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Colloidal gelation with non-sticky particles

Yujie Jiang 1,2 & Ryohei Seto 1,3,4

Colloidal gels are widely applied in industry due to their rheological character
—no flow takes place below the yield stress. Such property enables gels to
maintain uniform distribution in practical formulations; otherwise, solid
components may quickly sediment without the support of gel matrix. Com-
pared with pure gels of sticky colloids, therefore, the composites of gel and
non-sticky inclusions are more commonly encountered in reality. Through
numerical simulations, we investigate the gelation process in such binary
composites. We find that the non-sticky particles not only confine gelation in
the form of an effective volume fraction, but also introduce another lengths-
cale that competes with the size of growing clusters in gel. The ratio of two key
lengthscales in general controls the two effects. Using different gelmodels, we
verify such a scenario within a wide range of parameter space, suggesting a
potential universality in all classes of colloidal composites.

Sticky colloidal particles diffuse and aggregate into clusters until
forming a ramified, space-spanning network, i.e., colloidal gel1,2. Due to
the load-bearing structure, colloidal gels behave as soft solids
with finite yield stress beyond which flow occurs3,4. This rheological
signature enables gels to be widely applied in industry, ranging
from foodstuffs and personal care products to pharmaceutics and
biotechnology5–7. Through experiments and simulations, particulate
gels of monodisperse attractive (i.e., single-component) colloids have
been extensively studied in various aspects (e.g., structure2, dynamics5,
and rheology8), while theories havebeenproposed to approach apriori
prediction (such as ref. 9). By contrast, realistic gel-likematerials, which
usually contain multiple components, remain less probed. This is par-
tially due to the lack of propermodel systems in experiments, while the
intrinsic complication of polydispersity also limits the progress in
fundamental understanding. While recent attention on composite
systems increases10–15, most studies still remain on the phenomen-
ological level of ac hoc models.

Among the diverse array of multi-component systems, the com-
bination of gel matrix and solid fillers is prototypical in practical
applications. For example, polymeric nanocomposites have remark-
able mechanical properties and are ubiquitous in sensors, civil engi-
neering, and microbial applications16. Progress has been made in
understanding such composites, which, in the absence of strong
filler–matrix interactions, canbedescribedby conventional continuum

mechanics17. Because of a large gap between the constituent sizes,
empirical approaches (such as Krieger–Dougherty law) have been
found to describe the basic behavior by assuming a continuum
background18,19.

However, the continuum assumption no longer holds if the
characteristic sizes of each component are comparable20. This is the
case when replacing the polymermatrix in polymeric nanocomposites
with a colloidal gel network, where the typical lengthscales are all
micron-sized. The interplay between these lengthscales generates
novelty. Though not yet fully understood, such biphasic mixtures
receive increasing attention21,22, and recent work reports a unique flow-
switched bistability23, which has never been observed in regular gels.
These observations suggest the essential role of filler (or inclusion17)
particles. While researchers have recently focused on the gelled state
of these composites17,24, the inclusion effect on gelation dynamics is
still unclear.

Using numerical simulations, we aim to shed light on the under-
standing of colloidal gelation with non-sticky particle fillers. The sys-
tem we investigate is composed of sticky colloids, which can form a
percolating gel network on their own, and non-sticky (NS) particles,
which are hard spheres. As the latter stick neither to the gel colloids
nor to themselves, theydonotparticipate ingelationdirectly. Then the
intuitive assumption seems to view NS particles as confinement to the
gel part by compressing the available volume. Through extensive
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exploration of the parameter space, we show that the interplay
between comparable lengthscales also plays a vital role and, in some
cases, dominates over the confining effect and greatly impedes the
gelation process. The ratio of two key lengthscales, i.e., the char-
acteristic size of gel and the NS-particle spacing, offers a robust mea-
sure for such interplay, which controls the cluster growth during
gelation.Weverify this scenario over awide range of compositions and
particle sizes in different types of colloidal gel.

