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Deep learning to estimate lithium-ion
battery state of health without additional
degradation experiments

Jiahuan Lu1, Rui Xiong 1 , Jinpeng Tian 1 , Chenxu Wang1 & Fengchun Sun1

State of health is a critical state which evaluates the degradation level of bat-
teries. However, it cannot bemeasured directly but requires estimation. While
accurate state of health estimation has progressed markedly, the time- and
resource-consuming degradation experiments to generate target battery
labels hinder the development of state of health estimation methods. In this
article, we design a deep-learning framework to enable the estimation of
battery state of health in the absence of target battery labels. This framework
integrates a swarmof deep neural networks equippedwith domain adaptation
to produce accurate estimation. We employ 65 commercial batteries from 5
different manufacturers to generate 71,588 samples for cross-validation. The
validation results indicate that the proposed framework can ensure absolute
errors of less than 3% for 89.4% of samples (less than 5% for 98.9% of samples),
with a maximum absolute error of less than 8.87% in the absence of target
labels. This work emphasizes the power of deep learning in precluding
degradation experiments and highlights the promise of rapid development of
battery management algorithms for new-generation batteries using only pre-
vious experimental data.

Lithium-ion batteries (LIBs) offer high energy density, fast response,
and environmental friendliness1, and have unprecedentedly spurred
the penetration of renewable energy2–4. The global market of LIBs
displays staggering figures in 2020, up to 142.8 GWh on the side of
electric vehicles, and it is expected to exceed 91.8 billion dollars5 in the
next few years.While LIBs are being popularized at a phenomenal rate,
their prolonged applications are facing tough challenges. As is the case
with machines, LIB components such as electrodes and separators
experience varying levels of degradation. These negative spillovers
lead to capacity and power fade6,7 and thereby imperil the assets8. To
ensure safe and efficient battery management, obtaining an accurate
battery state of health (SOH) is of vital importance.

Battery SOH has been defined in various forms. It can be defined
by the service time9 or by the increase in the internal resistance10.
Although these variables are easily measurable, battery degradation is
also accompanied by capacity loss, whose accurate determination

impacts other battery management tasks such as driving range esti-
mation and life prediction. Thus, SOH, defined as the ratio between the
present capacity and the initial capacity, is drawing broad attention11,12.
However, the capacity measurement requires completely charging or
discharging the batteries with specific protocols13, which is not prac-
tical for batteries in use. This motivates the SOH estimation from daily
operating data.

Existing SOH estimation studies are generally devoted to
extracting features correlated with SOH degradation and mapping
them to the SOH. These methods require lifelong battery degradation
data with measured SOH labels of the target LIBs (so-called target-
labeled data). On this basis, many features have been crafted based on
our understanding of battery degradation, such as the electrical
features14,15, electrochemical features16, acoustic features17, mechanical
features18,19, and thermal features20. Such arduous data collection and
feature engineering steps impede the development of SOH estimation
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methods. Recently, deep neural networks (DNNs)21,22 have demon-
strated the automatic extraction of black-box features from raw
operating data, showing impressive SOH estimation performance.
However, experimental collection of the target-labeled data is time-
consuming and resource-intensive23, and creatingmassive datasets for
different types of LIBs is rarely sustainable.

A paradigm of generalization for DNNs is transfer learning, which
is one promising solution to lighten the burden of data collection.
Transfer learning transfers knowledge learned by a DNN in a training
dataset (the source domain) to a different dataset (the target domain)
using a small number of target-labeled data24. For example, a DNN for
charging curve prediction trained using one type of battery can adapt
to other types of batteries by fine-tuning using a small number of new
samples25. A growing body of literature26,27 applies retraining or fine-
tuning techniques for SOH estimation of various types of batteries.
Generally, these works require at least 25–30% of labeled lifelong data
in the target domain. Therefore, target domain degradation experi-
ments are still needed. These approaches relying on conventional
experiments cannot keep pace with the battery upgrading and have
established a barrier to the development of battery technologies.

Approaches without the need for additional target-labeled data to
estimate SOH are attractive28–30. This can help the rapid development
of battery management systems (BMSs) for new-generation batteries
using only existing experimental data, saving considerable time and
resources. It is also expected to motivate the utilization of large-scale
field data without labels. Indeed, issues for target label-agnostic cases
have longbeennoticed.Cross-domain learning in the absenceof target
labels has been proven to be equivalent to a dual training task, i.e.,
learning to predict the source labels while closing the gap between the
source and target domains31,32. Research in the field of visual
recognition33 has shown that even though there are no target-labeled
data for training, a DNN jointly trained for classification and domain
invariance can conduct classification precisely across visually distinct
domains. This confirms that DNNs can accomplish the tasks in target
label-agnostic cases. However, LIB SOH estimation, which has a mas-
sive demand for target labels, has yet to benefit from it.

In this work, we propose a deep learning-based framework to
estimate battery SOH without relying on target labels for training. The
proposed framework integrates the estimates of a swarmof DNNs into
a reliable SOH estimate rather than relying on a single DNN. Individual
DNNs are trained to learn cross-domain knowledge according to
source labels and domain invariance of degradation features. DNNs
with good performance in the swarm are selected for reliable estima-
tion. We further reveal the influence of the sample distribution in the
source domain on SOH estimation and propose to improve estimation
performance by trimming the sample distribution in the source
domain. We adopt two self-developed and three public battery
degradation datasets for cross-validation. The validation covers 80
cases, encompassing 71,588 samples collected from 65 cells. We
demonstrate that the proposed framework can achieve an absolute
error of less than 3% for 89.4% of samples (less than 5% for 98.9% of
samples), with a maximum absolute error of less than 8.87%. To pro-
vide references for the selection of hyper-parameters, we also inves-
tigate the influence of the crucial hyper-parameters on the estimation
performance. These results highlight the potential of deep learning in
supplanting the time-consuming battery degradation experiments,
and further rapid development of BMS for new-generation batteries
using existing experimental data.

Results
Framework overview
We develop a SOH estimation framework composed of a swarm of
DNNs (Fig. 1). This framework is designed for reliable estimation by
selectively integrating the estimates from multiple DNNs. The pro-
posed framework is introduced in terms of the training procedure

(Fig. 1a), estimation procedure (Fig. 1c), and its component units
(Fig. 1b). Their definitions and processes are introduced in the Meth-
ods section in detail.

