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Traces of electron-phonon coupling in one-
dimensional cuprates

Ta Tang 1,2, Brian Moritz2, Cheng Peng2, Zhi-Xun Shen 1,2,3,4 &
Thomas P. Devereaux 2,4,5

The appearance of certain spectral features in one-dimensional (1D) cuprate
materials has been attributed to a strong, extended attractive coupling
between electrons. Here, using time-dependent density matrix renormaliza-
tion group methods on a Hubbard-extended Holstein model, we show that
extended electron-phonon (e–ph) coupling presents an obvious choice to
produce such an attractive interaction that reproduces the observed spectral
features and doping dependence seen in angle-resolved photoemission
experiments: diminished 3kF spectral weight, prominent spectral intensity of a
holon-folding branch, and the correct holon bandwidth. While extended e–ph
coupling does not qualitatively alter the ground state of the 1D system com-
pared to the Hubbard model, it quantitatively enhances the long-range
superconducting correlations and suppresses spin correlations. Such an
extended e–ph interaction may be an important missing ingredient in
describing the physics of the structurally similar two-dimensional high-tem-
perature superconducting layered cuprates, which may tip the balance
between intertwined orders in favor of uniform d-wave superconductivity.

The origin of high-temperature superconductivity found in layered,
quasi-two-dimensional (2D) cuprates remains a puzzle despite con-
certed, continuous investigations over the last few decades. From the
perspective of numerical simulations, simplified models such as the
Hubbard and t–J Hamiltonians have been studied extensively, which
have produced rich physics relevant to cuprates such as anti-
ferromagnetism, stripes, and strange metal behavior1–3. However, evi-
dence that these simplified models possess a uniform d-wave
superconducting ground state remains elusive. Quasi-long-range
superconductivity has only been reported on small-width
cylinders4–13, with strong competition from coexisting charge orders.
Superconducting correlations decay exponentially on the hole doped
side for wider clusters, indicating the superconductivity is absent for
parameters thought to be relevant to hole-doped cuprates.

These findings indicate that the Hubbard model is incomplete,
at least for describing the cuprates and high-temperature

superconductivity. The inclusion of additional ingredients, such as
phonons, which manifest as kinks or replica bands in photoemission
measurements14–18, may provide the crucial remedy. However, exact
numerical simulations of the 2D Hubbard model are already challen-
ging (the density matrix renormalization group (DMRG) method is
limited by the growth of entanglement entropy and determinant
quantum Monte Carlo (DQMC) and related methods suffer from the
fermion sign problem); and adding bosonic degrees of freedom cre-
ates an even more daunting problem. The task may be made easier,
withmore numerical control, by turning to the simpler yet structurally
similar, one-dimensional (1D) cuprates.

Recent angle-resolved photoemission spectroscopy (ARPES)
experiments on the 1D cuprate Ba2−xSrxCuO3+δ

19 provide an excellent
platform for testing theoretical models. Modeling in 1D has both well-
established theory, and numerical simulations that can be performed
with a higher degree of control and accuracy. The measured single-
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particle spectra provide a detailed proving ground for assessing the
impact of terms added to model Hamiltonians. ref. 19 showed that the
simple Hubbard model fails to reproduce salient details of the spectra
near the Fermi surface: a prominent holon-folding (hf)-branch ema-
nates from kF and quickly fades away with doping. This spectral fea-
ture, and its doping dependence, can be well reproduced when one
includes a strong nearest-neighbor attractive interaction V ~ − t in the
Hamiltonian. A natural near-neighbor attraction exists in the Hubbard
model, evident when downfolding to the t–J model, but such a weak
attraction (~−J/4) cannot account for the observed effect. Rather, this
strong attraction likely originates from extended electron–phonon
(e–ph) coupling, as discussed in recent work19,20.