RESULTS
Colloidal gelation
A variety of attractions lead to colloidal gelation in nature, such as van
der Waals forces, depletion forces, and hydrophobic interactions25. In
thiswork,we investigate gelation under strong attractions (Uatt ≫ kBT)
within a wide range of volume fractions (0.03 ≤ϕ ≤0.3). We consider
two representative contact models. The first model refers to typical
attractionswhichdriveparticles to aggregatewithonly radial forces, as
shown in Fig. 1a (blue). Such conservative attractions are characterized
by pairwise potentials and mostly apply to smooth particles2 without
tangential constraints, i.e., particles in contact can freely slide and
rotate. By contrast, the second model constrains tangential pairwise
motions (sliding, rolling, and twisting) with the presence of attraction,
Fig. 1a (red). As suggested in ref. 26, we term the first contact as
attraction (att) and the second model with tangential constraints as
adhesion (adh).

The difference in contact interactions leads to different micro-
mechanics, such as bending rigidity27 and isostaticity28. Based on the
Maxwell criteria29, mechanical stability for frictionless particles in 3D
requires an average contact number N ≥Nc = 6. Following30, we con-
sider the isostaticity condition as microstructural information in
attractive and adhesive systems anddeterminegelationaccordingly. In
particular, we extract particles withN ≥Nc and check their connectivity
(see the “Methods” section), Fig. 1b. The gelation point determined by
thismethod has been verified, in both experiments31 and simulations24,
to agree well with that from macroscopic rheology. Therefore, we
apply this gelation criterion throughout this work, with Natt

c = 6 for
attractive gels and Nadh

c = 2 for adhesive gels28.
Our simulations start from a random, homogeneous configura-

tion and evolve following Langevin dynamics for up to 104 times
of Brownian time τB ≡πηd3/2kBT (where η refers to fluid viscosity and d
to colloid diameter). More simulation details can be found in the
Methods section. For both gels, the time required for gelation tg
decreases with the volume fraction ϕ in a power-law manner, Fig. 1c.
Fitting of attractive gel data (blue) gives an exponent of −3.7, while that

of adhesive gels (red) exhibits a lower exponent −2.1. Detailed fitting
results are as follows:

tattg ≈0:021 ×ϕ�3:7, ð1Þ

tadhg ≈0:011 ×ϕ�2:1: ð2Þ

At the same volume fraction ϕ, it takes adhesive colloids less time to
gel than the attractive ones. The exponents roughly agree with the
values in other literature32–34, justifying our gel simulations as well as
the gelation criterion we used.

To capture the structural evolution during gelation, we measure
the static structure factor S(q) for both attractive (ϕ =0.1) and adhesive
(ϕ = 0.05) gels, Fig. 1d. S(q) is originally flat due to the homogeneous
randomization for the initial configuration. As time increases (indi-
cated by arrows in Fig. 1d), a peak at intermediate wavenumber q
appears, grows, and shifts to a lower q. Thus, a characteristic
lengthscale ξ ≡ 2π/q0 (where q0 refers to the peak wavenumber)
increases during gelation, plausibly representing the cluster growth.
Note that the low-q peak is absent at ϕ = 0.5 (Supplementary Note 1),
indicating a homogeneous attractive glass (AG) state. The gel-to-glass
transition explains the slight deviation from the power-law scaling of
tg, Fig. 1c (blue).

While the two systems exhibit similar S(q) evolutions, the fractal
dimensions df inside clusters, which can be estimated from the slope of
SðqÞ∼q�df , are different35. According to Fig. 1d (top), the clusters in
attractive gel are rather compact (df≈ 3) at short range, suggesting
gelation via the typical arrested-phase-separation route2,25. As q
decreases, the fractal dimension df drops to 2 (consistent with the value
reported in ref. 7), indicating a relatively open structure at larger
lengthscales. We attribute this to the emergent bending rigidity of big-
ger building blocks, e.g., tetrahedrons composed of attractive particles.

By contrast, the gel network in the adhesive gel is more open and
ramified with a lower fractal dimension df ≈ 1.8, as expected by
diffusion-limited cluster–cluster aggregation (DLCA)25. Since the clus-
ters in adhesive gels are looser than those in attractive gels, it is easier
for adhesive colloids to percolate at the same volume fraction ϕ, i.e.,
lower gelation time tg. The above results show that the twomodels we
used lead to two different types of colloidal gels.

