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Cross-disorder genetic analysis of immune
diseases reveals distinct gene associations
that converge on common pathways

Pietro Demela1, Nicola Pirastu 1 & Blagoje Soskic 1

Genome-wide association studies (GWAS) have mapped thousands of sus-
ceptibility loci associated with immune-mediated diseases. To assess the
extent of the genetic sharing across nine immune-mediated diseases we apply
genomic structural equation modelling to GWAS data from European popu-
lations. We identify three disease groups: gastrointestinal tract diseases,
rheumatic and systemic diseases, and allergic diseases. Although loci asso-
ciatedwith the disease groups are highly specific, they converge on perturbing
the same pathways. Finally, we test for colocalization between loci and single-
cell eQTLs derived from peripheral blood mononuclear cells. We identify the
causal route by which 46 loci predispose to three disease groups and find
evidence for eight genes being candidates for drug repurposing. Taken toge-
ther, here we show that different constellations of diseases have distinct pat-
terns of genetic associations, but that associated loci converge on perturbing
different nodes in T cell activation and signalling pathways.

Immune-mediated diseases are chronic and disabling conditions
where the immune system attacks healthy tissue, leading to its
destruction. It is well documented that these diseases co-occur within
families and that multiple immune diseases are likely to occur in the
same individual1–3 suggesting that immune diseases have a shared
genetic basis.

Genome-wide association studies (GWAS) have identified thou-
sands of susceptibility loci associatedwith immune-mediateddiseases,
many of which have been observed in multiple diseases4,5. For exam-
ple, the major histocompatibility complex locus is associated with
most autoimmune diseases6. Another example is a locus containing
CTLA4 which is associated with multiple immune diseases including
rheumatoid arthritis (RA), coeliac disease (CeD), type 1 diabetes (T1D)
and Hashimoto thyroiditis (Ht)7–10. Targeting the CTLA-4 pathway has
been successful in tumour immunotherapy, however inmore than60%
of patients, CTLA-4 blockade leads to multiorgan autoimmune
reaction11. In contrast, the property of CTLA-4 to bind the costimula-
tory molecules is extensively used as a treatment for RA12.

Understanding the pleiotropy of genetic associations is critical, as
it can reveal common disease mechanisms and pathogenic pathways.
A cross-disorder genomic analysis could identify shared mechanisms

and potential targets for drug repurposing. By combining cases and
controls across immune diseases, recent work identified 224 shared
associations, improved fine-mapping, and revealed shared disease
genes such as RGS113. Similarly, a study using local genetic correlation
showed widespread sharing across traits14. For example, T1D and Sys-
temic Lupus Erythematosus (SLE) shared 18 loci. Another study
assessed the regulatory activity of immune disease-associated SNPs
and showed that shared genes were highly connected and were
involved in immune pathways15. Although it has been established that
immune phenotypes have a shared genetic predisposition, further
detailed and systematic analysis is necessary to understand the causes
and structure of such sharing. In particular, it is unclear whether
sharing is equally distributed across immune diseases (i.e. is there a
common factor conferring general risk for all immune diseases?) or
whether there are subgroups of immune diseases that aremore similar
to each other than the rest.

In this work, we sought to investigate common factors repre-
senting general risk across immune-mediateddiseases. Toexamine the
genetic architecture of nine immune-mediated diseases we applied
genomic structural equation modelling (genomic SEM)16 to GWAS
data. This revealed three groups of diseases: the first consisted of
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diseases affecting the gastrointestinal tract, the second consisted of
rheumatic and systemic disorders and the third group represented
allergic diseases. Each group had unique genetic architecture and only
a limited number of loci were in common among the groups. Collec-
tively, our results provide new insights into shared mechanisms of
genetic risk for immune-mediated diseases and prioritise drug targets
that could be used for multiple immune disorders.

Results
Factor analysis reveals three groups of immune diseases
To investigate whether there is a common genetic factor under-
lying multiple immune-mediated diseases, we first used the mul-
tivariate LD score regression implementation in genomic SEM16,17

to estimate genetic correlations among nine diseases (Crohn’s
disease, CD; ulcerative colitis, UC; primary sclerosing cholangitis,
PSC; juvenile idiopathic arthritis, JIA; systemic lupus erythemato-
sus, SLE; rheumatoid arthritis, RA; type 1 diabetes, T1D; eczema,
Ecz; asthma, Ast) (Fig. 1a, Supplementary Data 1). We collected
GWAS summary statistics from European populations, and we
selected studies that used genome-wide genotyping arrays, as it is
required for accurate estimation of LD score regression. We
observed three distinct groups of immune-mediated diseases that
clustered together in the genetic correlation matrix (genetic cor-
relation ≥0.4; group 1: CD, UC and PSC; group 2: RA, SLE, JIA and
T1D; group 3: Ast and Ecz) (Supplementary Fig. 1a, Supplementary
Data 2). To uncover the latent factors which represent shared
variance components across diseases, we modelled the genetic
variance-covariance matrices across traits using genomic SEM
(Fig. 1b)16. By using the combination of SRMR and CFI estimates
(see Methods), we were able to show that the genetic correlation
structure was well described by a model using three factors
(Supplementary Fig. 2a–e). Factor one consisted of diseases
affecting the gastrointestinal tract (CD, UC and PSC). Factor two
contained autoimmune diseases, which were largely rheumatic
and systemic disorders (RA, SLE, JIA and T1D). Finally, factor three
contained allergic diseases (Ast and Ecz) (Fig. 1b). Therefore, we
refer to these factors as Fgut, Faid and Falrg, respectively.

