
Article https://doi.org/10.1038/s41467-023-38388-7

Long COVID risk and pre-COVID vaccination
in an EHR-based cohort study from the
RECOVER program
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Long COVID, or complications arising from COVID-19 weeks after infection,
has become a central concern for public health experts. The United States
National Institutes of Health founded the RECOVER initiative to better
understand long COVID. We used electronic health records available through
the National COVID Cohort Collaborative to characterize the association
between SARS-CoV-2 vaccination and long COVID diagnosis. Among patients
with a COVID-19 infection between August 1, 2021 and January 31, 2022, we
defined two cohorts using distinct definitions of long COVID—a clinical diag-
nosis (n = 47,404) or a previously described computational phenotype
(n = 198,514)—to compare unvaccinated individuals to those with a complete
vaccine series prior to infection. Evidence of long COVID was monitored
through June or July of 2022, depending on patients’ data availability. We
found that vaccination was consistently associated with lower odds and rates
of long COVID clinical diagnosis and high-confidence computationally derived
diagnosis after adjusting for sex, demographics, and medical history.

The SARS-CoV-2 virus, and the COVID-19 pandemic it effected, hardly
needs introducing more than 2 years after the World Health Organi-
zation (WHO) first announced evidence of human-to-human trans-
mission in January of 20201. As of this writing, the WHO states there
have been 626million confirmed cases andmore than 6million deaths
attributed toCOVID-19worldwide2. Post-acute sequelaeof SARS-CoV-2
infection (PASC) have been widely reported and can include any
complication resulting from SARS-CoV-2 infection weeks or months
after infection3–5. Long COVID is a single diagnosis that encapsulates a
broad array of symptoms attributed to PASC. The WHO used a Delphi

method to create a clinical definition of long COVID that includes both
clinically observed features as well as patient-reported features6. Long
COVID is a multi-system disease, characterized by diverse features
such as dyspnea, chest pain, fatigue, cognitive impairment, deep vein
thrombosis, gastrointestinal dysfunction, etc.7,8. Numerous efforts to
define longCOVIDusing electronic health record (EHR) data exist, with
the goals of supporting public health surveillance and research9.
However, a gold standard definition of long COVID has been elusive.
We have previously provisioned the first machine learning EHR-based
long COVID definition (a Computable Phenotype, or CPmodel), which
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leveraged the long COVID ICD-10 code U09.9 as well as visits to long
COVID specialty clinics to train a classifier to identify putative long
COVID Patients10; as well as later work by others11.

The National Institutes of Health (NIH) created the RECOVER
initiative to address the uncertainty surrounding long COVID by
coordinating research across hundreds of researchers and more than
30 institutions12. The National COVID Cohort Collaborative (N3C)13,
sponsored by NIH’s National Center for Advancing Translational Sci-
ences, provides access to harmonized electronic health records
through the N3C Data Enclave. More than 75 sites have contributed
longitudinal data for over 15.5 million patients with a confirmed SARS-
CoV-2 infection, COVID-19 symptoms, or their matched controls.

Vaccines have been shown to be safe and effective at dramatically
reducing the riskof severeCOVID-1914,15. However, their impacton long
COVID is less understood, with most studies indicating a significant
protective effect16–19 while others reported mixed or no effects20, or
even an anti-protective effect21. While some have studied the impact of
administering vaccines after the onset of PASC22–24, we attempt to
address ambiguity around the association between pre-COVID-19
vaccination and eventual long COVID diagnosis. To our knowledge, we
are the first to consider vaccination with long COVID as a clinical

diagnosis or computable phenotype10; previous studies have relied on
surveys or the occurrence of one or two symptoms consistent with
long or acute COVID. Ours is also the largest study to leverage time-to-
event modeling or control for differences in the vaccinated and
unvaccinated populations.

Results
Patients with a COVID-19 infection between August 1, 2021 and January
31, 2022 were split into two cohorts. In a clinic-based cohort of 47,404
individuals, 695 (1.5%) received a clinical diagnosis of long COVID and
26,354 (55.6%)were fully vaccinated (Supplementary Table 1 shows the
number of individuals with each of the long COVID diagnoses; a single
person can receive multiple diagnoses). In a model-based cohort of
198,514 individuals, 3391 (1.7%) had a computational phenotype10 (CP)
score above a threshold of 0.9 and were labeled as having long COVID;
86,248 (43.4%) were fully vaccinated. All available EHRs beginning
45 days after COVID-19 infection were used to establish evidence of
long COVID. The end of patients’ follow-up periods varied depending
on the cadence of their healthcare facility’s data contributions and
ranged from June 10, 2022 to August 1, 2022. The minimum observed
follow-up period between COVID-19 infection and the end of an indi-
vidual’s data availabilitywas 164 days.Distributions of the length of the
follow-upperiod for both cohorts are shown in SupplementaryTable 2.
Full summaries of patient characteristics for both cohorts are shown in
Tables 1–4. Unadjusted cross-tabulations of vaccination status and
long COVID diagnosis are shown in Table 5.