Gelation with NS particles
In the presence of NS particles, sticky colloids can still diffuse and
aggregate into a percolating gel network, such as Fig. 2a. Analogous to

Fig. 1 | Gelation dynamics of colloidal gels. a Sketches of possible pairwise
motions and two contact models with constraints shown in red crosses.
b Schematic gelation determination. See details in the Methods section. c Gelation
times tg as functions of volume fractionϕ in different gels. The blue dashed line and
red dotted line are power-law fittings with results shown in Eqs. (1) and (2). The gray

region denotes the attractive glass (AG) regime. d Evolution of structure factors
S(q) in an attractive gel (ϕ =0.1, top) and an adhesive gel (ϕ =0.05, bottom). The
open and filled symbols represent S(q) of snapshots before and upon gelation,
respectively, and the arrows indicate time evolutions (from bottom to top: t/τB = 0,
1, 10, 100, and 1000). Solid lines indicate the slope at intermediate wavenumbers.
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colloidal gels whereϕ directly controls gelation, the gelation in binary
systems depends on the volume fractions of gel colloids ϕg and NS
particles ϕNS. Since NS particles do not directly participate in the for-
mation of gel network, we expect them to geometrically confine
gelation and compress the free volume Vfree for sticky colloids. The
reduction in Vfree then leads to an effective increase in the colloidal
volume fraction. If simply consider Vfree by subtracting the NS particle
volume VNS from the total volume Vtot, we can then define an effective
volume fraction ϕeff for gel colloids as below:

ϕeff �
Vg

V free
=

Vg

V tot � VNS
=

ϕg

1� ϕNS
: ð3Þ

Though the definition above neglects the exclusion shell around
NS particles36, it has been verified to well capture the gelation dia-
gram with varying attractions24. This is probably because as clusters
grow and become increasingly large and porous, the cluster–NS
interpenetration37 invalidates the application of exclusion shell.

We first focus on the case of large NS particles with dNS = 8d,
where dNS and d refer to the sizes of NS particles and gel colloids,
respectively. According to Fig. 1b and Eq. (3), the addition of NS par-
ticles is expected to decrease the gelation time tg. For both models at
high ϕg (ϕg ≥0.15 for attractive systems and ϕg ≥0.07 for adhesive
systems), tg decreases with the volume fraction of NS-particles ϕNS

monotonically, Fig. 2b. Plotting tg versus ϕeff collapses these high-ϕg

data on a master curve, Fig. 2c, which converges with the gel data we
have shown in Fig. 1c. In this way, regardless of contact models, the
effective volume fraction ϕeff seems to well characterize the gelation
time tg of sticky-NS composites.

At low ϕg, nevertheless, the decrease in tg becomes progressively
slow as ϕNS increases. In particular, for attractive systems atϕg = 0.07,
the gelation time tg even increases with the addition of NS particles at
high ϕNS and becomes higher than that of the pure gel, Fig. 2b (top).
This conflicts with our expectation of increasing ϕeff. Furthermore,
plotting tg versus ϕeff shows deviation from the master curve, Fig. 2c.
While the data collapse at high ϕg justifies the definition of ϕeff, this
inconsistency indicates another physics, manifesting at low ϕg, that
delays the gelation with NS particles.

Lengthscale interplay and diagrams
As previously mentioned, one notable feature of gel–particle compo-
sites is the comparable lengthscales. Here we identify two key
lengthscales from each constituent and attribute the abnormal devia-
tion from ϕeff prediction (Fig. 2c) to their interplay. The first lengths-
cale is the characteristic size ξ of the gel structure derived from

structure factor S(q), which evolves over time (Fig. 1c). Since our focus
is the gelation time tg, we measure the structure factor S(q) at t = tg
(Supplementary Note 2) and extract a time-independent lengthscale
ξg � ξðtgÞ. Such lengthscale in general represents the correlation
length at gelation point, Fig. 3a (inset).