To investigate the influence of the extended e–ph coupling, in this
paper, a time-dependent DMRG (tDMRG) method is employed to
study the single-particle spectral function and ground state properties
of a 1D Hubbard-extended Holstein model. The extended e–ph cou-
pling quantitatively reproduces the dominant hf-branch seen in
experiments while also correctly reproducing the holon branch band
width, matching the observed spectra. Approximating this model
using an effective nearest-neighbor attraction V fails to reproduce all
of these features. Moreover, while the extended e–ph coupling does
not qualitatively alter the ground state obtained from the Hubbard
model, which qualitatively remains a Luttinger liquid with sub-
dominant superconducting pair-field correlations that decay as a
power law with distance, the results show that the extended e–ph
coupling quantitatively enhances the superconducting pair-field cor-
relations by reducing the overall exponent, making them longer-
ranged. It is surmised that in two dimensions, an extended e–ph cou-
pling may tip the balance between different phases and help to realize
a dominant d-wave superconducting ground state.

Results
Models
To produce an effective nearest-neighbor attractive interaction
between charges, we consider an optical phononmode, which couples

to charge density beyond the local site. Previous estimates20 have
shown that this Hubbard-extended Holstein model can produce an
effective interaction on par with that extracted from ARPES
experiments19 for a reasonable phonon frequency and e–ph coupling
strength. For simplicity and to achieve better numerical convergence,
here, we consider only on-site and nearest-neighbor e–ph coupling
(see Fig. 1a). This Hubbard-extended Holstein Hamiltonian takes the
form

H =Hel +ω0

X
i

ây
i âi

+ g0

X
i

n̂iðây
i + âiÞ+ g1

X
hiji

n̂iðây
j + âjÞ,

ð1Þ

where ây
i and âi are the phonon ladder operators on site i, n̂i is the total

charge number operator on site i,ω0 is the phonon frequency, g0 is the
on-site e–ph coupling, g1 is the nearest-neighbor e–ph coupling, and
hiji sums over nearest-neighbors.Hel denotes the electronic part of the
Hamiltonian, a 1D single-band Hubbard model,

Hel = � th
X
hijiσ

ðĉyiσ ĉjσ +h:c:Þ+U
X
i

n̂i"n̂i#, ð2Þ

where ĉyiσ (ĉiσ) is the charge creation (annihilation) operator on site i for
spin σ, n̂iσ is the charge number operator on site i for spin σ, and U is
the on-site repulsion. To avoid confusion with the time variable t, we
use th to denote the hopping integral. For comparison, we also
evaluate the extended-Hubbard model, which introduces a nearest-
neighbor attractive interaction,

Hv =Hel +V
X
hiji

n̂in̂j , ð3Þ

where n̂i and n̂j are total charge number operators on neighbor-
ing sites.

Unless otherwise specified, we use the following parameters in
our simulations: U = 8th, ω0 = 0.2th, g0 = 0.3th, g1 = 0.15th, and V = − th.
The values chosen forU and Vwere those that produced the best fit of
the ARPES experimental spectra using cluster perturbation theory
(CPT)21,22 for an effective extended-Hubbard model19; and the e–ph
couplings g0 and g1 fall within the range estimated in ref. 20. Here, we
use a larger phonon frequency than that used in ref. 20 for better
numerical convergence, but expect that a smaller phonon frequency
would produce a stronger effective attraction, which would further
enhance the hf-branch; although, one would need to ensure that the
stronger effective coupling would not lead to phase separation.

We use DMRG23,24 to obtain the ground states of the models
defined in Eqs. (1)–(3); and we use tDMRG25–27 to obtain real-frequency
spectra from the Fourier transform of time-dependent correlators of
the form hÔy

i ðtÞÔjð0Þi. To efficiently deal with the infinite phonon Hil-
bert space on each site, we adopt a local basis optimization (LBO) for
the ground state28 and a dynamical LBO for time evolution29, as sche-
matically shown in Fig. 1b. Details about the method and numerical
simulation are provided in the Methods section.