To elucidate how genetic variation impacts the identified latent
factors, we tested the association between common SNPs across
GWAS studies and each of the latent factors. We discovered 194
genome-wide significant regions that are associated with latent fac-
tors, 67 for Fgut, 60 for Faid and 67 for Falrg (Fig. 1c). Strikingly, the
overlap between regions wasmodest, with only 30 out of 194 genomic
regions overlapping among at least two factors, and only four regions
overlapping across all three factors (Fig. 1d). The comparison
of z-scores showed that this modest overlap was not due to p value
thresholding (i.e. the same region in another factor having a p value
just below the threshold) (Fig. 1e). In addition, eosinophil counts18

showed the highest correlation with Falrg, giving further support to our
factor definition (Supplementary Fig. 3a), and we did not observe a
strong genetic correlation with lymphocyte or monocyte counts18

(Supplementary Fig. 3a).
Finally, we investigated whether the SNPs were acting via each of

the three factors according to the proposed causal model or, whether
SNPs had independent effects on the diseases that the factors are
composed of. To do so, we computed theQSNP heterogeneity statistics
(Methods). In short, QSNP allows us to identify SNPs that plausibly do
not affect individual diseases exclusively by their associations with the
latent common factors16. In other words, if the QSNP heterogeneity
statistic is significant, it implies that the tested SNP acts at least par-
tially independently of the latent factors. Our results show that only 9%
of loci were significant for QSNP heterogeneity (18/194) (Supplemen-
tary Fig. 4a), suggesting that the three-factor model explained the
genetic structure at the individual SNP level for 90% of identified
regions.

Latent factors have a distinct genetic architecture
An overlap of GWAS regions across two traits does not imply that the
underlying causal mechanism is the same across traits. Given that
many GWAS regions are complex and may contain multiple indepen-
dent signals, we performed a systematic analysis of identified regions
by combining conditional analysis with colocalization. Briefly, to
increase the robustness of colocalization, we devised a statistical
approach where the association signal is first decomposed into its
conditionally independent components. Next, each component was
used for colocalization testing allowing us to group similar association
signals (Fig. 2a). This approach enabled resolving complex regions and
discovering colocalization events for secondary signals, which would
not have been possible by colocalizing the whole region.

Due to the challenges of the HLA region, we removed genomic
regions encompassing HLA genes. We identified 301 independent
signals (Supplementary Data 3, 4). Out of these 301 loci, 92 were spe-
cifically associated with Fgut, 95 with Faid and 87 with Falrg (Supple-
mentary Data 4, 5 and Fig. 2b). Only 12 loci were shared across any two
factors, and only one was shared across all 3 factors. This further
demonstrated that each group of diseases had a specific pattern of
genetic associations. For example, a region on chromosome 16
encompassing multiple genes (11,006,011−11,751,015) had significant
associations with all three factors (Fig. 2c, d). However, the conditional
analysis and colocalization demonstrated that these signals were
independent andnot shared across factors. In this region,we identified
three independent signals that colocalize between CD and Fgut:
rs12922863 (the closest gene CIITA which is involved in antigen pre-
sentation), rs416603 (the closest gene TNP2 involved in the regulation
of protein processing) and rs13335254 (the closest gene LITAF which
regulates TNF-alpha expression). Similarly, Faid had two independent
signalswhich colocalizedwith T1D. The locus thatwas shared across all
three groups of diseases is located on chromosome 4
(122,903,441–124,264,377) and encompasses a potent regulator of T
and B cell proliferation IL21.

Taken together, we identified independent signals between fac-
tors and determined how each of the factors relate to individual dis-
eases and their likely causal genes.

Associated loci affect T-cell activation and signalling
Identifying transdiagnostic risk pathways can uncover critical cell
functions whose perturbations lead to immune system dysfunction
and diseases. Therefore, we sought to translate factor-associated var-
iants to cellular functions. Briefly, we queried the Open Targets
Platform19, and for each lead SNP we retrieved the top prioritised gene
based on the Variant-to-Gene (V2G) score. To test whether these genes
are enriched in specific pathways, we performed pathway enrichment
with gProfiler2 (Methods). This showed that the factor-associated
genes were enriched in cytokine signalling, differentiation of T helper
cells, immune diseases and response to pathogens (Fig. 3a and Sup-
plementary Data 6). Given the modest overlap of factor-associated
loci, we expected that the enriched pathways would be distinct across
factors. However, factor-associated genes were largely enriched in the
same pathways, although different genes were driving a pathway
enrichment (Fig. 3a). For example, we observed that Fgut, Faid and Falrg
factor-associated loci were enriched in the JAK-STAT signalling path-
way, which is critical for response to many cytokines (Fig. 3b). Never-
theless, the genes implicated in the JAK-STAT signalling pathway were
largely distinct between factors, with only three genes shared between
any pair of factors. Notably, the transcription factor STAT3 was speci-
fically associated with Fgut, while STAT4 was associated with Faid, and
STAT5A and STAT6 were associated with Falrg. This suggests that
although trans-diagnostic risk loci are different for three groups of
diseases, they converge on perturbing similar cellular functions.