Statistical analysis
Inverse probability of treatment weighting (IPTW) was applied to
logistic regression and Cox proportional hazards models for both

Table 1 | Model-based cohort patient demographics

Variable Overall
(N = 198514)

Fully vaccinated
(N = 86,248)

Unvaccinated
(N = 112,266)

Mean age 47.23 (100.0) 52.54 (100.0) 43.16 (100.0)

Age at COVID index date

18–24 20603 (10.4) 4841 (5.6) 15762 (14.0)

25–34 36515 (18.4) 11197 (13.0) 25318 (22.6)

35–49 53548 (27.0) 21355 (24.8) 32193 (28.7)

50–64 50644 (25.5) 25118 (29.1) 25526 (22.7)

65+ 37204 (18.7) 23737 (27.5) 13467 (12.0)

Sex

Female 128269 (64.6) 55998 (64.9) 72271 (64.4)

Male 70245 (35.4) 30250 (35.1) 39995 (35.6)

Race/Ethnicity

Asian non-
Hispanic

2651 (1.3) 2105 (2.4) 546 (0.5)

Black or African
American non-
Hispanic

26397 (13.3) 10173 (11.8) 16224 (14.5)

Hispanic or
Latino any race

18748 (9.4) 9773 (11.3) 8975 (8.0)

Pacific Islander
non-Hispanic

266 (0.1) 151 (0.2) 115 (0.1)

Other non-
Hispanic

4219 (2.1) 1460 (1.7) 2759 (2.5)

Unknown 3554 (1.8) 1985 (2.3) 1569 (1.4)

White non-
Hispanic

142679 (71.9) 60601 (70.3) 82078 (73.1)

Data partner

Partner A 9471 (4.8) 5816 (6.7) 3655 (3.3)

Partner B 1757 (0.9) 1166 (1.4) 591 (0.5)

Partner C 3424 (1.7) 2096 (2.4) 1328 (1.2)

Partner D 1139 (0.6) 736 (0.9) 403 (0.4)

Partner E 2721 (1.4) 2080 (2.4) 641 (0.6)

Partner F 27179 (13.7) 14714 (17.1) 12465 (11.1)

Partner G 6081 (3.1) 3971 (4.6) 2110 (1.9)

Partner H 2123 (1.1) 984 (1.1) 1139 (1.0)

Partner I 2220 (1.1) 1430 (1.7) 790 (0.7)

Partner J 25794 (13.0) 12677 (14.7) 13117 (11.7)

Partner K 116605 (58.7) 40578 (47.0) 76027 (67.7)

Table 2 | Model-based cohort medical characteristics

Variable Overall
(N = 198,514)

Fully vacci-
nated
(N = 86,248)

Unvaccinated
(N = 112,266)

Month of COVID index date

August 2021 48056 (24.2) 15029 (17.4) 33027 (29.4)

September 2021 45278 (22.8) 15831 (18.4) 29447 (26.2)

October 2021 22832 (11.5) 9282 (10.8) 13550 (12.1)

November 2021 23999 (12.1) 10143 (11.8) 13856 (12.3)

December 2021 23248 (11.7) 12083 (14.0) 11165 (9.9)

January 2022 35101 (17.7) 23880 (27.7) 11221 (10.0)

Health status

Immunocompromised 2139 (1.1) 1537 (1.8) 602 (0.5)

Diabetes (Complicated) 15152 (7.6) 9137 (10.6) 6015 (5.4)

Diabetes (Uncomplicated) 30383 (15.3) 16912 (19.6) 13471 (12.0)

Kidney disease 13145 (6.6) 7973 (9.2) 5172 (4.6)

Acute kidney injury 7570 (3.8) 4248 (4.9) 3322 (3.0)

Chronic lung disease 26487 (13.3) 13827 (16.0) 12660 (11.3)

Tobacco smoker 8301 (4.2) 3149 (3.7) 5152 (4.6)

Heart failure 8241 (4.2) 4893 (5.7) 3348 (3.0)

Myocardial infarction 4924 (2.5) 2702 (3.1) 2222 (2.0)

Weeks since last vaccination

<2 2662 (1.3) 2662 (3.1) 0 (0.0)

2–4 1947 (1.0) 1947 (2.3) 0 (0.0)

5–9 5596 (2.8) 5596 (6.5) 0 (0.0)

10–14 7404 (3.7) 7404 (8.6) 0 (0.0)

15–19 10011 (5.0) 10011 (11.6) 0 (0.0)

20–24 12566 (6.3) 12566 (14.6) 0 (0.0)

≥25 46062 (23.2) 46062 (53.4) 0 (0.0)

Unvaccinated 112266 (56.6) 0 (0.0) 112266 (100.0)
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cohorts to account for known confounders between vaccination pro-
pensity and risk of long COVID. The result is four adjusted estimates,
which showed consistent protective associations between vaccination
and long COVID diagnosis and are reported in Table 6. The full tables
of model coefficients are provided as Supplementary Tables 3–6.
Unadjusted estimates are also reported in Table 6, which do not
exhibit the same association. The IPTW-adjusted Kaplan–Meier curves
for the model-based and clinic-based outcomes are shown in Fig. 1.