For both attractive and adhesive gels, ξg decreases with volume
fraction ϕ, Fig. 3a. Namely, the more concentrated a system is, the
smaller clusters it requires to assemble into a percolating network.
This is consistent with the gelation at the DLCA limit38. Power-law fit-
tings on the two sets of data give similar exponents, while the
lengthscale in adhesive gels ξadhg is slightly lower than that in attractive
gels ξattg at the same ϕ. Fitting results are as below:

ξattg ≈ 1:01×ϕ�0:86, ð4Þ

ξadhg ≈0:65 ×ϕ�0:90: ð5Þ

Note that the above ξg refers to the lengthscale in pure colloidal
gels and ϕ to the colloid volume fraction. In binary systems, the large
NS particles can easily distort the large-scale structure so that the
colloid–colloid structure factor S(q) barely exhibits a resolvable peak
at low q (Supplementary Fig. 3a). We, therefore, assume that the ϕeff

scenario also applies to the ξg scaling, by simply replacingϕwithϕeff in
Eqs. (4) and (5). That is, we use ξg in an equivalent pure gel as a proxy
for that in a binary composite. By comparing the void distribution39 in
pure gels and composites, we justify such assumption in Supplemen-
tary Note 3.

Apart from geometric confinement, NS particles also generate a
flexible porousmedium40, in which colloids diffuse and aggregate into
a gel network. Such medium is in general characterized by the pore
size20. Here we use the spacing between NS particles δ to represent the
porosity, Fig. 3b (inset). In particular, we simulate a collection of only
NS particles at different volume fractionsϕNS andmeasure the average
intersticeδ fromVoronoi cell volume (theMethods section). In theunit
of dNS, the average spacing δ, diverging at ϕNS = 0, decreases with ϕNS

as shown in Fig. 3b. Thoughwemeasureδ in pureNS-particles systems,
such quantity in binary mixtures remains almost unchanged at the
sameϕNS (see gray and black scatters in Fig. 3b).Moreover, as gelation
proceeds, δ barely varies over time (Supplementary Fig. 5). Thus, δ is
time-independent and scales with NS particles’ absolute, rather than
relative, volume fraction.

Given other parameters in a binary system fixed, both ξg and δ can
be a priori determined by ϕeff and ϕNS, respectively. Then their ratio
γ ≡ ξg/δ varies as a function of ϕg, ϕNS, and dNS/d. Since the ξg-scaling is

Fig. 2 | Colloidal gelation with non-sticky particles. a 3D rendering of a gelled
attractive system of dNS = 8d at ϕg = 0.05 and ϕNS = 0.1. Red and gray spheres
represent sticky colloids and non-sticky particles, respectively. b Gelation times tg
of attractive (top) and adhesive (bottom) systems of dNS = 8d vary as functions of

ϕNS at different ϕg. Data with ϕNS = 0 refer to colloidal gels. c Plot of the same data
in bwith tg versus ϕeff (defined in Eq. (3)). The dashed blue line and dotted red line
are the power-law fittings of gel data in Fig. 1b, also see Eqs. (1) and (2).

Article https://doi.org/10.1038/s41467-023-38461-1

Nature Communications |         (2023) 14:2773 3



different in the attractive and adhesive gels, as shown in Eqs. (4) and (5),
the lengthscale ratio γ also depends on the specific contact model.

We find that the tg deviation from the master curve (Fig. 2c) cor-
relates with γ. To quantify the degree of deviation, we use the distance
between the average ofmeasured tg and the predicted tfitg frompower-
law fitting, defined as follows:

dev½tg� � ∣ log tg � log tfitg ∣, ð6Þ

where tfitg refers to the gelation time calculated by Eq. (1) or (2) but
using ϕeff instead of ϕ. With all the data shown in Fig. 2c, we map out
the ϕg–ϕNS diagrams for both gel models at dNS = 8d, Fig. 3c. The
quantified deviation dev[tg] is represented by the colormap.