To test whether transdiagnostic risk variants also converge on a
specific cell type, we conducted a MAGMA gene-property analysis
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implemented in CELLECT20,21. To do that we first used the OneK1K
cohort22, which to date is the largest study containing single-cell RNA
sequencing (scRNA-seq) data from 982 donors and 1.27 million per-
ipheral blood mononuclear cells (PMBCs). We showed that there is an
enrichment of Fgut, Faid, and Falrg-associated loci inmemoryCD4+, CD8+

and unconventional T cells in all three disease groups (Fig. 4a). In
contrast, we did not observe an enrichment of GWAS loci in naive

T cells or B cell populations. Interestingly, NK cells were also enriched,
but only for the Fgut and Faid group of diseases. A similar pattern of
enrichment was observed using S-LDSC (Supplementary Fig. 5a). In
addition, given that tonsils are the secondary lymphoid organs where
immune activationoccurs, we verifiedT-cell enrichments using a study
which profiled human tonsils at the single-cell level23. These data
showed the same pattern of trans-diagnostic enrichment, observed in

c)

a) b)

chromosome

d)

0.66

0.92

0.53

0.91

0.72

0.57

0.51

0.71

1

0.39

0.09

0.08

   0

0.57

0.16

0.72

0.17

0.48

0.67

0.74

0.49

  1

    1

  1

CD

UC

PSC

JIA

SLE

RA

T1D

Ast

Ecz

Fgut

Falrg

Faid

e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-lo
g1

0 
(p

-v
al

ue
)

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30 Fgut

Faid

Falrg

1 0.61

1

0.24

0.62

1

0.35

0.35

0.18

1

0.15

0.23

0.24

0.65

1

0.12

0.13

0.03

0.48

0.48

1

0.14

0.18

0.24

0.41

0.34

0.36

1

0.1

0.05

−0.05

0.06

0.02

0.08

−0.01

1

0.24

0.01

−0.04

0.08

0.16

0.04

0.02

0.72

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CD UC PSC
JIA SLE RA

T1D Ast Ecz

CD

UC

PSC

JIA

SLE

RA

T1D

Ast

Ecz

Fgut Faid
F
alrg

Intersection size

S
et

 s
iz

e40 20 0 0

40

80

LD
S

C
 genetic correlation

Fgut Faid Falrg

absolute z score

0 5 10 15

Article https://doi.org/10.1038/s41467-023-38389-6

Nature Communications |         (2023) 14:2743 3



CD4 and CD8 T cells, with the strongest enrichment being observed in
regulatoryT cells (Fig. 4b). Asobserved in PBMCdata, disease lociwere
generally not enriched in B cells. The exception to that was memory
B cells expressing Fc receptor–like-4 (FCRL4 + B cells). FCRL4+ B cells
are thought to be tissue-resident cells and have been identified as a
potential target in RA therapy24, hence our results provide further
genetic support for their modulation. Furthermore, we observed that
disease loci were enriched in immune cells from gut25 and lung26 cell
atlases,with the strongest enrichment observed in T cells as previously
shown (Supplementary Fig. 6a, b). Nevertheless, we did not observe
enrichment in epithelial or other non-immune cells. This shows that
the cross-disease factors capture true immune signals that are shared
across diseases.

Finally, we observed a similar enrichment pattern in biological
processes across all three groups of diseases. Notably, genes in factor-
associated loci were enriched for lymphocyte and immune activation
(Fig. 4c and Supplementary Data 7), albeit this enrichment was driven
by a distinct group of genes (Fig. 4d) as demonstrated previously.

Taken together, our data suggest that different groups of diseases
have distinct patterns of genetic associations but that associated loci
converge on perturbing different nodes in lymphocyte activation and
cytokine signalling.