Key results of the sensitivity analyses are summarized in Fig. 2.
Adjusted and unadjusted estimates were evaluated across multiple CP
score thresholds, and by including or excluding covariates in addition
to vaccination status. The association between vaccination and long
COVID was robust to excluding either IPTW-adjustment or non-
vaccination covariates, but not both. While not relevant in the clinic-
based outcome, the association in the model-based outcome was not
robust to the varying CP thresholds, with lower thresholds resulting in
a progressively weaker protective association. In the proportional
hazards models, an additional analysis determined that the estimates
were not sensitive towhether or not post-COVID-19 vaccination events
are censoring events (uncensored points are not pictured in Fig. 2 as

they closely overlap the censored points). The remaining sensitivity
analysis results are shown inSupplementary Table 7. In the clinic-based
cohort, an analysis showed the results to be robust to using only the
most specific ICD-10 code (U09.9) to label long COVID. Including only
sites with themost complete vaccine reporting (with recorded vaccine
ratios of at least 89%) resulted in associations similar to or stronger
than the four primary associations. Censoring patients in the clinic-
based analysis after their last recorded healthcare visit and eliminating
the requirement for a post-COVID-19 visit resulted in a slightly stron-
ger, but not significantly different, association as in our primary
results.

The subanalysis did not offer robust evidence that the association
between vaccination and long COVID diagnosis is dependent on the
time between vaccination and acute COVID-19 onset. The full tables of
subanalysis coefficients, including for indicators of vaccination timing,
are shown in Supplementary Tables 8–11.

After IPTW-adjustment, all covariates were well-balanced (Sup-
plementary Figs. 1, 2 illustrate the standardized differences in covari-
ates in both cohorts). Logistic regression diagnostics did not indicate
any overly influential observations. Observations with large residuals
tended to have low leverage and vice versa. In the model-based ana-
lysis, the greatest Cook’s distance was <0.01 and the greatest absolute
DFBETA for vaccination status was 0.07. In the clinic-based analysis,

Table 4 | Clinic-based cohort medical characteristics

Variable Overall
(N = 47,404)

Fully vacci-
nated
(N = 26,354)

Unvaccinated
(N = 21,050)

Age at COVID index date

18–24 4483 (9.5) 1731 (6.6) 2752 (13.1)

25–34 8486 (17.9) 4037 (15.3) 4449 (21.1)

35–49 12334 (26.0) 6681 (25.4) 5653 (26.9)

50–64 12268 (25.9) 7179 (27.2) 5089 (24.2)

65+ 9833 (20.7) 6726 (25.5) 3107 (14.8)

Month of COVID index date

August 2021 7361 (15.5) 2848 (10.8) 4513 (21.4)

September 2021 7221 (15.2) 3120 (11.8) 4101 (19.5)

October 2021 3448 (7.3) 1687 (6.4) 1761 (8.4)

November 2021 2920 (6.2) 1497 (5.7) 1423 (6.8)

December 2021 7496 (15.8) 4485 (17.0) 3011 (14.3)

January 2022 18958 (40.0) 12717 (48.3) 6241 (29.6)

Health status

Immunocompromised 1284 (2.7) 1000 (3.8) 284 (1.3)

Diabetes (Complicated) 5458 (11.5) 3633 (13.8) 1825 (8.7)

Diabetes (Uncomplicated) 9766 (20.6) 6070 (23.0) 3696 (17.6)

Kidney disease 5214 (11.0) 3430 (13.0) 1784 (8.5)

Acute kidney injury 3529 (7.4) 2164 (8.2) 1365 (6.5)

Chronic lung disease 10175 (21.5) 6036 (22.9) 4139 (19.7)

Tobacco smoker 5012 (10.6) 2026 (7.7) 2986 (14.2)

Heart failure 3419 (7.2) 2184 (8.3) 1235 (5.9)

Myocardial infarction 2204 (4.6) 1296 (4.9) 908 (4.3)

Weeks since last vaccination

<2 851 (1.8) 851 (3.2) 0 (0.0)

2–4 709 (1.5) 709 (2.7) 0 (0.0)

5–9 2151 (4.5) 2151 (8.2) 0 (0.0)

10–14 3289 (6.9) 3289 (12.5) 0 (0.0)

15–19 3201 (6.8) 3201 (12.1) 0 (0.0)

20–24 2916 (6.2) 2916 (11.1) 0 (0.0)

≥25 13237 (27.9) 13237 (50.2) 0 (0.0)

Unvaccinated 21050 (44.4) 0 (0.0) 21050 (100.0)

Table 3 | Clinic-based cohort patient demographics

Variable Overall
(N = 47,404)

Fully vaccinated
(N = 26,354)

Unvaccinated
(N = 21,050)

Mean age 48.19 (100.0) 51.01 (100.0) 44.67 (100.0)

Age at COVID index date

18–24 4483 (9.5) 1731 (6.6) 2752 (13.1)

25–34 8486 (17.9) 4037 (15.3) 4449 (21.1)

35–49 12334 (26.0) 6681 (25.4) 5653 (26.9)

50–64 12268 (25.9) 7179 (27.2) 5089 (24.2)

65+ 9833 (20.7) 6726 (25.5) 3107 (14.8)

Sex

Female 30819 (65.0) 17356 (65.9) 13463 (64.0)

Male 16585 (35.0) 8998 (34.1) 7587 (36.0)

Race/Ethnicity

Asian non-
Hispanic

855 (1.8) 666 (2.5) 189 (0.9)

Black or African
American non-
Hispanic

10480 (22.1) 5283 (20.0) 5197 (24.7)