The training procedure of the proposed framework integrates
independent sub-trainings of N DNNs (see Fig. 1a). Without loss of
generality, the battery charging data are employed as the input of
the DNNs since the battery charging process is generally con-
trollable and occurs regularly. Specifically, charging capacity
sequences within a voltage sampling window (so-called partial
charging curves) are taken as the input of each DNN, as demon-
strated by previous studies25,34–37. Before sub-trainings, partial
charging curves from both source and target domains are normal-
ized by their nominal capacity. When the training starts, all the sub-
trainings are enabled and share an identical training set that is
composed of labeled source domain samples and unlabeled target
domain samples. We also designed a trimming round to form a new
source domain with a balanced SOH distribution by discarding
some samples. The training procedure of the proposed framework
is terminated after all the sub-trainings are finished.

Each DNN in the proposed framework has identical hyper-
parameters (Fig. 1b) but is initialized with different random seeds
based on the He initializer38. As the input of DNN, partial charging
curves from both source and target domains are first gridded with a
voltage interval of 10mV to reduce the data burden. Next, these
samples are fed into stacked one-dimensional (1D) CNN layers to
extract their feature vectors. After that, feature vectors of the source
domain are flattened and fed into a terminal fully connected (TFC)
layer to generate their SOH estimates. These estimates are used
together with the source domain labels to calculate the source domain
loss. On the other hand, feature vectors of target-domain samples are
flattened to a middle fully connected (MFC) layer for reconstructing
their feature vectors. These reconstructed feature vectors play two
roles. The first is to quantify the domain gap together with the source
domain feature vectors. The second is to provide estimates of target
domain samples (treated as the pre-estimates of each trained DNN) in
the estimation procedure, where the reconstructed feature vectors are
further fed into the same TFC as the source domain for regression. By
simultaneously minimizing the SOH estimation loss of source domain
samples and the gap between the TFC inputs of the two domains, each
sub-training transfers the source domain knowledge to the target
domain.

The estimation procedure of the proposed framework, unlike the
training procedure, is to select a swarm of the trained DNNs to parti-
cipate in the estimation (Fig. 1c). First, all the DNNs are activated to
estimate the SOHs in the target domain, as mentioned above. The
trained DNNs are expected to differ widely in estimation performance
owing to the training uncertainty and can thus be treated as pre-
estimators. To produce a reliable final estimate, we eliminate some
unfavorable DNNs by setting quartile thresholds for the mean and
standard deviation of the estimation results. The estimations from the
selectedDNNs are averaged toproduce eventual SOHestimates for the
target domain samples. Detailed discussions can be found in the
Rationalization of predictive performance section.

Data generation
SOH estimation in target label-agnostic cases spans different applica-
tions, manufacturers, and chemistries. To reflect such situations, we
employ 10,757 samples collected from 65 commercial LIB cells pro-
duced by five different manufacturers for validation. The eventual
datasets cover five kinds of widely-used cathode active materials,
including lithium cobalt oxide (LiCoO2, LCO)

39, a blend of LCO and
lithium nickel cobalt oxide (LiCoNiO2, LCO/NCO)

7, nickel manganese
cobalt (Li(NiMnCo)O2, NMC)40, nickel cobalt aluminum (LiNiCoAlO2,
NCA), and lithium iron phosphate (LiFePO4, LFP). Note that the exact
composition of the cathode active materials cannot be further
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provided here as this information is not available in the existing lit-
erature. The specifications of these five types of LIBs and their
experimental costs are compared inTable 1 (see Supplementary Note 1
for the estimation of the experimental cost). The degradation data of
PANASONIC and GOTION LIBs are experimentally generated in our lab
(see Data availability statement), and others are from three public
datasets39,41–43. Details regarding the datasets can be found in Table S1.
Note that C-rate is a measure of the battery’s charge or discharge
current relative to its nominal capacity, and is used here to describe
the experimental current.

In Fig. 2, we plot the charging curves of the selected LIBs to dis-
close their different degradation behaviors. Significant gaps exist
between the charging curves of any two types of LIBs, even though
Datasets #2 and #4 consist of batteries with similar electrode active
materials. This is because the degradation behavior of LIBs is subject to
various factors, such as manufacturing factors and application sce-
narios. Affected bydissimilarity among experiments, degradation rate,
and data processing, the LIBs we employed cover different SOH dis-
tributions. This simulates the real-world discrepancy in sample dis-
tribution between the source and target domains. Therefore, given a
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Fig. 1 | Overview of the proposed SOH estimation framework. a Diagram of the training procedure. b Architecture of each DNN of the swarm. c Diagram of the
estimation procedure.
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Table 1 | Main specifications of the selected LIBs in this work

Dataset Manufacturer/ provider Electrode active materials
(Cathode/Anode)

Nominal
capacity (Ah)

Voltage
range (V)

Data amount
(Samples)

Estimated test
duration (Hours)

#1 CALCE39,43 LCO/ Graphite 1.1 2.7-4.2 2807 1397

#2 SANYO41 NMC/ Graphite 1.85 3.0-4.1 415 644

#3 PANASONIC NCA/ Graphite 3.03 2.5-4.2 2770 1801

#4 KOKAM42 (LCO/NCO) / Graphite 0.74 2.7-4.2 503 8473

#5 GOTION HIGH-TECH LFP/ Graphite 27 2.0-3.65 4262 2238
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new type of LIBs, traditionally, we carry out time- and resource-
consuming experiments to develop tailor-made models for SOH esti-
mation. To address this issue, we propose a domain adaptation-
enabled framework for cross-dataset battery SOH estimation without
knowing any SOH labels of target batteries.