Colocalization at factor loci identifies potential drug targets
To assess whether variants associated with each disease group mod-
ulate gene expression in immune cells, we tested for colocalization
between factor-associated loci and single-cell eQTLs (sc-eQTLs)
derived from PMBCs from the OneK1K cohort22. Briefly, to identify
independent and secondary eQTL signals we performed locus
decomposition (see Methods) and colocalized with factor-associated
loci using the Bayesian framework coloc27. We identified 46 colocali-
zations in Fgut, 49 in Faid and 20 in Falrg with PP4 ≥0.9 (Supplementary
Data 8). Finally, to determine whether an increase in gene expression
predicts increased disease risk, we used Mendelian Randomization
(MR) using theWald ratio method (Fig. 5a and Supplementary Data 9).
For example, an eQTL for Src family tyrosine kinase BLK present in
naive memory B cells specifically colocalized with an association with
the Faid group of traits (Fig. 5b), with an increase in BLK expression
associated with lower disease risk. This is consistent with the fact that
rare variants that reduce BLK function have been demonstrated to
induce SLE28. In another example, we observed that a locus associated
with Fgut modulates the expression of Prostaglandin E Receptor 4
PTGER4 (Fig. 5c). In this case, an increase in gene expression protects
against the Fgut group of diseases.

One of the major hurdles of human genetics has been translating
genetic findings into clinical insights. To identify potential drug tar-
gets, we used the Open Targets Platform29 and investigated whether
colocalizing genes are known drug targets (Table 1). Of the 46 eQTL
genes, eight are targeted by drugs which are either already used in the
clinics or are in clinical trials. Four of these eight have been previously
used in autoimmune diseases, while the other four represent potential
candidates for drug repurposing. For example, our data shows that the

increase in expression of a key immune regulator CTLA4 is protective
against the Faid group of diseases. The property of CTLA-4 to regulate
the immune system has long been exploited in the treatment of RA12.
Similarly, an inhibitor for Integrin Subunit Alpha 4 ITGA4 has been
trialled in UC and CD (Open Targets database and Table 1). Our data
gives further genetic evidence that an increase in ITGA4 expression
leads to an increased risk for Fgut diseases, and therefore it is plausible
that inhibiting ITGA4 would be beneficial not only in CD and UC but
should also be trialled in PSC.

Finally, we reasoned that if a genetic variant is associated with the
protein level, this will provide further evidence for the causal role of a
protein in each of the disease groups. Therefore, we colocalised pro-
tein QTLs (pQTLs)30 with factor-associated loci. We identified five
colocalizations in Fgut, three in Faid and five in Falrg with PP4 ≥0.9
(Supplementary Data 10). In addition, to determine whether an
increase in protein level predicts increased disease risk, we used MR
(Supplementary Fig. 7a, Supplementary Data 11). For example, we
observed that a locus associated with Falrg modulates the level of
LRRC32, and an increase in LRRC32 increases the risk of Falrg group of
diseases (Supplementary Fig. 7b). LRRC32 regulates TGF-ß signalling
and is a well-known regulator of inflammation31. Importantly, three out
of 13 colocalizing pQTLs are knowndrug targets for immune-mediated
diseases (IL6R, IL2RA and ERAP2) (Supplementary Fig. 7c).

Taken together, our data show that understanding the pleiotropy
of genetic associations can reveal common disease mechanisms,
identify novel drug targets and offer evidence for drug repurposing.

Discussion
In this work, we used genomic SEM to investigate the commongenetic
factors predisposing to multiple immune-mediated diseases. We
identified three broad categories of immune-mediated diseases: dis-
eases affecting the gastrointestinal tract, rheumatic and systemic dis-
orders, and allergic diseases. Surprisingly, underlying factors affecting
the pathogenesis of each of these disease groups had a highly specific
pattern of genetic associations, with only 13/301 loci being shared
across these groups. This suggests that there is a genetic similarity
between diseaseswithin a group, but that the associated loci are highly
distinct across groups. Importantly, as LDSC and genomic SEM control
for the sample overlap in GWAS studies, disease groupings are not
confounded by sharing of the samples16,17.

The identified groups agree with previous epidemiological find-
ings. For example, T1Dwas groupedwith rheumatic diseases including
RA, which is in line with reports that patients with T1D but not T2D
have an increased risk of RA (OR = 4.9)32. Similarly, ~70% of patients
with PSC have IBD, with UC being the most prevalent33. Our study
shows that there are common genetic mechanisms driving the
pathogenesis of these diseases and suggests that creating cross-
disorder cohorts of immune diseases could increase the power to
identify causal pathogenic processes.

Importantly, over 90%of identified loci acted via common factors,
rather than independently on each of the diseases. Therefore, we
sought to identify transdiagnostic risk pathways to uncover biological

Fig. 1 | Three groups of immune-mediated diseases have distinct patterns of
genetic associations. a Genetic correlation matrix of nine immune-mediated dis-
eases estimated with LD score regression. Shades of blue and red indicate positive
and negative correlations respectively. Blue represents Fgut, green Faid and red Falrg.
b Path diagram of the three-factor model of immune-mediated diseases. Colours
represent different factors. Latent variables representing common genetic factors
are depicted as circles. Standardised loadings (one-headed arrows), residual var-
iances (two-headed arrows connecting the variable with itself) and covariances
(two-headed arrows connecting latent variables) are shown. c Manhattan plots of
SNP-specific effects on each factor. Black rhomboids represent lead SNPs and a
solid line indicates the genome-wide significant threshold (p value = 5 × 10−8).
Genomic SEM (WLS estimation method) was used to conduct the factor GWAS.