Hispanic or
Latino any race

3053 (6.4) 1625 (6.2) 1428 (6.8)

Pacific Islander
non-Hispanic

73 (0.2) 37 (0.1) 36 (0.2)

Other non-
Hispanic

1385 (2.9) 454 (1.7) 931 (4.4)

Unknown 1166 (2.5) 623 (2.4) 543 (2.6)

White non-
Hispanic

30392 (64.1) 17666 (67.0) 12726 (60.5)

Data partner

Partner A 9311 (19.6) 5738 (21.8) 3573 (17.0)

Partner B

Partner C 3389 (7.1) 2077 (7.9) 1312 (6.2)

Partner D 1133 (2.4) 734 (2.8) 399 (1.9)

Partner E

Partner F

Partner G 5993 (12.6) 3912 (14.8) 2081 (9.9)

Partner H

Partner I 2156 (4.5) 1396 (5.3) 760 (3.6)

Partner J 25422 (53.6) 12497 (47.4) 12925 (61.4)

Partner K

Article https://doi.org/10.1038/s41467-023-38388-7

Nature Communications |         (2023) 14:2914 3



the greatest Cook’s distance was 0.01 and the greatest absolute
DFBETA for vaccination status was 0.09. In the model-based analysis,
five patients had stabilized inverse probability of treatment weights
above 20 (max of 32); excluding these patients did not impact vacci-
nation coefficients at the precision reported here. The maximum
weight in the clinic-based analysis was ten.

Discussion
Our four analyses yielded consistent results. We see protective asso-
ciations of vaccination with long COVID diagnosis in both logistic and
time-to-event models, and in both clinic-based and model-based out-
comes. While these findings are similar to those of other large obser-
vational studies16–19, previous sources have only looked for evidence of
COVID-associated symptoms as evidence of long COVID. A major
finding of our analysis is that the protective association remains con-
sistent in results requiring a clinical diagnosis, and among those who
contracted COVID-19 in a later period that includes Omicron infections.

The use of a clinical diagnosis resulted in a significantly lower long
COVID prevalence in our study (less than 2% in both cohorts) than
studies based on long COVID symptoms, which have reported pre-
valences between 8 and 38%, depending on which and how many
symptoms were required17–19. However, both of our cohorts are large,
and the use of a CP allowed us to expand our sample from six to eleven
sites and 47,404 to 198,514 COVID-positive patients, providing a suf-
ficient sample of strictly defined long COVID diagnoses. Due to the
underdiagnosis of long COVID in a clinical setting, our conclusions are
limited to associations with diagnosis and not with long COVID onset
more generally.

Interestingly, the protective association of vaccination with long
COVID diagnosis is weaker or reversed in the unadjusted coefficients
and cross-tabulations (Table 6 and Fig. 2). Several features that are
associated with a higher likelihood of long COVID (coefficients in
Supplementary Tables 3–6) are also associatedwith a higher likelihood
of vaccination (coefficients in Supplementary Tables 12, 13). The most
significant is age: Supplementary Table 14 shows how older adults are
both more likely to be vaccinated and more likely to contract long
COVID in comparison to younger adults. Failing to account for the
substantial differences between individuals who were and were not
vaccinated prior to COVID-19 could lead one to inaccurately conclude
that vaccination is harmful.

The sensitivity analysis presents other instructive complexities.
Reducing the CP score threshold lowers the amount of evidence
required to denote someone as having long COVID; it also moderates
the protective association of vaccination with long COVID (key results
in Fig. 2, full range of thresholds in Supplementary Fig. 3). We expect
that including healthy adults in the long COVID, population would
dilute the observed association, but individuals with a CP score
between0.6 and0.9 arenot entirely healthy—they have someevidence
of longCOVID. In fact, our sample’s longCOVID incidence rate at lower
thresholds is closer to long COVID incidence rates reported elsewhere
(although the true incidence rate of long COVID is unknown). This
suggests a hypothesis that vaccination may be more effective at pre-
venting clinically diagnosed long COVID than undiagnosed long
COVID.More research is needed to determine the differences between
high confidence and clinically diagnosed long COVID cases compared
to lowconfidence andundiagnosed cases. If they aremore severe, then
our results could suggest that vaccination is associated with reduced
severity of long COVID symptoms.

Healthcare utilization is one of themost important features of the
CP model10. If fully vaccinated patients are more likely to utilize the
healthcare system, the CP model’s marginal predictions may be
assigning more fully vaccinated individuals to long COVID because
they aremore likely to interact with the healthcare system, depressing
the observed benefit of vaccination. A known challenge of analyzing
EHR data is that they tend to provide more information on individuals
who regularly utilize healthcare systems25, though we attempt to
control for this by requiring multiple recorded encounters outside of
COVID-19 for inclusion in the study.

Our use of long COVID diagnosis and a computable phenotype as
outcomes differentiate this study fromothers17,18,20, whichmeasure the
association between vaccination and a curated list of long COVID
symptoms. Each approach has its strengths. Our clinical outcomes
reduce measurement error due to false positives (e.g., long COVID
symptoms caused by something other than long COVID). However,
other studies show that long COVID symptoms differ in their rela-
tionship with vaccination. Our outcomes obscure such variation. We
conclude that it is beneficial to study this relationship from both
perspectives.