Cross-dataset battery SOH estimation in the absence of target
labels
In this experiment, we examine the performance of the proposed
framework on cross-dataset SOH estimation in the absence of target
labels. Detailed hyper-parameter settings can be found in Fig. S1. To
this end, the employed five types of LIBs are pairwise combined,
resulting in a total of 20 combinations. A general case is that there are
lifelong labeled source domain data (SOH ranges from 100 to 75%) and
unlabeled target domain data (SOH ranges from 100% to an unknown
level) for training. That is to say, except that initial cycles have a SOHof
100%, we know nothing about the SOH distribution of samples from
the target domain. Thus, our estimation faces the challenge of domain
imbalance44. To imitate general cases, we postulate that the SOH of
batteries in the target domain are distributed from 100 to 95, 90, 85,
and 80% (denoted as ~95, ~90, ~85, and ~80%), respectively. As a result,
each combination contains four cases with four different lower SOH
bounds (see Table S2 for the detailed validation scheme). A 500-mV
voltage window is utilized to extract the partial charging data, and it
covers 3.5 to 4 V for Datasets #1–4 and 3.1 to 3.6 V for Dataset #5. The
impact of different voltage windows on SOH is investigated in Sup-
plementary Note 2.

We first use all source domain samples to train the framework
without trimming and the estimation of SOH error distribution is
shown in Fig. 3a. Detailed results canbe found in Figs. S3, 4.Overall, the
mean absolute error (MAE) of the proposed framework in all cases is
within 5.01%, which proves that the estimation in the absence of target
labels is effective. Interestingly, changing source domains induces
variation in the estimation accuracy for a specific target domain. For
example, using Dataset #5 as the source domain, we can achieve
accurate estimation for Datasets #1–4. However, using Dataset #2 as
the source domain leads to different estimation performance: the
overall errors in the ~85 and ~80% cases are generally higher than those
in the ~95 and ~90% cases. This result draws our attention to the source
domain. Tracing back to the SOH distribution in the source domains,
we find that the SOH distribution in Dataset #2 is significantly skewed
towards high SOH, and the skewness is −0.4. In contrast, the dis-
tribution of other datasets is relatively symmetric, and the skewnesses
of Datasets #1 and #3–5 are −0.19 and −0.12, 0.12, and −0.05, respec-
tively. This explains why using Dataset #2 as the source domain brings
significant advantages in the ~95 and ~90% cases. For further valida-
tion, we trim the source domain SOH distribution to be symmetric by
making the skewness tend towards zero before training. The SOH
distributions in source domains after the trim are shown at the top of
Fig. 3a. Dataset #5 undergoes only slight trimming as its original dis-
tribution is almost symmetric (the skewness before the trim is −0.05).
In contrast, Dataset #2 is significantly trimmed, where many samples
with high SOH are discarded. Next, we employ the trimmed source
domains to train the framework and evaluate the performance of SOH
estimation. On thewhole, the extent of change in accuracy is positively
correlatedwith that in the trim. Using Dataset #5 as the source domain
leads to good performance with little change as before. Using Dataset
#2, after undergoing themost notable change, brings similar trends as
the other datasets: the framework performs significantly better in the
~95 and ~90% cases than in the ~85 and ~80% cases. These results
highlight the impact of source domain SOH distribution on SOH esti-
mation in the absenceof target labels and the effectiveness of the trim.
We then gather all the verification cases to statistically evaluate the
improvement of SOH estimation. Figure 3b shows the comparative
results before and after the trim to describe the error distribution as a

function of true SOH. Trimming the source domains reduces the
maximum absolute error from 10.09 to 8.87%. More importantly, the
percentage of high absolute errors (>5%) is dramatically reduced. Also,
most estimates are at a low absolute error level (≤3%). To quantify this,
we plot the cumulative distribution of the absolute error using bins
with a width of 1% absolute error in Fig. 3c. 89.4% of the samples have
an absolute error of less than 3% and up to 98.9% of the samples have
an error of less than 5% after the trim, which is significantly superior to
the case without trim. In conclusion, the proposed framework can
achieve accurate cross-dataset SOHestimation in the absence of target
labels and can be improved after trimming the sample distribution in
the source domain.

Comparison with existing methods
To verify the advancement of the proposed framework, we gather all
validation cases and compare our accuracy with that of four popular
methods, including Gaussian process regression35 (GPR), random
forest45 (RF), support vector regression46 (SVR), and CNN47. Their
hyper-parameter settings can be found in Table S3. The comparative
results of the absolute error distribution are described in Fig. 4, and
detailed results can be found in Figs. S5–8.

We first show the performance of the four existingmethods when
the target domain labels are available. Having enough target labels for
learning the target domain, the existing methods show high accuracy
with MAEs of less than 1%. However, the target labels in practice come
at the cost of numerous workforce and energy. Developing a battery
degradation dataset requires 644–8473 hours of degradation experi-
ments (according to the estimation in Supplementary Note 1). In the
absence of the target labels, existing methods fail to provide reliable
estimation with their MAEs over 5.01%, and the maximum absolute
error reaches over 17.91%. By contrast, the proposed framework
achieves accurate SOH estimation without target labels, reducing the
MAE and maximum absolute error by more than half. The MAE and
maximum absolute error are within 1.43 and 8.87%, respectively. More
importantly, given a swarm size of 300, our method leverages
~0.7 hours for training, avoiding degradation experiments of thou-
sands of hours (see Supplementary Note 3 for the computational cost
comparison). This excellent performance can be attributed to the
swarm-driven and domain adaptation strategies. To demonstrate this,
ablation experiments are performed to verify the role of these strate-
gies. Benchmark 1 and Benchmark 2 are created by disabling the
swarm-driven and domain adaptation strategies of the proposed fra-
mework, respectively. Benchmark 3 is designed by disabling both
strategies. The detailed results can be found in Figs. S9–11. Besides,
Benchmark 1 is designed with a comparable number of hyper-
parameters to the proposed framework. As expected, without the
help of either of the two strategies, the estimation performance
approximately reduces to the level of existing methods.

