by a
source meter (Keithley 2614B), which were combined by using a bias
tee (Mini-Circuits ZFBT-4R2GW+) and were applied to the Al pads
through a ground-signal (GS) electrical probe (PicoProbe). DC
current–voltage (I–V) sweeping was conducted to measure the total
resistance of the waveguidemicroheater. To amorphize the GST cell, a
single 50ns and 7 V rectangular voltage pulse was sent. For crystal-
lization, a single 200ns 3 V rectangular voltage pulse was applied. To
perform parallel multiplication, a broadband light source (SuperK
COMPACT, NKT Photonics) was first filtered by a dual-channel passive
filter (SuperK SPLIT, NKT Photonics) and was then demultiplexed by a
1 × 16 dense wavelength division multiplexing (DWDM) module to
output multiple wavelength channels at the optical telecommunica-
tion wavelengths. These separated wavelength channels were modu-
lated at a frequency of 1 kHz by VOAs (Thorlabs V1550A) to encode
data of flattened pixels. After modulation, these channels were multi-
plexed again by another 1 × 16 DWDMmodule and were coupled into a
single GST cell. At output port of the device, parallel channels were
demultiplexed and detected by low-noise photodetectors (Newport
2011-FC). To perform convolutional operation for artificial CNNs, each
wavelength channel demultiplexed from a broadband light source
(SuperK COMPACT, NKT Photonics) was modulated at a frequency of
1 kHz by a VOA (Thorlabs V1550A) and a GST cell to perform scalar
multiplication. At outputs, these wavelength channels were combined
by another 1 × 16 DWDM module and detected by a photodetector
(Newport 2011-FC). Data acquisition and equipment controlling were
performed by amicrocontroller (National Instruments USB-6259 BNC,
sampling rate of 1.25 MSamples/s) with analogue outputs connecting
to VOAs and analogue inputs connecting with photodetectors.

CNN model
For both MNIST fashion product and handwritten digit recogni-
tion tasks, 500 images were taken from the MNIST database and
compressed to 14 × 14 pixels. 80% of images (400 images) were
used for training and 20% (100 images) for testing. The archi-
tecture of the employed CNN is shown in Fig. 4b. The input layer
takes the pixel data (13 × 13 pixels for valid padding) and passes
the data to a convolutional layer consisting of four pre-defined
2 × 2 kernels for edge detection, resulting in an output dimension
of 13 × 13 × 4. The output is then flattened to 676 × 1 and activated
by the rectified linear unit (ReLu) function. The activated 676 × 1
output is fed to a fully connected layer with 10 neurons, whose
output is further converted to probabilities by a Softmax layer
that shows the final classification results. The convolution layer
was implemented using the in-memory photonic–electronic dot-
product engine. The subsequent ReLu function, fully connected
layer, and Softmax function were constructed by software using
MATLAB R2021b Deep Learning Toolbox. Weights of the fully
connected layer were trained by Adam optimizer. The loss and
accuracy versus epoch were monitored to ensure that the CNN
was successfully trained to classify ten categories of images.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code used in the present work is available from the authors upon
request.
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