Vaccination reduces the risk of developing COVID-19 for a period
of time after vaccination14,15, offering one mechanism for preventing
longCOVID.However, there is evidence thatwidely circulated vaccines
are less effective against now-dominant Omicron than earlier SARS-
CoV-2 variants26–28, increasing interest in whether or not vaccination
reduces the risk of long COVID in breakthrough infections. That is the
aim of this study, in which all eligible patients had a COVID-19 diag-
nosis. As a result, we are excluding any effect due to vaccination’s
primary prevention of COVID-19 in the first place that is present in the
general population.

Several studies conclude that the protective effect of vaccination
on acute COVID-19 infection severity wanes over time27,29, but we are
unaware of any studies making the same claim for long COVID. As can
be seen in Supplementary Tables 8–11, the subanalysis incorporating
time between vaccination and acute COVID-19 does not offer any
evidence that the association between vaccination and long COVID
diagnosis changes over time. The reference level for Weeks Since Last
Vaccination is those who received their last vaccine dose at least

Table 5 | Long COVID by vaccination status: unadjusted counts

Model-based cohort Clinic-based cohort

Overall With long COVID Without long COVID Overall With long COVID Without long COVID

Fully vaccinated 86,248 (100%) 1506 (1.7%) 84,742 (98.3%) 26,354 (100%) 346 (1.3%) 26,008 (98.7%)

Unvaccinated 112,266 (100%) 1885 (1.7%) 110,381 (98.3%) 21,050 (100%) 349 (1.7%) 20,701 (98.3%)

An individual must have received two doses of BNT162b2 or mRNA-1273 or a single dose of Ad26.COV2.S at least 2 weeks prior to COVID index to be fully vaccinated. Unvaccinated individuals
received no doses prior to the COVID index.

Table 6 | Long COVID by vaccination status: measures of
association

Logistic regression
ORa (95% CI)

Proportional hazards
HRb (95% CI)

IPTW-adjusted

Model-based outcome 0.70 (0.65, 0.75) 0.63 (0.57, 0.69)

Clinic-based outcome 0.70 (0.60, 0.81) 0.67 (0.56, 0.79)

Unadjusted

Model-based outcome 1.04 (0.97, 1.11) 1.00 (0.91, 1.10)

Clinic-based outcome 0.79 (0.68, 0.92) 0.79 (0.66, 0.95)
aOR Odds ratio
bHR Hazard ratio
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25 weeks prior to their COVID-19 infection. Negative coefficients for
the modeled indicators suggest stronger protective associations.
Three models present statistical significance (alpha =0.05) for at least
one indicator, indicating a significant differencebetween that level and
those vaccinated 25+ weeks prior to COVID-19, but results are not
consistent between models. Contrary to intuition and previously
reported results with acute COVID-19, those vaccinated at least
25 weeks prior to COVID-19 are among the least likely to be diagnosed
with long COVID across the four models. We do not present this as

evidence that the benefits of vaccination with respect to long COVID
do not wane. Caution should be used when interpreting conditional
coefficients and investigating the time between vaccination and
COVID-19 was not a primary focus in this study30.

IPTW is often used to estimate causal effects from observational
data and is employed here to provide more robust associations.
However, we do not interpret these results as causal effects. This is for
two reasons: (1) we are unwilling to assume that there are no unmea-
sured confounders in our treatment model and (2) our causal model

Fig. 2 | Sensitivity analysis of vaccination associations. Odds ratios (OR) are
shown for logistic regression (LR), hazard ratios (HR) are shown for proportional
hazards (PH). Point estimates are from models built using the full cohorts and are
shown with 95% confidence intervals derived from 200 bootstrap samples. The
vertical line at 1.0 represents no association. The clinic diagnosis points (n = 47,404
individuals) are using the clinic-based outcome, the long COVID (LC) model points

(n = 198,514 individuals) represent different thresholds of the computational
phenotype model to label LC. Higher thresholds represent higher confidence in an
LCphenotype.With or without covariates refers to the presence or absenceof non-
vaccinationpredictors in theoutcomemodels. Adjustedorunadjusted refers to the
presence or absence of IPTW weighting.

Fig. 1 | IPTW-adjusted Kaplan–Meier curves. Our definition of long COVID (LC)
can only be observed at least 45 days after index; time from the COVID index
therefore starts at 45. Long COVID events can only be observed for the model-

basedoutcome in 30-day increments, resulting in the observed stair-step structure.
A reduced vertical axis scale is used to highlight the differentiation between the
vaccinated and unvaccinated curves.
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includes several latent variables, which obstruct the estimation of
treatment effects through covariate adjustment. We explore each
reason in the Supplementary Discussion and provide a directed acyclic
graph of confounders in Supplementary Fig. 4.

Our study is limited by its reliance on EHRs and other factors.
Those who choose to not seek healthcare, or are unable to do so, are
not represented in EHRs. This could be particularly problematic among
long COVID patients, whomay lack the energy or resources required to
receive a clinical diagnosis, or whose providers may not be familiar
enough with long COVID symptoms to make a diagnosis. If vaccinated
long COVID patients are less likely to be clinically diagnosed than
unvaccinated long COVID patients, then our estimate of the associa-
tion between vaccination and long COVID diagnosis will overstate the
association between vaccination and long COVID onset. Furthermore,
we had previously identified a heterogeneous set of features that were
differentially present in clinical observations versus patient-reported
symptoms9. This agreed with the WHO suggestion that a definition of
long COVID must necessarily include both clinician and patient-
reported features - which are not commonly available in the EHR.