Single particle spectral function
Figure 2 displays the lesser Green’s function G<

j,L=2,"ðtÞ, defined as
G<
mnσðtÞ= ihĉymσðtÞĉnσð0Þi, and the corresponding single-particle

removal spectra obtained for the Hubbard model on an 80-site chain
at half-filling. In Fig. 2a, following the removal of an electron from the
center of the chain, one can see that the propagator attains a sig-
nificant value at the two chain ends within a time T ∼ 20t�1

h , which sets
the maximum real-time propagation for the simulation. Padding the
Green’s functionwith zeros from timeT to time 2T limits the frequency
resolution of a fast Fourier transform to ωn+1 −ωn =π/T ~ 0.16 th. This

Fig. 1 | Schematics for the model and dynamical LBO. a Schematic for the one-
dimensional Hubbard-extended Holstein model. On each site, the local Hilbert
space is a direct product of phonon and charge degrees of freedom. The charges of
opposite spin interact with an on-site repulsionU and can hop to neighboring sites.
Local phonons with a frequency ω0 couple to both on-site and nearest-neighbor
charges. b Schematic for the dynamical LBO. We keep the dimension of the
effective Hilbert space of the system and environment blocks asm, respectively.
Each site i has an optimized basis of dimension d. Thewave function is transformed
to aD≫ dbare basis (D =Dch ×Dph, whereDch = 4 represents the local chargeHilbert
space dimension, and Dph is the bare phonon basis dimension) through a D × d
transformation matrix, i.e.Ti, before applying the time evolution gate of shape
D2 ×D2. Subsequently, a new optimal basis and transformation Ti are obtained; and
the wave function is projected to the new optimal basis before moving on to the
next gate.
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provides a rather coarse resolution, but it is nevertheless more than
adequate for comparison to the experimental ARPES spectra from the
1D chain cuprate, which is rather broad19. The single-particle spectrum,
which is obtained using the tDMRG method and shown in Fig. 2b,
agrees well with the results from cluster perturbation theory19,21,22,
dynamical DMRG, and the Bethe ansatz30–33. There are clear spinon and
holon branches, demonstrating spin-charge separation in 1D. In the
following, we use a chain of length L = 80 to compute and compare the
single-particle spectral function of different models. A small broad-
ening is used to give the spectra a high resolution, at least when
compared with the experiment data, to better observe how different
models affect the salient spectral features.

Figure 3a.1–6 shows the single-particle removal spectra of the
Hubbard model across a range of doping. As observed in the experi-
ment, splitting between the spinon and holon branches persists with
doping. Our results correspond well to previous Hubbard model
results on 1D and quasi-1D systems from dynamical DMRG and the
Bethe ansatz31,33, and also are consistent with spectra near the Fermi
level from DQMC and DMRG calculations of the multi-band Hubbard
model, which includes oxygen p-orbitals34. Here, we will focus on two
spectral features: the branch of the removal spectrum emanating from
kF, which disperses downward toward π, hereafter the hf-branch, and
the 3kF-branch (or more precisely 2π − 3kF), which also disperses
downward toward π, but from 3kF. In the MDCs obtained from the
Hubbard model (Fig. 3b.1–6), one sees that between these two fea-
tures, the 3kF peak is dominant. This result is contradictory to
experimental observations, where the hf-peak is dominant, and the
3kF-peak is barely visible 19.

In Fig. 3c.1–6 and 3d.1–6, we confirm that adding a nearest-
neighbor attractive interaction V = −th enhances the hf-branch and
produces spectra that are visibly more consistent with the experi-
mental data at lower doping19. As we mentioned previously, this
attractive interaction likely originates from e–ph coupling. Here, we
also simulate the underlying e–phHamiltonian, with the results shown
in Fig. 3e.1–6. Below 20% doping, one sees an enhanced hf-branch,
while the 3kF-branch has been suppressed significantly by the e–ph
coupling (see Fig. 3e.1–3 and 3f.1–3). In all threemodels, the intensities
in both the hf- and 3kF branches become barely perceptible beyond
~20% doping. Using a larger broadening to compare more closely with

the experimental spectra and to extract intensities by fitting MDCs
results in a doping-dependent intensity of hf-peak thatmatches well to
the analyzed ARPES data (see Fig. S6 and Fig. S7 in Supplementary
Information).