d UpSet plot showing the overlap between significant genomic regions associated
with different factors; intersection size indicates the number of overlapping
regions. Asymmetric overlaps (e.g. two regions in one factor overlapping with one
region in the other) are counted as one overlap. Yellow represents overlapping
genomic regions. e Heatmap of absolute z-scores of factor-specific genomic
regions. Each column corresponds to a lead SNP, with rows corresponding to fac-
tors. Hierarchical clusteringwas applied to the columns, with breaks along columns
separating the factor-specific lead SNPs. CD Crohn’s disease, UC ulcerative colitis,
PSC primary sclerosing cholangitis, JIA juvenile idiopathic arthritis, SLE systemic
lupus erythematosus, RA rheumatoid arthritis, T1D type 1 diabetes, Ecz eczema, Ast
asthma.
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Fig. 2 | Latent factors have a distinct genetic architecture. a Schematic repre-
sentation of the conditional analysis and colocalization strategy (see Methods).
Colours represent different traits. b Blue, green and red represent loci that were
specific for Fgut, Faid and Falrg, respectively, while yellow represents loci that are
shared between factors. c Colocalization relationship between latent factors and
traits in the region 16:11,006,011 − 11,751,015. Colours represent disease groups.
Circles represent latent factors or traits, rsID of the lead SNP and rhomboids

represent the loci that colocalize among traits. d Conditional analysis of the
genomic region chr16:11,006,011−11,751,015. Locus-zoom plots of three different
factors (blue for Fgut, green for Faid, and red for Falrg) and the conditional loci for
each of the latent factors in the regions are shown. Genomic SEM (WLS estimation
method) was used to conduct the GWAS and COJO to estimate the conditional
p values. CD Crohn’s disease, T1D type 1 diabetes.
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processes whose perturbation affects each of the disease groups. Our
study showed that despite associated loci being highly factor specific,
they converged on perturbing the same pathways involved in T cell
activation, differentiation and cytokine signalling. Fgut and Faid and
Falrg-associated loci were enriched in the JAK-STAT signalling pathway,
although there were only three overlapping genes driving the pathway

enrichment in each of these groups. Similarly, out of 53 genes that are
enriched for lymphocyte activation, only 7 were shared across at least
two factors. Therefore, one can speculate that perturbations at dif-
ferent nodes which regulate T cell activation and cytokine signalling
arepartially responsible for drivingdifferent diseaseoutcomes.Recent
advances in CRISPR editing in T cells and its subpopulations34,35 will be

Fig. 3 | Factor-associated loci perturb different nodes of the same pathways.
a KEGG pathway enrichment analysis of factor-associated genes. The heatmap
showsKEGGpathways thatwere significantly enriched (p adjusted < 0.05) in factor-
associated genes. The radius of the circle is proportional to the −log10(p-adjusted).
P values were calculated with the hypergeometric test and corrected for multiple
testing with the gprofiler-g:SCS. The tile plot shows enriched genes in each of the

pathways. Blue, green and red represent the genes that contributed to the
enrichment of Fgut, Faid and Falrg respectively. b Schematic representation of JAK-
STAT signalling pathway. Blue, green and red represent components of the path-
way that contribute to the enrichment fromFgut, Faid and Falrg respectively. Adapted
from ‘Cytokine Signaling through the JAK-STAT Pathway’, by BioRender.com
(2023). Retrieved from https://app.biorender.com/biorender-templates.
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Fig. 4 | Factor-associated loci converge onT cells.MAGMAgene-property results
of Onek1k PBMC dataset (a) and tonsillar cells (b). The barplot shows −log10(p
value) of the enrichment. P values were estimated usingMAGMA, using a one-sided
test. Colours in the barplot represent groups of cells belonging to the same cell
type. The heatmap shows regression coefficients from the MAGMA model. c The
bar plot shows the −log10(p-adjusted) of the top five GO terms enriched in factor-
associated genes. P values were calculated with the hypergeometric test and

corrected for multiple testing with the gprofiler-g:SCS. Blue, green and red repre-
sent the GO terms for Fgut, Faid and Falrg respectively. d The stacked-bar plot shows
the number of genes unique or shared by the latent factors in the top 10 shared
enriched GO terms. Grey represents genes unique to one of the factors, purple
represents genes that are associated with two factors and orange represents genes
that are associated with all three latent factors.
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instrumental to elucidate the differential effects of perturbing each
node within shared pathways.