For attractive systems, while most data show small dev[tg], we
observe two regions that present visible deviations in the diagram,
Fig. 3c (left). At highϕg andϕNS, the effective volume fractionϕeff is so
high that the system falls in the AG regimewithϕeff > 0.4 (gray). This is
consistentwith thedeviation at highϕeff in Fig. 2c, where themeasured
tg falls below the power-law fitting (blue dashed line).

Significant deviation also occurs at lowϕg andhighϕNS (upper left
corner of the diagram). By drawing the iso-γ lines, we find that higher γ
leads to more prominent deviation dev[tg]. Namely, when the char-
acteristic size in gel ξg far exceeds the spacing δ between NS particles,
gelation is greatly hindered by their interplay, which dominates over
the effect of ϕeff.

We use the same method to calculate the ratio γ as well as the
deviation dev[tg] in adhesive systems and find that this scenario
appears to still work, Fig. 3c (right). As the lengthscale ratio γ increases,
the deviation becomes significant at low ϕg and high ϕNS. For both
systems, visually, the iso-γ line of γ = 2 demarcates the regionswith low

and high deviations. This result supports our argument that, as an
important factor, the lengthscale interplay primarily affects the gela-
tion process in binary systems at high γ.

The role of lengthscale ratio γ is further verified by varying dNS
from d to 12d in both gel models, Fig. 3d, e. At the same composition,
the lengthscale ratio γ decreases with the NS particle size dNS. For
larger NS particles of dNS = 12d, therefore, most data points fall on the
master curvewhenplotting tg versusϕeff (SupplementaryFig. 6), and tg
deviation is greatly suppressed due to the small γ. As dNS decreases,
deviation becomes increasingly significant. When the colloids and NS
particles have comparable sizes (i.e., dNS = d), almost all data points
deviate from the master curve (Supplementary Fig. 6). Raw data of
diagrams in Fig. 3d, e can be found in Supplementary Note 5.

Remarkably, the iso-γ line at γ = 2 demarcates the low- and high-
deviation regions in all cases, Fig. 3c–e. The positive correlation
between deviation and lengthscale ratio γ is obvious when plotting all
the data together, Fig. 3f.

Regardless of the interaction (attractive or adhesive), composi-
tion (ϕg and ϕNS), and particle size ratio dNS/d, the lengthscale ratio γ,
as well as the effective volume fraction ϕeff, seems to characterize the
gelation process in binary mixtures well.

Growth of the largest cluster
The deviation from ϕeff scenario indicates an additional hindering
effect at high γ. Such hindering results from the frustration of cluster
growth. In particular, we examine the evolutions of particle fraction in
the largest cluster Nlc/N. For each contactmodel, we compare systems
with different compositions and dNS but the same ϕeff (ϕeff = 0.2 for
attraction and ϕeff = 0.1 for adhesion), Fig. 4. The value of lengthscale
ratio γ is represented by the color. Compared with the pure gel at

Fig. 3 | Interplay between lengthscales affects gelation with NS particles.
a Characteristic lengthscale ξg as a function of volume fraction ϕ in colloidal gels.
Dashedanddotted lines are power-lawfittingswith results shown inEqs. (4) and (5).
b Average spacing δ between NS particles as a function of ϕNS. Gray stars are from
individual simulations of only NS particles, while black filled circles are from binary
composites with various ϕg and dNS. The NS spacing δ is determined through
Voronoi analysis in both cases (see the Methods section). c ϕg–ϕNS diagrams in

attractive (left) and adhesive (right) systemswith dNS = 8d. Color indicates the value
of dev[tg]. Gray region refers to AG regime with ϕeff > 0.4. Lines refer to the iso-γ
lines with values shownoneach of them.d, e are diagrams in attractive systems and
adhesive systems with various dNS shown on the upper-left corner of each diagram.
Dashedanddotted lines refer to γ = 2. f Plot of dev[tg] versus γ, including all the data
presented in c–e. Deviations below the dotted line (dev[tg] = 0.05) are considered
as random error only.
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ϕ =ϕeff (black), binary systems with small γ exhibit similar growth,
while thosewith large γ show a delayed increase inNlc/N. Interestingly,
the cluster morphology appears to be barely affected by NS particles
regardless of γ (Supplementary Note 6). These results explicitly show
how the lengthscale interplay, represented by the unified parameter γ,
affects colloidal gelation with NS particles.