Rationalization of predictive performance
The excellent performance of our framework can be attributed to
domain adaptation and swarm-driven strategies. The swarm-driven
strategy is first analyzed. We take a pair of instances in the ~85% case
(i.e., the cases of transfer fromDataset #1 to #5 and fromDataset #5 to
#1) to investigate its influence. The distributions of pre-estimation root
mean square errors (RMSEs) of DNN swarms in these cases are
reported in Fig. 5a, b. Overall, the pre-estimation RMSEs of DNN
swarmsbefore selection,which are affectedbyuncertain training, have
awide distribution. One can note that someDNNs have RMSEs of up to
10%. Thus, relying only on a single DNN may yield unreliable SOH
estimates like this. We also observe that most DNNs in the swarm are
positively skewed within an RMSE of less than 8%. Many of them have
RMSEs of less than 3%, indicating that a considerable part of the swarm
is trustworthy. This motivates the proposed framework to selectively
integrate estimations of a swarm of DNNs for reliable SOH estimation.
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We find that, for a given batch of target domain samples, the estima-
tion results of the DNNs in the swarm are diverse, but their distribu-
tions show regularity with their accuracy (see Supplementary Note 4
for the analysis). This provides an opportunity for the proposed fra-
mework to select a group of well-performing DNNs. To develop a
selection criterion, we choose the mean and standard deviation to
assess the estimations of each DNN in Fig. 5c, d. It is seen that the
RMSEs of the pre-estimates for DNNs are significantly correlated with

their means and standard deviations. The Pearson correlation coeffi-
cients between the means and the RMSEs are −0.9937 in Fig. 5c and
−0.9933 in Fig. 5d. Those between the standard deviations and the
RMSEs are mostly greater than 0.5 (0.6258 in Fig. 5c and 0.6074 in
Fig. 5d). The Pearson correlation coefficients over all cases can be
found in Fig. S13. These results reveal that the RMSE of the pre-
estimates of each DNN is negatively correlated with the mean and is
positively correlated with the standard deviation. In other words,

Fig. 3 | Performance of cross-dataset battery SOH estimation in the absence of
target labels. a Distribution of absolute error versus target domain SOH range.
b Distribution of absolute error of the proposed framework as a function of

measured SOH. Both plots use the same color scales. c The cumulative distribu-
tion of estimation absolute errors.
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DNNs whose pre-estimates have a higher mean and lower standard
deviation are more likely to have higher accuracy. This explains why
excellent DNNs can be selected even in the absence of target labels by
only using lower and upper quartiles for the means and standard
deviations (theorized in the Methods section). We also report the
distributions of pre-estimation RMSEs in Fig. 5a, b corresponding to
the selected DNNs (circled in black line) in Fig. 5c, d. It is observed that
after the selection, the RMSE bandwidth of the swarm estimation is
reduced fromover 10% to around 4%, and themeanRMSEdecreases to
about 2%. These results demonstrate the effectiveness and importance
of the DNN swarm-driven strategy in the proposed framework.

After evaluating the swarm-driven strategy, we investigate the
other crucial strategy of the proposed framework, i.e., domain
adaptation. The feature vectors, before being fed to the terminal
fully connected layer, are the subject of domain adaptation.
Nevertheless, we do not focus on them but define an explanation
map to visualize their contributions to the SOH estimate. The
explanation map is defined as the weighted sum of the unflattened
weight vector W* of the TFC layer and these feature vectors along
the channels (theorized in the DNN explanation section). We first
dissect an individual DNN without domain adaptation at 10 equal-
interval cycles to visualize the evolution of the explanationmap as a
function of degradation in Fig. 6a. This DNN is first trained for
Dataset #1 and then applied to Dataset #5 with no available target
labels. It is seen that the explanationmaps for Datasets #1 and #5 are
dramatically different. When applied to dataset #5 without domain
adaptation, the DNN shows abnormally high feature values near the
sampling points corresponding to the voltage plateau. As a result, it
makes a severe overestimate for Dataset #5. Next, we dissect an
individual DNN (with the median RMSE corresponding to Fig. 5a) of
the proposed framework to show the explanation maps (see
Fig. 6b). Note that a domain-adapted feature vector needs to be

unflattened before being used to compute its explanation map. In
contrast to Fig. 6a, the gaps in explanation maps between the two
datasets are significantly mitigated by domain adaptation. Thanks
to this, the DNN can make accurate estimations even in the absence
of the dataset #5 labels. This is the answer regarding the necessity of
domain adaptation in the proposed framework.

Estimation performance with various hyper-parameters
We further investigate the impactof some crucial hyper-parameters on
the estimation performance of the proposed framework, including the
size of the DNN swarm, activation functions, number of channels, and
number of layers of the CNN. The size of the DNN swarm is set to 1, 50,
100,…, and 300, respectively, and the results are shown in Fig. 7a. We
observe that increasing the swarm size can reduce the overall esti-
mation error. A size of 50 is sufficient for accurate estimation by
suppressing the MAE below 2%. Thus, one can balance the accuracy
and computational cost by tuning the swarm size in practice. We then
examine the influence of activation functions in Fig. 7b by comparing
the estimation performance using ReLU, Tanh, Sigmoid, and LogSig-
moid, respectively. Note that the Sigmoidbefore theDNNoutput is not
considered in this comparison as it is used to scale the estimates into
[0, 1]. The results show that the ReLU activation function shows the
highest accuracy and is therefore preferred when applying the fra-
mework. Next, we study the impact of the number of CNN layers and
channels on the estimation performance. We span the number of CNN
layers from 1 to 4, and the number of channels for all layers is assumed
to be identical and belongs to [32, 64, 128, 256]. The results are
reported in Fig. 7c. It can be observed that increasing the number of
channels does not always reduce the MAE except for the one-layer
CNN. The number of channels less than 128 is sufficient to provide an
accurate estimation. On the other hand, multiple CNN layers are con-
ducive to high accuracy. One might need to find a suitable number of

0%

10%

20%

30%

A
b

so
lu

te
 e

rr
o

r

Swarm-
driven

Domain 
adaptation

With target labels In the absence of target labels

MAE
MAE 
Standard
deviation

The existing methods Ablation experiments

Fig. 4 | Comparison of absolute error distribution of the SOH estimation. The
shaded region represents the cases with target labels, while the region not shaded
represents the cases in the absence of target labels. GPR, RF, SVR, and CNN are
representatives of existing methods, which are not equipped with domain

adaptation and swarm-driven strategies. Benchmark 1 and Benchmark 2 are
designed by disabling the swarm-driven and domain adaptation strategies of the
proposed framework, respectively. Benchmark 3 is designed by disabling both
strategies.

Article https://doi.org/10.1038/s41467-023-38458-w

Nature Communications |         (2023) 14:2760 7



CNN layers to balance the estimation accuracy and computa-
tional cost.