Finally, it has been widely demonstrated that supporting
preclinical data with genetic evidence can significantly increase
the chance of developing successful drugs36. Therefore, under-
standing how trans-diagnostic variants regulate gene expression
can help to identify novel drug targets or provide additional evi-
dence for existing trials. Here we colocalized the factor-associated
loci with sc-eQTL derived from the OneK1K cohort. To date,
OneK1K is the largest study containing single-cell RNA sequencing
(scRNA-seq) data from 982 donors and 1.27 million PMBCs. We
showed that eight of these colocalizing genes are known drug
targets offering further genetic support for their potential ther-
apeutic effect. In addition, given that the assessed variants are
pleiotropic, our results imply that identified drugs could be
repurposed for diseases within the same group. For example, our
data shows that the increase in expression of a key immune reg-
ulator CTLA4 is protective against the Faid group of diseases. The
property of CTLA-4 to regulate the immune system has long been
exploited in the treatment of RA12. Similarly, an inhibitor for

Integrin Subunit Alpha 4, ITGA4 has been trialled in UC and CD
(Open Targets database). Our data gives further genetic evidence
that an increase in ITGA4 expression leads to an increased risk for
Fgut diseases, and therefore it is plausible that inhibiting ITGA4
would be beneficial not only in CD and UC but should also be
trialled in PSC. However, one limitation of this study is that we
identified colocalization events for 37 out of 301 loci. This high-
lights the urgent need for larger cohorts, which will be better
powered to detect eQTLs, as well as large-scale genetic studies in
immune disease patients.

A limitation of our study is that it only focussed on GWAS
performed on populations of European ancestry. This is because
genomic SEM and LD score regression require the samples to be
drawn from the same ancestry, as linkage disequilibrium blocks
and thus LD scores are ancestry-dependent17. While no studies
have to date validated the behaviour of genomic SEM in similar
settings, we would expect that the use of the GWAS datasets
originating from different ancestries may lead to spurious results.
Therefore, we believe that the analysis should be conducted per
ancestry rather than combining GWAS of different ancestries. As

Fig. 5 | Colocalization of immune cell eQTLs prioritises cross-disease causal
genes and identifies potential drug targets. a Colocalization and Mendelian
Randomization results (see Methods) of eQTL predicting risk to the latent factors.
Triangles pointing upwards indicate that an increase in gene expression increases
disease risk, while triangles pointing downwards indicate a decrease in disease risk.
Blue, green and red represent Fgut, Faid and Falrg respectively. Only significant
Mendelian Randomization results (p-value < 0.05) are shown. b–c Colocalization

plots of latent factors and eQTLs. The posterior probability of colocalization (H4)
is shown. b Locus-zoom plot representing the colocalization between the BLK gene
in B memory cells and Faid. P-values refer to the SNP p-values derived from the
factor GWAS and from the e-QTL dataset. c Locus-zoom plot representing the
colocalization between the PTGER4 gene in NK cells and Fgut. P values refer to the
SNP p-values derived from the factor GWAS and from the e-QTL dataset.
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the representation of global populations in immune disease
GWAS increases, follow-up studies will be required to test whe-
ther our observations are fully transferable to different ancestral
groups.

In conclusion, our work underscores that three groups of
immune-mediated diseases do not share similarities in their genetic
predisposition, but show associated loci which converge on perturb-
ing different nodes of a common set of pathways, including in lym-
phocyte activation and cytokine signalling.

Methods
Processing of summary statistics for LD score regression
We downloaded GWAS summary statistics from published studies on
the most common autoimmune disorders: T1D7, RA8, JIA37, SLE38,
CD39, UC39, AST40, ECZ41 and PSC42 (Supplementary Data 1). Where
necessary, rsIDs were added to the summary statistics using the
reference file provided in the Genomic SEM repository (https://
utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/file/
576598996073). Where necessary, chromosomes X and Y were
removed and the standard error of logistic betas was calculated
based on Odds Ratio confidence intervals. Summary statistics were
formatted with the munge function from Genomic SEM R package
v.0.0.5, (with default parameters) which removes all the SNPs not
present in the reference file, filters out SNP with MAF < 1% and flips
the alleles according to the reference file and computes z-scores. The
HapMap3 reference file is provided in the Genomic SEM repository

https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v/
file/805005013708.

Estimation of genetic correlation with genomic SEM
The sum of the effective sample sizes for GWAS that was meta-
analysed was calculated by retrieving the information about the
cohorts from the respective publications (Supplementary Data 1). We
calculated the sample prevalence for each of the cohorts using the
following formula

vc =ncases=ðncases +ncontrolsÞ ð1Þ

Next, we calculated the cohort-specific sample size as follows:

Ef f Nc =4× vc × ð1� vcÞ× ðncases +ncontrolsÞ ð2Þ

Finally, we summed the EffNc of each contributing cohort to compute
the sum of the effective sample size:

X
Ef f Nc ð3Þ

Where c are contributing cohorts (as described at https://github.com/
GenomicSEM/GenomicSEM)43. To estimate genetic correlation we used
the ldsc function in Genomic SEM, using the LD reference panel pro-
vided in the Genomic SEM repository (https://utexas.app.box.com/s/
vkd36n197m8klbaio3yzoxsee6sxo11v/folder/119413852418).