Behavior of NS particles
While colloids aggregate into a porous network as gelation proceeds,
the dynamics of NS particles varies from system to system. At diluteϕg

and small dNS, we expect NS particles to be able to diffuse even upon
gelation since the pore size of the gelmatrix ismuch larger than theNS
particles. As the size of pores shrinks, the NS diffusion starts to be
confined until finally ‘locked’ in the matrix cage as soon as a gel net-
work is formed.

To probe the effect of ϕg, ϕNS, and dNS on NS dynamics, we
measure the mean squared displacement (MSD) in various composite
samples. For ease of comparison between colloids and NS, we nor-
malize MSD by diffusion coefficient Ddiff for each species of the parti-
cles. We find that increasing ϕg and dNS both lead to the dynamical
arrestofNS,which seems tooccur simultaneouslywith that of colloids,
Fig. 5a (left and middle). This may correspond to the case where NS
size exceeds the pore size of the gelmatrix, which decreases withϕg as
in Supplementary Fig. 4.We also notice that increasingϕNS slowsdown
the NS dynamics, Fig. 5a (right), probably due to the increasingly
crowding surroundings41.

Through radial distribution function (RDF), we also study the
configuration of NS particles in binary composites. Without loss of
generality, we use a specific composition ofϕg = 0.1 andϕNS = 0.3 with
four different dNS. While a small peak appears at the second-nearest
neighbor for small dNS = d and 3d, such subtle spatial correlation
does not present for larger dNS, Fig. 5b. We do not identify any sign of

crystallization for all cases, and there is little variation in RDF before
and after gelation. These results imply that the depletion effect42,43

(and the consequent Casimir-like attraction44) between NS particles is
neglectable.

DISCUSSION
To better illustrate the effect of NS particles, here we consider two
limits, Fig. 6. For infinitely-large NS particles (dNS→∞), the colloids
behave as a continuumwhich is geometrically confined between solid-
wall boundaries, i.e., the surfaces of NS particles. Within the colloidal
phase, the real volume fraction isϕeff rather thanϕg, and the diffusion,
as well as aggregation, is purely mediated by the background solvent
of viscosity ηf. As the gelation time is proportional to the Brownian
time τB, we expect the scaling to be tg ∼ηf ðϕeff Þα , where α refers to an
interaction-dependent exponent.

At another limit with dNS→0, the NS particles form a continuum
background in which sticky colloids are distributed, Fig. 6 (right). In
sucha case, confinement for colloids is absent so that the gelation time
scales with the absolute volume fraction ϕg rather than the effective
one ϕeff. The continuum background is essentially a hard-sphere sus-
pension, whose viscosity ηNS increases with the volume fraction of NS
particles45. Though such suspension is not a simple Newtonian fluid of
viscosityηNS ingeneral,wemayexpect sobecause the situation is close
to equilibrium46. In this sense, the gelation time then has the form
tg ∼ηNSðϕgÞα . For the smallest dNS = d we investigate, the background
viscosity ηNS increases with ϕNS roughly in a Krieger–Dougherty
manner47 (Supplementary Note 7).

The above arguments can be generalized by using an effective
background viscosity ηeff and an effective colloidal volume fraction
ϕg

eff (differing from ϕeff in Eq. (3)) as follows:

tg / ηeff × ðϕg
eff Þ

α
: ð7Þ

The values of ηeff and ϕg
eff at the two limits are shown in Fig. 6. The

collapsed gelation time tg in systems of dNS = 12d validates ϕeff at large
NS particles. For binary systemswith dNS = d and the sameϕg = 0.1, the
identical structure factor S(q) (Supplementary Fig. 3) and void dis-
tribution (Supplementary Fig. 4) suggest that the effective volume
fraction ϕg

eff reduces to ϕg at small dNS. Though this conflicts with the
previous assumption (ξg–ϕeff scaling), usingϕg instead ofϕeff seems to
make little difference in the iso-γ line (Supplementary Note 3).