Limitations and outlook
The present study can be improved in the future. First, as a data-driven
approach, the proposed framework does not assume specific proper-
ties and dimensions of the input data. Hence, the proposed framework
can be applied to a wider variety of battery materials, other SOH
metrics, and input signals. Second, our preliminary trimming strategy
can be developed with more advanced techniques to optimize esti-
mation performance. Finally, the proposed framework does not
assume specific application scenarios. It thus can be explored to apply
to the big data containing a large amount of battery real-world
operation history. The proposed framework is promising to help
maximize the potential of big data, which generally lacks labels.

Discussion
Existing techniques for battery SOH estimation are highly dependent
on the labeled degradation data of the target battery, resulting in an
enormous expenditure of time and resources for data collection. In
this work, we devise a target label-agnostic solution to battery SOH
estimation based on deep learning. This framework selectively

integrates the estimations of a swarm of DNNs into a reliable SOH
estimate rather than relying on a single DNN. Each DNN is trained for
source labels and domain invariance of degradation features simulta-
neously. A trim strategy is proposed to regulate the skewness of the
source domain sample distribution to improve the accuracy.

As a case study, we take the partial charging curve as the input of
the proposed framework. For validation, we combine two experi-
mentally generated datasets and three public datasets for cross-vali-
dation, resulting in 80 cases covering 71,588 samples. We first
demonstrate that the proposed framework canachieve absolute errors
of less than3% for 89.4%of samples (less than 5% for 98.9%of samples),
with a maximum absolute error of less than 8.87% in the absence of
target battery labels. Compared with the existing methods, the pro-
posed framework reduces the MAE and maximum absolute error by
more than half. These results illustrate the successful application for
various domains. Furthermore, we dissect the DNN and visually
explicate that the proposed architecture of DNNs can effectively
minimize the domain gap. The analysis of the swarm of DNNs unveils a
correlation between themean, standarddeviation, and errors of DNNs’
estimates and clarifies how our framework can select the DNNs for
SOH estimation in target label-agnostic cases. Finally, we investigate
the impact of the crucial hyper-parameters on the estimation
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performance, and provide references for hyper-parameter selection to
apply the proposed framework better.

In summary, our work highlights the potential of deep learning in
supplanting time- and resource-consuming battery degradation tests.
We envisage that the proposed frameworkwillmotivate the utilization
of large-scale historically collected but unlabeled LIB data (e.g.,
onboard data, cloud data). It can also enable the rapid development
of BMS for new-generation batteries using only existing
experimental data.

Methods
Data processing
Partial charging curves of LIBs are employed as the input of DNNs for
SOH estimation. In a constant-current charging process, the voltage
V(t) and current I(t) are stored by BMS at a time step t, and the partial
charging curve qψ can then be captured by setting a voltage sampling

window:

qψ = Qψ
0 ðV Þ
Q

Qψ
1 ðV Þ
Q :::

Qψ
K ðV Þ
Q

h i
, ψ 2 fS,Tg

Qψ
i ðV Þ=

R V ðtÞ=Vmin + iΔV
V ðtÞ=Vmin

∣IðtÞ∣dt, i 2 f0, 1, :::,Kg

8<
: ð1Þ

where the superscript ψ indicates whether qψ belongs to the source
domain S or the target domain T. Q denotes the initial capacity, which
is used to normalize the partial charging curve of different types of
LIBs. Vmin is the lower voltage limit. The voltage sampling window is
gridded by a given voltage stepΔV and ranges from Vmin to Vmin +KΔV.

To improve estimation performance, we generate a more
balanced sourcedomainby trimming thedistributionof samples in the
original source domain. Specifically, the original source domain sam-
ples are first grouped into nbin bins with a uniform width (set to 2% in
this work) according to their labels. Using the number of samples
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ni,origin in the i-th bin as an upper bound, the number of samples in this
bin ni,trim that need a trim is then optimized by:

min
0≤ni,trim ≤ni,origin,ni,trim2 c=

X2
k = 1

αkgk

ni,remain =ni,origin � ni,trim

g1 = μ3 ∪
nbin

i = 1
ySij

n o
j = 1,:::,ni,remain

� �
� μ*

3

����
����, g2 =

Pnbin
i= 1

ni,trimPnbin
i= 1

ni,origin

8><
>:

ð2Þ

where nremain represents the number of the remaining samples after
trim. fySijgj = 1,...,ni,remain

represents nremain source domain samples ran-

domly selected from the i-th bin. gk denotes the component of the
objective function, k∈{1,2}, and αk is the weight corresponding to the
gk. In this work, α1 and α2 are set to 0.2 and 2, respectively. μ3(∙) is the
skewness operator defined as the third standardized moment:

μ3ðyÞ=
Eðy� μÞ3

σ3
ð3Þ

where E(∙) is the expectation operator, μ and σ are the mean and
standard deviation of y, respectively. In this optimization, minimizing
g1 makes the skewness of the trimmed source domain approach its
target value μ3

* (set to zero in this work) to avoid asymmetry, while
minimizing g2 ensures that as few samples as possible are discarded.
Two constraints on the optimization are defined to generate a new
source domain with a comparable range and unimodal distribution:

max
i2½1,nbin �

ðni,remainÞ � min
i2½1,nbin �

ðni,remainÞPnbin
i= 1

ni,origin

≤ ε

Pnbin�1

i = 2
sgnðni+ 1,remain � ni,remainÞ � sgnðni,remain � ni�1,remainÞ= 1

8>>><
>>>:

ð4Þ

where ε is the maximum difference in the number of samples among
the bins, which is set to 4.5% in this work.

DNN architecture
The proposed framework is composed of a swarm of DNNs. For the
DNN #x, x∈ {1, 2,…, N}, the gridded input is first processed by serially
stacked 1D CNN layers for feature vector extraction, which can be

formulated as:

l + 1Xψ
mðiÞ= l + 1b +

PlC
c = 1

Pl + 1k
j = 1

l + 1wc � lXψ
c

l + 1stri+ j
� �

m 2 f1, 2, :::, l + 1Cg, i 2 f0, 1, :::, l + 1Lg
l + 1L=

l L� l + 1k
l + 1str

+ 1, l 2 f1, 2, :::,ϒ� 1g

8>>>><
>>>>:

ð5Þ

where l+1Xψ and lXψ denote the output and input of the (l + 1)-th 1D CNN
layer, respectively.⊗ represents the valid cross-correlation operator. l
+1w, l+1b, l+1k, and l+1str are the weight, bias, kernel size, and stride of the
(l + 1)-th 1DCNN layer, respectively. lC and l+1C are the numbers of input
and output channels of the (l + 1)-th 1D CNN layer, respectively. l+1L and
lL are the lengths of the l+1Xψ and lXψ, respectively. (ϒ−1) denotes the
total number of the 1D CNN layers.