We are forced to assume that those without a recorded condition
or symptom do not exhibit it, including our exposure (vaccination),
our outcome (long COVID diagnosis), and potentially unrecorded
reinfections of COVID-19. We take two steps to mitigate the risk of
unrecorded records relevant to the outcome: (1) we require that all
participants in the study had established care at the partner facility
prior to COVID-19 infection, as evidenced by two healthcare visits in
the year prior, and (2) we require that all participants in the study were
seen at the partner facility at least 120 days after COVID-19 infection.
Our utilization-related inclusion criteria result in a cohort that is dis-
proportionately female, which may be due in part to females being
higher healthcare utilizers than males on average31–33. We account for
confounding due to sex by including sex as a covariate in treatment
weighting and in all primary models. The utilization criteria result in a
significantly smaller cohort and biases the sample towards high utili-
zers and those with hospitalizations. However, it remains sufficiently
large for analysis and has a lower risk that long COVID will go
undiagnosed, as patients were active users of the partner facility both
before and four months after COVID-19 infection. In the clinic-based
cohort, there is an additional requirement that the facilities have a
track record of diagnosing long COVID (though the variation between
doctors remains).

A sensitivity analysis that censors individuals after their last
healthcare visit (rather than at the end of the study period) yields an
association similar to our four primary results (Supplementary Table 7).
Censoring is not possible in logistic regression models, but allows the
proportional hazards model to relax the assumption that individuals
that established care at a facility continue to use that facility after their
last recorded visit. For this analysis, we did not require a recorded visit
after the acute COVID-19 infection, but individuals remained ineligible
for long COVID designation until 45 days after infection.

Our cohort is further refined by our requirement that the partner
facility have reasonably high recorded vaccine ratios, as defined in our
Methods. Most facilities fail to achieve recorded vaccine ratios greater
than 66%, as they are not the primary provider of vaccinations in their
community, do not link to their state’s vaccine registry, or do not
consistently record the vaccinations they provide in the EHR. We do
not use a facility’s vaccination rate as an individual characteristic in our
models, but rather as a facility-wide inclusion criterion. By limiting to
partner facilities with a high vaccination rate, as with our utilization
criteria, we refine our cohort to be smaller but more data-rich.

We strictly define our study cohort to minimize the under-
reporting of vaccination and longCOVID, thoughwe acknowledge that
it is not entirely resolved. Our sensitivity analysis using only sites with
the highest recorded vaccine ratios (≥89%) offers some evidence that
incomplete vaccine records result in a conservative estimate. The

cohorts are small (the model-based cohort has 10,122 patients; the
clinic-based cohort has 5545), resulting in wide confidence intervals
that include the primary estimates for every model (Supplementary
Table 7). However, the mean estimated associations are stronger than
our primary results in three of the four models and remain significant
in all four models with 95% confidence. We conclude that our primary
estimates are likely conservative, but our primary result—that pre-
COVID-19 vaccination is associated with a reduced risk of long COVID
diagnosis—is not threatened.

The confidence intervals around the CP model-based risk esti-
mates are likely too narrow, as there remains residualmisclassification
of long COVID outcomes in that cohort not factored into the con-
fidence interval boundaries. We did not distinguish between vaccine
types, though previous studies and initial tabulations failed to detect
significant differences in their associations with long COVID17–19. The
ICD-10 code for long COVID, U09.9, was not implemented until
October 2021, and it has not been fully adopted. The previously
recommended ICD-10 code, B94.8, is more general and is used to
diagnose long-term complications from any viral infection. We
accepted B94.8 as a long COVID diagnosis because the use of the code
in our data by mid-2021 was 40 times higher than its baseline use in
2018 and 2019. A sensitivity analysis using only U09.9 returned nearly
identical results.

In conclusion, vaccination was consistently associated with lower
odds of both a long COVID clinical diagnosis as well as a high-
confidence computationally derived diagnosis, regardless of viral
epoch and taking into account age, sex, and demographics. Thismulti-
method strategy provides additional evidence on the controversial
and yet understudied and challenging topic of whether vaccination
reduces the risk of long COVID.

Methods
Base population
This study is part of the NIH Researching COVID to Enhance Recovery
(RECOVER) Initiative, which seeks to understand, treat, and prevent
PASC. Formore informationonRECOVER, visit https://recovercovid.org.
All analyses described here were performed within the secure N3C Data
Enclave. N3C’s methods for patient identification, data acquisition,
ingestion, data quality assessment, and harmonization have been
describedpreviously in refs. 13,34. The studypopulationwasdrawn from
5,434,528COVID-19-positive patients available inN3C. ACOVID-19 index
date (index) was defined as the earliest recorded indication of COVID-19
infection. Individuals who met the following inclusion criteria were eli-
gible: (1) having an International Classification of Diseases-10-Clinical
Modification (ICD-10) COVID-19 diagnosis code (U07.1) or a positive
SARS-CoV-2 PCR or antigen test between August 1, 2021 and January 31,
2022; (2) having a recorded health care visit between 120 and 300 days
after index; (3) having at least two recorded health care visits in the year
prior to index; (4) being ≥18 years old at index; and (5) having either
completed or not started a COVID-19 vaccine regimen at index. One
exclusion criterion for a clinical cohort is detailed in the outcome defi-
nitions. The end of individuals’ follow-up periods varied according to
when their healthcare providers last submitted new data, ranging from
June 10, 2022 to August 1, 2022.