One significant difference between spectra for the extended
Hubbardmodel and the Hubbard-extended Holstein model is that the
nearest-neighbor attractive interaction in the extended Hubbard
model significantly shrinks the holon bandwidth at higher doping (see
Fig. 3c.1-6). In Fig. 4, we plot the holon binding energy at k =0 as a
function of doping to reflect the change in the holon bandwidth. By
comparison, one sees that the results from the Hubbard-extended
Holstein model are more consistent with the ARPES data, as the e–ph
interaction would renormalize the holon-branch only within ~ω0 of the
Fermi energy.

Ground state correlation functions
The good agreement with ARPES measurements begs the question:
How does the extended e–ph interaction affect the ground state? As a
first step towards understanding this question, we study the ground
state correlation functions of the 1D Hubbard-extended Holstein
model (as well as the Hubbard and extended Hubbard models) at 10%
hole doping using a 120-site chain to observe relatively long-distance
behavior. We measure equal-time correlation functions of the form
hÔi + rÔii, averaged over 5 reference points (i.e., i = L/4− 1, L/4, . . . , L/
4 + 3) for each r, where r is the distance between two sites along the
chain between 0 to L/2. In this way, the measurements fall roughly
within the center half of the chain to reduce boundary effects.

Our results suggest that the ground state of the Hubbard-
extended Holstein model in 1D is consistent with a Luttinger liquid
(LL)35, as evidenced by the slow decay of the single-particle Green’s
function defined as GσðrÞ= hĉyi+ r,σ ĉi,σi. Specifically, Gσ(r) as shown in
Fig. 5a can be very well fitted by a power law, i.e., GσðrÞ∼ r�KG . The
decaying behavior of the single-particle Green function for each of the
three different models is qualitatively consistent with the Luttinger
exponentKG ~ 1.We provide the value ofKG extracted fromeachmodel
in Table 1. For completeness, we have calculated the spin-spin corre-
lation function defined as F(r) = 〈Si+r ⋅ Si〉. As shown in Fig. 5b, F(r) also
appears to decay as a power law, FðrÞ∼ r�Ks , butwith a larger exponent
than the single-particle correlation, Ks >KG, also consistent LL beha-
vior. Note that the extended e–ph interaction produces a larger sup-
pression of the spin-spin correlations, resulting in the largestKs among
the three models. The charge density-density fluctuation correlations
(see Fig. 5c), defined as DðrÞ= hn̂i+ r n̂ii � hn̂i+ rihn̂ii, also appear quasi-
long-ranged with a Luttinger exponent Kc, also shown in Table 1.

The most intriguing aspect of the extended interactions may be
their influence on superconductivity, tested through the equal-time
spin-singlet superconducting pair-field correlation function,
PðrÞ= hΔy

i+ rΔii, where Δi =
1ffiffi
2

p ðĉi"ĉi + 1,# � ĉi#ĉi + 1,"Þ is the spin-singlet
pair-field annihilation operator. As expected for a LL, P(r) decays as a
power law, with Ksc > 2 for all three models, as shown in Fig. 5d and
Table 1. Most importantly, not only does the nearest-neighbor attrac-
tive interaction enhance P(r), but the extended e–ph coupling also
produces a noticeably smaller Ksc compared to the Hubbard model
alone. Taken together, while the extended e–ph interaction itself does
not qualitatively alter the ground state of the system in 1D, it does
quantitatively enhance the strength of singlet superconducting pair-
field correlations and suppress spin-spin correlations.