AMFC layer is exclusivelydesigned for the target domain after the
shared CNN layers to reconstruct the extracted feature vectors. The
output of the terminal 1D CNN layer is flattened by the channel and
then input to the MFC layer, which can be described as:

MFCXT =WMFC
ϒXT +bMFC ð6Þ

where ϒXT and MFCXT are the target domain input and output of theMFC
layer, respectively. WMFC and bMFC are the weight and bias vectors of
the MFC layer, respectively.

A shared TFC layer is designed at the terminal of the DNN for both
source and target domains to regress SOH. The source domain output
of the terminal 1D CNN layer is flattened and then fed to the TFC layer,
while the target domain output of theMFC layer is directly provided to
the TFC layer. This layer can be expressed as:

ϑΨ =
WTFC

ϒXS + bTFC, ifΨ= S

WTFC
MFCXT + bTFC, otherwise

(
ð7Þ

where ϑψ denotes the SOH pre-estimate of each DNN. ϒXS is the source
domain output of the ϒ-th 1D CNN layer.WTFC and bTFC are the weight
vector and the bias of the TFC layer, respectively.

The rectified linear unit (ReLU) activation function, which takes
the maximum value between 0 and its input as output, is designed to
follow each 1D CNN layer and fully connected layer. The sigmoid
activation function is applied before outputting the estimate to ensure
that the SOH pre-estimate is between 0 and 1.
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DNN explanation
We define a vector Fψ to visualize the domain adaptation of the pro-
posed framework, which can be formulated as:

Fψ =
XζC
1

W* � ζXψ, ψ 2 fS,Tg, ζ 2 fϒ,TFCg ð8Þ

where ☉ denotes the element-wise multiplication of two vectors.W* is
the unflattened weight vector of the TFC layer. ζXψ is the unflattened
feature vector or the feature vector before flattening. The sigmoid
activation function is also applied before the output of this equation.
Thus, Fψ is equivalent to a TFC layer outputminus bTFC and cancels the
sampling point-wise weighted sum. Combining Fψ at various SOH can
produce an explanation map for visualizing the contribution of the
feature vectors to the lifelong SOH estimation.

DNN training
First, N DNNs are independently trained, and in the present study, we
set N = 300. Each DNN is parameterized by the labeled data from the
source domain and the unlabeled data from the target domain. The
widely-usedAdamalgorithm48 is employed to optimize the parameters
iteratively. The learning rate is set to 0.001. To realize cross-domain
transfer learning, we define a loss function E containing three com-
ponents, which can be formulated as:

J =
P3
i= 1

κi f i

f 1 =
1
ns

Pns

i = 1
ðϑSi � *ϑSi Þ

2

f 2 =
1
ns

Pns

i= 1
ϕð ϒXS

i Þ � 1
nt

Pnt

i = 1
ϕðMFCXT

i Þ
����

����
H

f 3 =
1
Z

PZ
i= 1

ðϑT0,i � 1Þ2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

where fidenotes the component of the loss function J, i∈ {1, 2, 3}, and κi
is the weight corresponding to the fi. This work sets κ1, κ2, and κ3 to 1,
0.1, and 1, respectively. *ϑS denotes the available label of the source
domain sample. ns and nt are the number of samples from the source
and target domains, respectively. ||·||H represents the norm of the
reproducing Hilbert space in terms of the embedding kernel ϕ(·), and
the Gaussian kernel is employed as the ϕ(·). ϑT

0 denotes the pre-
estimate of the target domain at the first cycle, and Z is the number of
these pre-estimates. f1 evaluates themean squared error between each
element of the source domain in the pre-estimate and the available
labels, which is designed for training each DNN to learn SOH
estimation from labeled source domain samples. f2 evaluates the
domain invariance, and the maximum mean discrepancy (MMD) is
employed as a criterion to measure the distance between the high-
dimensional degradation features of the source domain samples and
those of the target domain samples after reconstruction. f3 is also the
measure of the mean squared error but only for the target domain
samples at the first cycle. This is because the partial charging curves of
the first cycle (i.e., in fresh status) are easily obtained (e.g., by LIB
formation or factory test), and their labels can be treated as 1 to
improve the learning of the target domain samples.

In each sub-training, samples from the source domain are divided
into a training set and a validation set. Two-thirds of the sourcedomain
samples are used as the training set, and the rest are the validation set.
Each sub-training is terminated when the RMSE of the validation and
training sets is less than both 5%, or when the number of epochs
reaches 2000. The minimum number of epochs is set to 500. All the
samples are divided into mini-batches for training with a mini-batch
size of 20. All DNNs are trained based on an NVIDIA Tesla V100 GPU in
this work.

SOH estimation with trained DNNs
The proposed framework selectively integrates the pre-estimates of
the DNNs to generate a reliable SOH estimate. We employ mean and
standard deviation to evaluate the pre-estimates of each trained DNN.
An efficient metric, quartile, is used to select DNNs according to these
measures. The retaining DNNs are the final choices of the proposed
framework for each estimate, and the indexes x of the final choices can
be formulated as:

x= fx∣Eð xϑT Þ≥Q3ðEð xϑT ÞÞ,Varð xϑT Þ≤Q1ðVarð xϑT ÞÞg ð10Þ

where Q1 and Q3 denote the lower quartile operator and the upper
quartile operator, respectively. The expected pre-estimates of the
retaining DNNs can be treated as the final SOH estimation for the
target domain. In this study, we employ rootmean square error RMSE,
absolute error AE, and its average value MAE to evaluate the SOH
estimation:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i= 1
ðyi�ŷiÞ2
M

r
AEi = ∣yi � ŷi∣

MAE=
PM

i= 1
AEi

M

8>>>><
>>>>:

ð11Þ

where yi and ŷi are the measured value and the final estimate of the
SOH for sample i, respectively. M represents the total number of
samples of interest.