Table 1 | Table representing the drugs prescribed in clinics, in clinical trials or with preliminary results in mice for immune-
mediated disorders targeting eQTL genes

Gene Drug Type Clinical indication Application in immune - mediated
diseases

eQTL effect

BLK XL-228 inhibitor cancer - protective

TG100-801 inhibitor macular degeneration - protective

ilorasertib inhibitor cancer - protective

ENMD-981693 Inhibitor cancer - protective

dasatinib inhibitor cancer alleviates symptomsofRA inmousemodels protective

CD48 anti-CD48 inhibitor - alleviates symptoms of EAE in mouse
models

protective

CTLA4 zalifrelimab inhibitor cancer - protective

quavonlimab inhibitor cancer - protective

erfonrilimab inhibitor cancer - protective

cadonilimab inhibitor cancer - protective

tremelimumab inhibitor cancer - protective

ipilimumab inhibitor cancer - protective

abatacept CTLA4-mimicking RA, JIA, UC, T1D, MS, psoriasis phase I - IV protective

ERAP2 tosedostat inhibitor cancer - predisposing

GBA afegostat stabiliser Gaucher’s disease - protective

ITGA4 firategrast antagonist MS phase II completed predisposing

adrilumab inhibitor UC and CD phase II completed predisposing

natalizumab inhibitor CD, MS and inflammation phase IV predisposing

natalizumab inhibitor RA phase II terminated predisposing

vedolizumad inhibitor CD, UC and immune system disease phase IV predisposing

vedolizumad inhibitor coeliac disease phase II terminated predisposing

PTGER4 rivenprost agonist UC phase II terminated protective

dinoprostone agonist pain/pregnancy - protective

CR-6086 antagonist RA phase II completed protective

grapiprant antagonist osteoarthtis/cancer phase I completed protective

IL4R dupilumab antagonist asthma phase III protective

dupilumab antagonist eczema phase IV protective

cintredekin besudotox binding agent cancer phase III protective

MS multiple sclerosis, UC ulcerative colitis, CD Crohn’s disease, RA rheumatoid arthritis, JIA juvenile idiopathic arthritis, T1D type 1 diabetes, EAE experimental autoimmune encephalomyelitis.
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Factor model specification and GWAS estimation with Geno-
mic SEM
To assign immune-mediated diseases in groups, we used the genetic
correlation ≥0.4 between disease pairs, resulting in three observed
disease groups. To uncover the latent factors which represent shared
variance components across diseases, we modelled the genetic
variance-covariance matrix across traits using genomic SEM. We
computed four confirmatory factor analyses guidedby the exploratory
factor analysis: a) a common factor model b) a two-factor model,
where one factor was loading into CD, UC, PSC, JIA, SLE, RA and T1D
while the other factor was loading into Ecz and Ast. c) A three-factor
model where F1 was loading into CD, UC, PSC; F2 was loading into T1D,
SLE, JIA, RA, and F3 loading into Ecz and Ast; d) A four-factormodel, F1
was loading into CD and UC, F2 was loading into T1D, SLE, JIA, RA, F3
was loading into Ecz and Ast and F4 was loading into PSC and UC. The
fit of the models was assessed by estimating the comparative fit index
(CFI) and the standardised root mean square residual (SRMR) para-
meters. We used CFI > 0.95 and SRMR<0.10 as a measure of a good
fit16. By using the disease clustering threshold (genetic correlation 0.4)
and themodel fit statistics thresholds (CFI > 0.95 and SRMR<0.10) we
excluded the models with one and two factors. The four-factor model
was instead excluded as it partitioned the variance of PSC, CD and UC
into two separate latent factors, where UC is both in factor 1 and factor
4 reducing the interpretability of a four-factor model.

Before estimating the SNP-specific effect, we aligned the summary
statistics to the reference file (https://utexas.app.box.com/s/
vkd36n197m8klbaio3yzoxsee6sxo11v/file/576598996073) which is
used to standardise the effect sizes and SE and format the summary
statistics (i.e. remove SNPs not present in the reference files and flip
the alleles to match the reference) with the sumstats function in
Genomic SEM with default parameters. SNP-specific effects of the
4,994,803 SNPs that were shared among all the nine GWAS were
estimated with the userGWAS function with default parameters using
the weighted least squares (WLS) estimation method. To evaluate
whether the calculated SNP effects were acting through our three-
factor model, we performed the QSNP heterogeneity tests. The het-
erogeneity test returns a χ2, whose null hypothesis suggests that the
SNP is acting through the specifiedmodel. Therefore, rejecting the null
hypothesis means that the SNP acts through a model that is different
from the specified one16,44.

Loci definitions and conditional analysis
We define the boundaries of each significant genomic region by
identifying all the SNPswith a p value lower than 1 × 10−6.We calculated
the distance among each consecutive SNP below this threshold in the
same chromosome; if two SNPs were further than 250 kb apart, then
they were defined as belonging to two different genomic regions. We
then considered as ‘significant’ all the genomic regions where at least
one SNP had a p value < 5 × 10−8. This procedure was repeated for all
GWAS. Finally, we compared genomic regions between different
GWAS andmerged thosewhich overlapped, redefining the boundaries
as the minimum and maximum genomic position across all over-
lapping genomic regions.