Discussion
In summary, the inclusion of extended electron-lattice couplings is
crucially important for reproducing many of the observed spectral
features in ARPES. The extended e–ph coupling reproduces well the
intensity and doping dependence of the hf-feature, and the reduced
3kF feature and gives the right doping dependence of the holon band
width. As more experimental results emerge for doped 1D systems, it

Fig. 2 | Single-particle spectral function of Hubbard model at half-filling. a The
lesser Green’s function G<

j,L=2,"ðtÞ for an 80-site chain at half-filling for the Hubbard
model. Time is measured in units of ℏ/th and ℏ = 1 in our calculation. We use a time
step δt =0:04t�1

h and evolve the system for a total time T = 20t�1
h . b The single-

particle spectral function obtained by Fourier transform of G< in (a), with energy
and momentum broadening of σω =0.2th and σk = 2π/L, respectively.
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would be beneficial to check the impact of e–ph coupling on other
measurements, such as the dynamical spin structure factor and pho-
non dispersion.

Our results show that the ground state of the 1D Hubbard-
extended Holstein model remains a Luttinger liquid with a single-
particle correlation exponent KG~1 and subdominant superconducting
correlations. However, quantitatively, the extended e–ph coupling
helps to suppress the spin correlations F(r) while simultaneously
enhancing the superconducting pair-field correlations P(r). Impor-
tantly, while the inclusion of a simple, effective nearest-neighbor
attractive interaction to approximate the extended e–ph coupling can
produce a similar enhancement of the hf-branch, it fails to produce the
right holon band width. It also enhances P(r) and gives a Ksc close to
the one produced by the extended e–ph coupling but overestimates
the magnitude of P(r) and does not suppress F(r) as effectively as the
extended e–ph coupling.

It is of course an open and interesting question to determine
whether the agreement between numerical results for the Hubbard-

extended Holstein model and ARPES translates to dimensions greater
than 1. In 2D t0 will play an important role, as has been shown in pre-
vious DMRG calculations on cylinders7–13 where t0 can help to stabilize
quasi-long-range superconducting correlations. However, these
superconducting correlations are subdominant to chargedensitywave
(CDW) correlations and become weaker on wider cylinders. A recent
DMRG study on 4-leg ladders has shown that an effective nearest-
neighbor electron–electron attraction can result in dominant quasi-
long-range d-wave superconducting correlations on the hole-doped
side with negative t0, where the crossover between dominant super-
conducting and CDW correlations occurs near V ~ − th36. Yet that
ground state remains qualitatively consistent with a Luther-Emery
liquid, as found in the simple Hubbard model with t0 on the same
ladder. As it appears that power-law decay of superconducting corre-
lations cede to a short-range exponential decay of correlations as the
hole-doped ladder system goes to 2D, a boost of superconducting
pairing from extended electron–lattice coupling could be pivotal to
both qualitatively and quantitatively change the nature of the ground

Fig. 3 | Single-particle spectra for different models. a The Hubbardmodel (HM),
c the extended Hubbard model (HM+V), and e the Hubbard-extended Holstein
model (HM+ g0 + g1), with increasing doping from columns 1–6. Panelsb, d, f show
representative momentum distribution curves (MDCs), corresponding to the cuts
given by the red dashed line for each of the spectra in (a, c, e), respectively. The
MDCs are chosen ~th above the bottomof the holon branch to ensure that themain
holon peaks are at roughly the same position for different dopings and for different
models, providing equivalent MDCs for comparison. The green and blue arrows

mark the positions of the 3kF and hf branches, respectively. One can clearly see that
at lower doping (<20%), adding nearest neighbor attraction V or extended e–ph
coupling can enhance the hf branch while suppressing the 3kF branch. Above 20%
doping, both peaks fade away quickly. Here, the energy and momentum broad-
ening of the spectra are σω =0.18th and σk = 2π/L. The lesser Green’s functions data
corresponding to all the single-particle spectral functions displayed here can be
found in Fig. S5 in Supplementary Information.
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state.While this remains a topic of investigation, our results encourage
additional study on the influence of phonon degrees of freedom in 2D
models, which finally may help to realize a d-wave superconducting
ground state.