As dNS decreases from infinity to zero, therefore, we expect
transitions in both ηeff (from ηf to ηNS) and ϕg

eff (from ϕeff to ϕg). At
intermediate dNS, the interpenetration between NS particles and
ramified clusters, which weakens the confinement effect and thereby
decreases the effective volume fraction ϕg

eff , becomes possible.
Meanwhile, the further aggregation of colloidal clusters with size
comparable to the NS spacing (γ∼ 1) requires the rearrangement of NS
particles, which turns on the transition in background viscosity from ηf

Fig. 4 | Lengthscale ratio γ controls cluster growth. a Time evolutions of particle
fraction in the largest cluster Nlc/N of attractive systems with ϕeff = 0.2. b Time
evolutions ofNlc/N in adhesive systemswithϕeff = 0.1. In each plot, data of puregels
(ϕ =ϕeff) are shown in black. Detailed compositions are not shown; instead, we use
γ represented by the color. Arrows indicate increasing γ.

Fig. 5 | Behavior of NS particles during gelation. a Normalized MSD of colloids
(lines) and NS particles (symbols). While varying ϕg (left), dNS (middle), and ϕNS

(right) individually, the other two parameters are fixed with values shown in the
upper left corner. For better comparison, data in red and black are shifted by 100

and 10, respectively. b RDF of NS particles in composites of ϕg = 0.1 and ϕNS =0.3.
Visible peaks are highlighted by arrows. Lines and symbols represent data before
and after gelation. For better comparison, data of dNS = d, 3d, and 5d are shifted by
15, 10, and 5, respectively.
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to ηNS. In particular, pinning NS particles during gelation leads to
diverging gelation time tg beyond γ = 2 (Supplementary Note 8). In this
way, the tg deviation occurs as a result of both the decrease in effective
volume fraction ϕg

eff and the increase of background viscosity ηeff.
While the above discussion merely considers dNS, the lengthscale

ratio γ, including ϕg, ϕNS, and dNS, offers a generic, unified measure in
all binary composites. The lengthscale competition then essentially
represents a mechanism transition between the two limit cases
as shown in Fig. 6. While using global quantities in the expression of
γ, we note that local details may also play a secondary role. For
example, the lengthscale ratio γ assumes uniform sizes for clusters and
NS spacing, which, in practice, both have size distributions (Supple-
mentary Note 4) and irregular morphologies (such as porosity and
tortuosity40,48). Meanwhile, as binary systems involve different inter-
actions, the coupling of localized glassy dynamics may also interfere
with the formation of gel network49. These factors, aswell as the others
not listed, may more or less affect the gelation process and cannot be
fully capturedbya sole quantity γ. This is consistentwith the scattering
of data points in Fig. 3f.

In summary, we use Langevin dynamics simulations to investigate
colloidal gelation with non-sticky particulate fillers. Through extensive
exploration in the parameter space, we find that the interplay between
two lengthscales (ξg and δ), represented by their ratio γ, matters in
composite gelation. At γ < 2, the NS particles act as geometric con-
finement and effectively increase the colloidal concentration in the
form of ϕeff. As γ increases, gelation is progressively hindered as a
result of both the decrease in effective concentration and the
increasingly-viscous background. Our results not only shed light on
industrial formulation and processing, but also open up a new scheme
for the tunability in practical gel materials. Though precise prediction
is still challenging due to the missing of microscopic details, we suc-
cessfully capture the generic importanceof lengthscale competition in
multi-component systems. Our finding will inspire the fundamental
understanding and may lead to the efficient development of colloidal
composite materials.