A known limitation of EHR data is that only those healthcare
encounters and services provided by the specific health system are
available in the data35. The proportion of patients with a recorded
vaccination at a given healthcare site is driven by two factors: (1) the
true rate of vaccination among the population served and (2) how
consistently vaccines are captured by the site. Some sites report no
vaccinations, while others sync vaccination records with their state’s
vaccine registry. There is no explicit indicator of non-vaccination in the
N3C Data Enclave, but sites with better-recorded vaccine ratios offer
more confidence that patients with no recorded vaccine exposure are
unvaccinated. We calculated the recorded vaccine ratio at each site as
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the ratio of two statistics: the observed proportion of patients with a
vaccination recordand an expected vaccination ratederived fromCDC
reporting36 for the population served. Sites with an observed propor-
tion of at least two-thirds of their expected vaccination rate were eli-
gible for analysis, leaving 198,514 patients at eleven sites that met our
inclusion criteria. A full breakdown of how many patients met our
inclusion criteria is shown in Fig. 3.

As much as possible, we account for confounding due to sex
through the inverse probability of treatment weighting and by
including sex as a covariate in all primary models. Demographics
were defined through standard concepts available in the Observa-
tional Medical Outcomes Partnership (OMOP) Common Data Model
(CDM)37,38. Gender is not available in the CDM39, and was therefore
not considered in the study.

Exposure definition
Those who completed their vaccine regimen (two doses of BNT162b2
ormRNA-1273 or a single dose of Ad26.COV2.S) twoweeks prior to the
index were considered vaccinated, while those with no recorded vac-
cines at the index were considered unvaccinated. Partially vaccinated
patients at index failed to meet the fifth inclusion criterion.

Outcome definitions
Definitions of long COVID vary. The CDC defines post-COVID symp-
toms as those beginning at least 4 weeks after infection40, while the
WHO defines long COVID as beginning “usually 3 months” from
COVID-19 onset with symptoms lasting more than 2 months not
explained by another condition6. We use two definitions, one each for
the clinic and model-based cohorts, that balance these organizational
definitions with the strength of evidence available in each cohort.

Clinical definition. We considered three clinical indicators of long
COVID: (1) an ICD-10 code for post-COVID-19 condition (U09.9), (2) an
ICD-10 code for sequelae of other specific infectious and parasitic
diseases (B94.8), or (3) a visit to a long COVID clinic. Prior to the
introduction of U09.9 in October 2021, the CDC endorsed B94.8 to
indicate long-term complications of SARS-CoV-2 infection. As with
vaccination, not all sites report clinical indicators of long COVID. Six
out of eleven sites, comprising 47,404 of 198,514 eligible patients,
submitted clinical indicators of long COVID for at least 250 patients.
We used patients from these six sites to form a clinic-based cohort of
patients, whomwe deemed eligible for receiving a clinical long COVID
indicator. The clinic-based cohorthasone additional exclusion criteria:
those with a long COVID clinical indicator within 45 days of the index
were omitted, because diagnoses within this time period are less likely
to align with the generally accepted long COVID definitions.

Any longCOVID clinical indicatorwas sufficient to label a patient as
having had long COVID in the logistic regression. If patients had mul-
tiple encounters with a clinical indicator of long COVID, the earliest was
used as the event date for purposes of the time-to-event analysis. Death
and COVID-19 vaccination after COVID-19 onset were censoring events.

Model-based definition. Long COVID was classified in the model-
based cohort as a computational phenotype (CP) using the longCOVID
cohort identificationmachine learningmodel described in ref. 10. A CP
is a model trained on EHR data, which can be used to infer the like-
lihood that a patient has a phenotype (in this case, long COVID) based
on their clinical history41. For the purposes of this study, the CPmodel
was retrained with U09.9 diagnoses as the target event and without
vaccination status as an input. The model calculates a long COVID
likelihood score (range 0 to 1) for each patient beginning 100 days
after the index using only conditions and drugs observed as of that
day. New scores are generated in 30-day intervals until 300 days after
the indexor June 1, 2022,whichever comesfirst. Patients scoring above
0.9 in any interval were labeled as having long COVID. A threshold of
0.9 was chosen as it resulted in a similar prevalence of long COVID
across the model-based and clinic-based outcomes. The earliest
interval receiving a score above 0.9 was assigned as the event date for
purposesof the time-to-event analysis.As in the clinic-baseddefinition,
death and COVID-19 vaccination were censoring events.

Any patient meeting our inclusion criteria from any of the eleven
sites was eligible for a model-derived indicator of long COVID and was
included in the model-based cohort. Therefore, all patients in the
clinic-based cohort are also included in themodel-based cohort, where
they can (and sometimes do) have a different assigned long COVID
outcome. This is not unexpected—the CP model was trained using
U09.9 as the target, while we include U09.9, B94.8, and long COVID
clinic visits as valid clinical diagnoses. Both labels are rare and imper-
fect; we do not expect one indication to guarantee the other.