Methods
Time-evolving block decimation
We use the time-evolving block decimation (TEBD) scheme, whichwas
introduced by Vidal25 and later incorporated into the DMRG algorithm
by White26 for time evolution. TEBD utilizes a Trotter-Suzuki decom-
position of the time evolution operators; and we consider the second-
order TEBD (TEBD2) scheme, which uses the decomposition

e�iHδt =
YL�2

i =0

e�ihi,i + 1δt=2
Y0

i = L�2

e�ihi,i+ 1δt=2 +Oðδt3Þ: ð4Þ

Here, we consider a Hamiltonian that contains only nearest-neighbor
couplings, and hi,i+1 contains terms involving only sites i and i + 1 along
a 1D chain. The time evolution operator can be applied to the wave
function during a DMRG sweep, replacing the ground state solving
step by applying the gate e�ihi,i + 1δt=2 when sites i and i + 1 are at the
center. In this way, we avoid numerical errors due to truncation when
site i or i + 1 is in the system or environment block. Specifically, we can
apply gates e�ih0,1δt=2, e�ih1,2δt=2, … , e�ihL�2,L�1δt=2 in the left-to-right
sweep, then reverse sweep direction, and apply all the reverse gates in

the right-to-left sweep. Thus all gates for a one-time step can be
applied by a complete left-to-right and right-to-left sweep26,27.

Local basis optimization
The unbounded phonon Hilbert space on each site presents a chal-
lenge for wave function-based numerical techniques. It is usually
inefficient to naively truncate theHilbert space, keepingonly thefirstN
bare phonon basis on each site (∣0i, ∣1i, ..., ∣N � 1i), especially when the
e–ph coupling is strong, and many bare phonons are needed for con-
vergence. This becomes prohibitive for techniques like exact diag-
onalization (ED) and also may make DMRG simulations difficult, if not
unfeasible. One method to solve this problem is to perform an LBO,
truncating the local phonon Hilbert space to a few optimal basis28,
similar to truncation of the system and environment Hilbert space
blocks in traditional DMRG ground state calculations. This approach
works very well, often with only 2 to 3 optimal phonon basis elements
that can provide good ground state convergence in the Holstein
model28.

LBO has been extended for time evolution, a dynamical LBO,
where the phonon basis on each site is optimized in a position- and
time-dependent manner29. Figure 1b illustrates how to perform dyna-
mical LBO, where the local Hilbert space of dimension D is optimally
truncated to d≪D. During time evolution, We first enlarge the Hilbert
space of each of the two center sites to dimension D, then apply the
Trotter gate in this enlarged Hilbert space to reduce errors due to
truncation. Finally, we truncate the local Hilbert space back to
dimension d, which significantly reduces the numerical cost for trun-
cating the system or environment block29. In our calculations, both
ground state LBO and dynamical LBO for time evolution provide rea-
sonable convergence for the Hubbard-extended Holstein model.

Lesser Green’s function and Fourier transform
Using time evolution, we can calculate the lesser Green’s function
G<
mnσðtÞ= ihĉymσðtÞĉnσð0Þi. To do so, we need to time evolve both the

ground state ∣GðtÞi = e�iHt ∣Gi and the removal state
∣RnσðtÞi = e�iHt ĉnσ ∣Gi, such that G<

mnσðtÞ= ihGðtÞ∣ĉymσ ∣RnσðtÞi. The single-
particle removal spectra, whichcanbe compared toARPES spectra, are
obtained by a Fourier transform of the lesser Green’s function