METHODS
Simulations
We perform Langevin dynamics simulations on LAMMPS50. Under
thermostat at kBT, our system contains two species of spherical
particles which differ in size and interaction. The first species con-
sists of sticky particles with an average diameter d (bidispersed with
0.87d and 1.13d to prevent crystallization), while the second species
consists of elastic spheres of diameter dNS. To ensure that both col-
loids and NS particles are diffusive within the relevant time range for
the gelation process (≳0.1τB), we set the particle mass proportional
to the particle size with the constant damping time m/3πηd≪ τB
(see Supplementary Note 9 for the details). The NS–NS and NS–g

interactions are simple elastic repulsions when overlapped, modeled
by a modified Hertzian model with a high modulus Ed3 ≫ kBT.
To capture the interaction between sticky colloids, we use the
Derjaguin–Muller–Toporov (DMT) contactmodel51 with a sufficiently
strong attraction Uatt = 20kBT. With the same modulus E, the overlap
caused by cohesion is small (≈0.01d) at force balance, ensuring short-
range attraction. Tangential constraints on sliding, rolling, and
twisting (Fig. 1a) are all modeled in a modified Coulombmanner with
the same spring constant and friction coefficient μ. Respectively, we
set μ = 0 for attractionwithout constraints andμ = 1 for adhesionwith
constraints on all three motions.

Our simulation occurs in a cubic box of side length L = 50d with
periodic boundaries, which is sufficiently large for bulk condition
(Supplementary Fig. 10). In the absence of colloid–colloid attraction,
an initial configuration is generated through multiple relaxations. We
first randomize NS particles and wait for them to relax for 100τB, and
then relax randomly-distributed, non-attractive colloids with pinned
NS particles for another 100τB. Upon equilibrium, we unpin NS parti-
cles and allow the bulk system to relax shortly for 10τB. The initial state
generated by such a pre-relaxing protocol exhibits no overlapping and
no visible aggregation caused by depletion forces. We find little
dependence on the pre-relaxing duration (Supplementary Fig. 11),
suggesting the robustness of our results.

Starting fromahomogeneous randomconfiguration, each system
evolves up to 104τB. We run each simulation for at least three times,
with the data points and error bars shown in thiswork representing the
average and standard deviation, respectively. Visualization and part of
data analysis are carried out using OVITO52.

Determining gelation time
A robust criterion for gelation is crucial to accurately determine the
gelation time tg. The experimental convention views the liquid-to-solid
transition, typically characterized by oscillatory rheology53, as the
gelation point. Inspired by the Maxwell criteria for stability29, recent
work, including both simulation24 and experiment31, correlates the
evolution of clusters of isostatic particles (contact numberN ≥Nc) with
colloidal gelation and confirms the validity of such structural indicator
by comparison with macroscopic rheology.

In this work, we define the gelation time tg as the time required
for the isostaticity percolation. As Fig. 1b shows, we first extract all
isostatic particles with N ≥Nc (Table. 1 in ref. 28) and then examine
their connectivity. Gelation is determined if there exist clusters
percolating through periodic boundaries in all three directions (x, y,
and z). Recent work correlates rigidity percolation with gelation
boundary54. For adhesive systems, our method (isostatic percolation
withNadh

c = 2) gives the same result as rigidity percolation, since each
pair constitutes a minimal rigid cluster. Yet this may not hold for
attractive contacts with no tangential constraints, where 3D rigidity
analysis is challenging31 (and beyond the scope of this work).
Therefore, we consistently apply the isostaticity method for attrac-
tive systems with Natt

c = 6.

Voronoi analysis and NS-particle spacing
To measure the average spacing between NS particles δ, we perform
simulations of only NS particles at different volume fractions ϕNS.
Upon Brownian relaxation, Voronoi analysis is performed, and the
spacing between each pair of particles δi is estimated as follows:

δi = 2×
3V cell,i

4π

� �1=3

� dNS, ð8Þ

whereVcell, i refers to the volumeof the Voronoi cell of the i-th particle.
Here we assume isotropic distribution and regard each Voronoi poly-
hedron as an equivalent sphere. Then the average spacing δ =〈δi〉.
The distribution of δi can be found in Supplementary Fig. 5.

Fig. 6 | Schematic illustration of two limit cases in binary systems. Left: dNS→∞

(γ→0). Right: dNS→0 (γ→∞).
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Data availability
The data generated in this study are provided in the Supplementary
Information/SourceData file. Source data are providedwith this paper.

Code availability
The codes of the computer simulations are available from the corre-
sponding authors upon reasonable request.
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