Battery cycling and dataset generation
Batteries fromdatasets #3 and #5 are tested in thermal chambers at 20
and 45 °C, respectively. An ARBIN BT2000 battery test system is
employed to cycle the batteries. In each cycle of the battery from
Dataset #3, the charge strategy is to charge at a constant-current rate
of 0.3 C until the voltage reaches 4.2 V and then hold at 4.2 V until the
charging current drops below 0.03 A; the discharge strategy is to dis-
charge at a constant-current rate of 2 C. In each cycle of the battery
from Dataset #5, the charge strategy is to charge at a constant-current
rate of 1 C until the voltage reaches 3.65 V and then hold at 3.65 V until
the charging current drops below 1.35 A; the discharge strategy is to
discharge at a constant-current rate of 1 C. The charging curves
extracted from the constant-current charging phase of the cycles are
integrated into the datasets.

Data availability
Datasets #3 and #5 generated in this study have been deposited in the
Mendeley database under the accession code: https://data.mendeley.
com/datasets/v8k6bsr6tf/1.

Code availability
Code for the modeling work is available from the corresponding
authors upon request.

References
1. Costa, C.M. et al. Recycling and environmental issues of lithium-ion

batteries: advances, challenges and opportunities. Energy Storage
Mater. 37, 433–465 (2021).

2. O’Neill, S. Development of lithium-ion batteries wins Nobel Prize.
Engineering 6, 487–488 (2020).

3. Zhang, L., Zhu, C., Yu, S., Ge, D. & Zhou, H. Status and challenges
facing representative anode materials for rechargeable lithium
batteries. J. Energy Chem. 66, 260–294 (2022).

4. Vykhodtsev, A. V., Jang,D.,Wang,Q., Rosehart,W. &Zareipour,H. A
review of modelling approaches to characterize lithium-ion battery
energy storage systems in techno-economic analyses of power
systems. Renew. Sust. Energ. Rev. 166, 112584 (2022).

Article https://doi.org/10.1038/s41467-023-38458-w

Nature Communications |         (2023) 14:2760 11

https://data.mendeley.com/datasets/v8k6bsr6tf/1
https://data.mendeley.com/datasets/v8k6bsr6tf/1


5. Miao, Y., Liu, L., Zhang, Y., Tan, Q. & Li, J. An overview of global
power lithium-ion batteries and associated critical metal recycling.
J. Hazard Mater. 425, 127900 (2022).

6. Severson, K. A. et al. Data-driven prediction of battery cycle life
before capacity degradation. Nat. Energy 4, 383–391 (2019).

7. Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A.
Degradation diagnostics for lithium ion cells. J. Power Sources 341,
373–386 (2017).

8. Lu, J. et al. Battery degradation prediction against uncertain future
conditions with recurrent neural network enabled deep learning.
Energy Storage Mater. 50, 139–151 (2022).

9. Dolci, G., Tua, C., Grosso, M. & Rigamonti, L. Life cycle assessment
of consumption choices: a comparison between disposable and
rechargeable household batteries. Int. J. Life Cycle Assess. 21,
1691–1705 (2016).

10. Kamali, M. A., Caliwag, A. C. & Lim, W. Novel SOH estimation of
lithium-ion batteries for real-time embedded applications. IEEE
Embed. Syst. Lett. 13, 206–209 (2021).

11. Basia, A., Simeu-Abazi, Z., Gascard, E. & Zwolinski, P. Review on
State of Health estimation methodologies for lithium-ion batteries
in the context of circular economy. CIRP J. Manuf. Sci. Technol. 32,
517–528 (2021).

12. Hossain Lipu, M. S. et al. Intelligent algorithms and control strate-
gies for battery management system in electric vehicles: progress,
challenges and future outlook. J. Clean Prod. 292, 126044
(2021).

13. Xiong, R., Li, L. & Tian, J. Towards a smarter battery management
system: a critical review on battery state of health monitoring
methods. J. Power Sources 405, 18–29 (2018).

14. Fly, A. &Chen, R. Rate dependency of incremental capacity analysis
(dQ/dV) as a diagnostic tool for lithium-ion batteries. J. Energy
Storage 29, 101329 (2020).

15. Hu, X., Jiang, J., Cao, D. & Egardt, B. Battery health prognosis for
electric vehicles using sample entropy and sparse Bayesian pre-
dictive modeling. IEEE Trans. Ind. Electron 63, 2645–2656
(2016).

16. Khodadadi Sadabadi, K., Jin, X. & Rizzoni, G. Prediction of remaining
useful life for a composite electrode lithium ionbattery cell using an
electrochemical model to estimate the state of health. J. Power
Sources 481, 228861 (2021).

17. Knehr, K. W. et al. Understanding full-cell evolution and non-
chemical electrode crosstalk of Li-ion batteries. Joule 2,
1146–1159 (2018).

18. Samad, N. A., Kim, Y., Siegel, J. B. & Stefanopoulou, A. G. Battery
capacity fading estimation using a force-based incremental capa-
city analysis. J. Electrochem. Soc. 163, A1584–A1594 (2016).

19. Mohtat, P., Lee, S., Siegel, J. B. & Stefanopoulou, A. G. Comparison
of expansion and voltage differential indicators for battery capacity
fade. J. Power Sources 518, 230714 (2022).

20. Wu, Y. & Jossen, A. Entropy-induced temperature variation as a new
indicator for state of health estimation of lithium-ion cells. Electro-
chim. Acta 276, 370–376 (2018).

21. Yang, N., Song, Z., Hofmann, H. & Sun, J. Robust State of Health
estimation of lithium-ion batteries using convolutional neural net-
work and random forest. J. Energy Storage 48, 103857 (2022).

22. Li, P. et al. State-of-health estimation and remaining useful life
prediction for the lithium-ion battery based on a variant long short
term memory neural network. J. Power Sources 459,
228069 (2020).

23. Lombardo, T. et al. Artificial intelligence applied to battery
research: hype or reality? Chem. Rev. 122, 10899–10969 (2022).