A�ðk,ωÞ=
Z 1

�1

dt eiωt

2πi

X
mnσ

e�ikðrn�rmÞ

L2
G<
mnσðtÞ, ð5Þ

wherek representsmomentumalong the chain,ω is frequency, and L is
the length of the chain. One typically fixes the position index n to the
center of the chain (n = L/2 − 1 or n = L/2); correspondingly, the sum-
mation runs only over index m with a normalization factor 1/L rather
than 1/L2. To ensure reflection symmetry for chains with an even
number of sites, we average over the spectra obtained from G<

m,L=2�1,σ

Fig. 4 | Comparison of experimental and simulated holon binding energy at
momentum k =0. The experiment data (open circle) are taken from ref. 19.Weuse
the broadening as the error bar for the simulated data. For the holon binding
energy, the Hubbard-extended Holstein model (open square) matches the experi-
ment data very well, while the extended-Hubbard model (open diamond) deviates
from the experiment at higher doping. Here we take th = 530meV.

Fig. 5 | Correlation functions for different models. a Single-particle Green’s
function. b Spin-spin correlation. c Charge density–density fluctuation correlation.
d Spin-singlet superconducting pair-field correlation. Correlations for the Hubbard
(black) and extended Hubbard (blue) models are plotted for comparison. The

Hubbard-extended Holstein model (red) results were obtained for ω0 = 0.2th,
g0 = 0.3th, and g1 = 0.15th. The straight line fits follow a power law decay ~r−K to
extract effective Luttinger exponents for different correlation functions. Filled
circles show data used for fitting9.
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and G<
m,L=2,σ . We evolve the system from time 0 to time T before the

excitation propagates to the boundary of the chain. To regularize the
Fourier transform due to the finite cutoff time, we use a window
functionWðtÞ, whereWðTÞ∼0,whichbroadens the spectra and acts as
a frequency resolution convolution Aðk,ωÞ=A�ðk,ωÞ*F ½WðtÞ�. We use
a Gaussian window function with frequency domain standard devia-
tion σω. We also convolve the spectra in momentum using a Gaussian
filter with a standard deviation of one momentum spacing σk = 2π/L,
which removes high-frequency noise and smooths the spectra.

Convergence
We keep m = 800 states during time evolution which produces a
truncation error below 1 × 10−6 for theHubbard and extendedHubbard
models and below 1 × 10−5 for the Hubbard-extended Holstein model.
The time step is fixed at δt =0:025t�1

h , and we evolve the system up to
T =20t�1

h . For dynamical LBO, we keep 20 bare phonon basis (D = 80 in
Fig. 1b) and truncate to a basis of 3 optimal phonons (d = 12 in Fig. 1b)
on every site. This results in a phonon truncation error below 1 × 10−4.

Time evolution convergence with respect to both δt andm (up to
1200) has been checked on the 80-site chain for the Hubbard model.
Adding phonons makes the calculations quiet expensive and con-
vergence with respect to the local bare basis dimension D and optimal
basis dimension d have been checked on an 8-site chain, where many
more bare phonons can be kept and time evolution without dynamical
LBO can be carried out for benchmark. For D = 80 and d = 12, both the
ground state energy and the lesser Green’s function (see Figs. S1–S4
in Supplementary Information) converge well on the short chain for
the Hubbard-extended Holstein model, and time evolution on the 80-
site chain can be completed for a reasonable computational cost. We
are also able to use m = 900, D = 100, and d = 12 on the 80-site chain,
which gives the same results with m = 800, D = 80, and d = 12.

In the ground state correlation functions calculation, we keep up
to m = 1000 states, which results in a truncation error ranging from
6× 10−9 to 3 × 10−7, depending on the model and e–ph coupling
strength. We truncate a bare phonon basis of up to 40 (D = 160) to an
optimal phonon basis of up to 4 (d = 16). This results in a phonon basis
truncation error ranging from 2 × 10−8 to 3 × 10−7, depending on the
e–ph coupling strength.

Data availability
All data that support the findings of this study are present in the paper
and the Supplementary Information. Additional data related to the
study are available from the corresponding author upon reasonable
request.
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