Processing of summary statistics for conditional analysis and
colocalization
Before running conditional analysis and colocalization, summary sta-
tistics (traits and factors) were processed with the Bioconductor Mun-
geSumstats package45. We specify the parameters to the MungeSumstat
function to: align the summary statistics to reference genome to the
build GRCh7 (1000genomes Phase2 Reference Genome Sequence
hs37d5, based on NCBI GRCh37, R package ‘BSgenome.Hsapiens.1000-
genomes.hs37d5’ v0.99.1), flip the alleles according to the reference file,
remove the SNPs which are not in the reference file (SNP locations for
Homo sapiens, dbSNP Build 144, based on GRCh37.p13, R package

‘SNPlocs.Hsapiens.dbSNP144.GRCh37’ v.0.99.20), exclude the SNPs with
betas or standard errors equal to 0.

Conditional analysis and colocalization
The genomic regions defined in the previous steps are based on
genomic position, but multiple association signals may be present
within each genomic region. To this end, we developed a statistical
approach which first divides each GWAS-significant genomic region
into its component signals and then uses colocalization across differ-
ent traits to group similar association signals. First, in each genomic
region for each GWAS, we performed stepwise forward conditional
regression using COJO46. The stopping criterion was that all condi-
tional p-values were larger than 1 × 10−4. This led to a set of indepen-
dent SNPs using all SNPs within the genomic region boundary
(±100 kb). For each SNP, a conditional dataset was produced where
SNPs in the genomic region were conditioned to all identified inde-
pendent SNPs apart from the target one. We then considered as true
signals those with p value < 10−6 or those for which the SNP with the
lowest p-value was lower than 5 × 10−8 in the original GWAS.

This procedure was repeated on all the traits which had a sig-
nificant association in the considered genomic region. We thus
obtained for each trait a set of conditional datasets covering all the
SNPs in the genomic region. This procedure is similar to that used by
Robinson et al.47 but instead of using the step-wise conditioned data-
sets, it uses an ‘all but one’ approach.

To understand which loci were pleiotropic between traits, we ran
colocalization using coloc27 analysis between all pairs of loci specific
for each trait. Loci which colocalized with PP4 ≥0.9 were grouped in a
single locus. We excluded the genomic regions in the HLA locus
(chromosome 6—25,000,000–35,000,000) from this analysis.

Colocalization with eQTL and pQTL data
We downloaded eQTLs from the OneK1K cohort22. pQTL results were
obtained from DECODE genetics30. For each genomic region, we first
identified if cis-eQTLs or cis-pQTL were present. For each identified
eQTL we performed the decomposition of the locus as described
above and the identified loci were colocalized with factor-associated
GWAS signals. For pQTL, we did not perform the conditional analysis
prior to colocalization as we did not have a reference LD panel for the
Icelandic population. Attempts of using a different LD reference set
resulted in hundreds of putatively independent loci, which are likely
false positives. Therefore we tested only the single main effect. To
identify a colocalizing signal we required PP4 ≥0.9. To identify the
direction of the effect of the increase in gene expression for the
colocalizing loci, we used Mendelian Randomization using the Wald
ratio method (TwoSampleMR R package48). We used the SNP with the
smallest p-value in the conditional analysis as an instrument variable.
Significant MR results (p value lower than 0.05) were reported. This
procedure was performed per cell type.

Cell type enrichment
To identify cell types underlying identified factors we used CELL-type
Expression-specific integration for Complex Traits (CELLECT). CEL-
LECT quantifies the association between GWAS signal and gene
expression specificity using well-established models for GWAS
enrichment MAGMA20 and S-LDSC49.

Gene-based enrichment
Candidate genes were retrieved by interrogating the Variant-to-Gene
(V2G) pipeline in the Open Targets Platform19 for the lead SNPs within
the conditionally independent loci. To calculate a prioritisation score
for candidate genes, the V2G pipeline takes into account molecular
phenotypes (eQTL, pQTL), chromatin interactions, functional predic-
tions and distance to the transcription start site. To identify enrich-
ment in KEGG pathways and GO terms we used the R package
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gprofiler2 (v0.2.1)50, with default parameters. Pathway was considered
significant if p-adj < 0.05. We used the R package pathview (v1.34.0)51

to represent the KEGGpathways and to highlight factor-specific genes.
The diagram shown in Fig. 3b was created with biorender.com using
the KEGG pathway as a reference.

Identification of drug targets
Open Targets Platform29 (v.22.06) was used to identify drug targets for
eQTL genes. This website was queried on (29th August 2022).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available GWAS summary statistics were downloaded from
the GWAS catalogue or provided by the authors of the respective
publications. MAF reference file, HapMap3 reference file and LD
reference panel are provided in the Genomic SEM repository. Gut
immune cell atlas: https://cellgeni.cog.sanger.ac.uk/gutcellatlas/Full_
obj_log_counts_soupx_v2.h5ad. Lung immune cells scRNA-seq data:
https://covid19.cog.sanger.ac.uk/madissoon19_lung.processed.h5ad.

Code availability
All codes are available at https://github.com/SoskicLab/aid_sharing.
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