24. Hoarfrost, A., Aptekmann, A., Farfañuk, G. & Bromberg, Y. Deep
learning of a bacterial and archaeal universal language of life
enables transfer learning and illuminates microbial dark matter.
Nat. Commun. 13, 2606 (2022).

25. Tian, J., Xiong, R., Shen,W., Lu, J. & Yang, X. G. Deep neural network
battery charging curve prediction using 30 points collected in
10 min. Joule 5, 1521–1534 (2021).

26. Shu, X. et al. A flexible state-of-health prediction scheme for
lithium-ionbatterypackswith long short-termmemorynetworkand
transfer learning. IEEE Trans. Transp. Electrif. 7, 2238–2248
(2021).

27. Tan, Y. & Zhao, G. Transfer learning with long short-term memory
network for state-of-health prediction of lithium-ion batteries. IEEE
Trans. Ind. Electron 67, 8723–8731 (2020).

28. Ye, Z. & Yu, J. State-of-health estimation for lithium-ion batteries
using domain adversarial transfer learning. IEEE Trans. Power Elec-
tron 37, 3528–3543 (2022).

29. Ye, Z., Yu, J. & Mao, L. Multisource domain adaption for health
degradation monitoring of lithium-ion batteries. IEEE Trans. Transp.
Electrif 7, 2279–2292 (2021).

30. Han, T., Wang, Z. & Meng, H. End-to-end capacity estimation of
Lithium-ion batteries with an enhanced long short-term memory
network considering domain adaptation. J. Power Sources 520,
230823 (2022).

31. Borgwardt, K. M. et al. Integrating structured biological data by
Kernel maximum mean discrepancy. Bioinformatics 22,
e49–e57 (2006).

32. Kifer, D., Ben-David, S. & Gehrke, J. Detecting change in data
streams. In Proc. 2004 VLDB Conference 180–191 (VLDB Endow-
ment, 2004).

33. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. & Darrell, T. Deep
domain confusion: maximizing for domain invariance. Preprint at
arXiv https://doi.org/10.48550/arXiv.1412.3474 (2014).

34. Xiong, R. et al. Lithium-ion battery health prognosis based on a real
battery management system used in electric vehicles. IEEE Trans.
Veh. Technol. 68, 4110–4121 (2019).

35. Richardson, R. R., Birkl, C. R., Osborne, M. A. & Howey, D. A.
Gaussian process regression for in situ capacity estimation of
lithium-ion batteries. IEEE Trans. Ind. Inf. 15, 127–138 (2019).

36. Zheng, Y. et al. A novel capacity estimation method based on
chargingcurve sections for lithium-ionbatteries in electric vehicles.
Energy 185, 361–371 (2019).

37. Naha, A. et al. An incremental voltage difference based technique
for online state of health estimation of Li-ion batteries. Sci. Rep. 10,
9526 (2020).

38. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers:
surpassinghuman-level performanceon ImageNet classification. In
2015 IEEE International Conference on Computer Vision (ICCV)
1026–1034 (IEEE, 2015).

39. He,W.,Williard, N.,Osterman,M. &Pecht,M. Prognostics of lithium-
ion batteries based on Dempster-Shafer theory and the Bayesian
Monte Carlo method. J. Power Sources 196, 10314–10321
(2011).

40. Käbitz, S. et al. Cycle and calendar life study of a graphite|LiNi1/3Mn
1/3Co1/3O2 Li-ion high energy system. Part A: full cell character-
ization. J. Power Sources 239, 572–583 (2013).

41. Li, W. et al. One-shot battery degradation trajectory prediction with
deep learning. J. Power Sources 506, 230024 (2021).

42. Birkl, C. Oxford battery degradation dataset 1. University of
Oxford (2017).

43. Xing, Y., Ma, E. W. M., Tsui, K. L. & Pecht, M. An ensemblemodel for
predicting the remaining useful performance of lithium-ion bat-
teries. Microelectron. Reliab. 53, 811–820 (2013).

44. Weiss, K. R. & Khoshgoftaar, T. M. Investigating transfer learners for
robustness to domain class imbalance. In 2016 15th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA)
207–213 (IEEE, 2016).

45. Li, Y. et al. Random forest regression for online capacity estimation
of lithium-ion batteries. Appl. Energy 232, 197–210 (2018).

Article https://doi.org/10.1038/s41467-023-38458-w

Nature Communications |         (2023) 14:2760 12

https://doi.org/10.48550/arXiv.1412.3474


46. Guo, Y., Huang, K., Yu, X. & Wang, Y. State-of-health estimation for
lithium-ion batteries based on historical dependency of charging
data and ensemble SVR. Electrochim. Acta 428, 140940 (2022).

47. Tian, J., Xiong, R., Shen, W., Lu, J. & Sun, F. Flexible battery state of
health and state of charge estimation using partial charging data
and deep learning. Energy Storage Mater. 51, 372–381 (2022).

48. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).

Acknowledgements
This work was funded by the National Key R&D Program of China under
Grant 2021YFB2402002 (R.X.), the Beijing Natural Science Foundation
under Grant L223013 (R.X.), and the China Postdoctoral Science Foun-
dation under Grant BX2021035 and 2022M710379 (J.T.).

Author contributions
R.X. conceived the idea of SOH estimation, led and supervised the
project, participated in paper writing and revision, and provided gui-
dance to all co-authors. F.S. supervised and led this project. J.L., J.T., and
C.W. generated the data. J.L. conceived, wrote, and revised the manu-
script. All the authors have revised the manuscript and agreed with its
content.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38458-w.

Correspondence and requests for materials should be addressed to
Rui Xiong or Jinpeng Tian.

Peer review information Nature Communications thanks Chao Hu and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-38458-w

Nature Communications |         (2023) 14:2760 13

https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1038/s41467-023-38458-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning to estimate lithium-ion battery�state of health without additional degradation experiments
	Results
	Framework overview
	Data generation
	Cross-dataset battery SOH estimation in the absence of target labels
	Comparison with existing methods
	Rationalization of predictive performance
	Estimation performance with various hyper-parameters
	Limitations and outlook

	Discussion
	Methods
	Data processing
	DNN architecture
	DNN explanation
	DNN training
	SOH estimation with trained DNNs
	Battery cycling and dataset generation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