Institutional review board oversight
The N3C data transfer to the United States National Center for
Advancing Translational Sciences (NCATS) was approved under a
Johns Hopkins University Reliance Protocol #IRB00249128 or indivi-
dual site agreements with NIH. The use of human data for this study
was approved by the Johns Hopkins Medicine Institutional Review
Board (IRB) #IRB00279988 through a data use agreement entitled
“Characterization of long-COVID: definition, stratification, and multi-
modal analysis”. The N3CData Enclave ismanaged under the authority
of the NIH; information can be found at https://ncats.nih.gov/n3c/
resources.

Statistical analysis
Two analyses were carried out to estimate the association between
vaccination and long COVID: (1) logistic regression to calculate an
overall association while controlling for patient characteristics and (2)
Cox proportional hazards to incorporate differences in the time-to-
event for long COVID. We consider both analyses as primary, as each
has its own strengths and weaknesses. Proportional hazards uses cen-
soring to account for varying follow-up horizons but require a date for a
long COVID diagnosis and for hazard functions to be proportional over
time. Logistic regression considers varying follow-up horizons through
indicators of acute COVID-19 onset timing, but does not explicitly
model times-to-event as done in proportional hazards. We present the
results of both analyses as a test of the robustness of the association.

Given our requirement that long COVID diagnoses occur at least
45 days after index, our proportional hazards model uses
index + 45 days as the beginning of the modeled time period.

Inverse probability of treatment weighting (IPTW) was applied to
both logistic regression and proportional hazards to control for dif-
ferences in patient characteristics across the vaccinated and

Fig. 3 | Cohort definition flowchart. Cumulative number of patients meeting the
study’s inclusion criteria.
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unvaccinated groups. IPTW is a method to adjust for confounding
(covariates which affect both the treatment and the outcome) in
observational studies. IPTW creates a pseudo-cohort in which the
likelihood of treatment is independent of the measured covariates42.
Logistic regression was used to estimate a treatment propensity score
based on sex, demographics, medical history, social determinants of
health, and spatial and temporal variables. Our selection of covariates
was informed by the literature on important indicators of long
COVID10,43,44. Covariate balance before and after weighting was eval-
uated with standardized mean differences. Covariates with a standar-
dized mean difference of less than 0.1 were considered well-balanced.
Stabilized treatment weights were calculated as outlined in ref. 45.
Standard errors in the IPTW-adjusted models were calculated from
200 bootstrapped iterations based on the standard deviation of the
estimates46. Unadjusted associations were also calculated and
reported.

For logistic regression models, studentized residuals, leverage
scores, Cook’s distances, and DFBETAS were examined to identify
influential observations. Residual analysis helps to identifywhether the
regression assumptionof homogeneous variance is violated. The other
statistics identify observations which have an outsized influence on
model parameters,whichmay indicate that themodel is unstable47. For
proportional hazards models, the Lifelines package’s CoxPHFitter.ch-
eck_assumptions method was used to test the assumption that each
covariate’s effect on the hazard rate is constant over time48,49. Inter-
actionswith timewere added to themodel for covariateswhichdid not
meet the proportional hazards assumption. Variables with more than
two levels were binned and represented through indicators. Any
indicator with fewer than ten patients identified as having long COVID
for a given analysis is not used in that analysis.

Sensitivity analyses
Six sensitivity analyses were conducted. The first four use the same
cohorts as the primary analyses. They test the sensitivity of the IPTW-
adjusted and unadjusted vaccination status coefficients in the logistic
regression and proportional hazards models across four dimensions:
(1) CP score threshold (0.3 to 0.95), (2) with or without independent
features in addition to vaccination, (3) including or not including post-
index vaccinations as a censoring event, and (4) using only U09.9
diagnoses to label long COVID. The first sensitivity dimension was not
relevant for the clinic-based outcome, the third was not relevant for
logistic regression analyses, and the fourth was not relevant for the
model-based outcome.

The fifth and sixth sensitivity analyses usedmodified cohorts. The
fifth analysis included only patients from partner facilities with the
highest recorded vaccine ratios (≥89%). Four sites have recorded
vaccine ratios of 89–90%; the next highest is 78%. The sixth sensitivity
analysis eliminated the requirement for a recorded healthcare visit
after COVID-19 infection and censored individuals after their last visit.
Those without a visit after COVID-19 were censored the day after the
index. For this analysis, the modeled time period began the day after
the index (instead of 45 days after the index in the primary analysis),
though individuals remained ineligible for long COVID designation
until 45 days after the index. The sixth analysiswas only relevant for the
proportional hazards model in the clinic-based analysis, as the com-
putable phenotype model requires a post-COVID-19 visit at least
60 days after COVID-19 and censoring is not available in logistic
regression models10. Vaccination propensity scores, as well as the
model coefficients, were recalculated for each of themodified cohorts
in the fifth and sixth sensitivity analyses.

Subanalysis
A subanalysis was performed to determine if the time of vaccination
relative to acute COVID-19 diagnosis severely modulates the associa-
tion between vaccination and long COVID diagnosis. Both primary

analyses were repeated with the addition of indicators for the number
of weeks between an individual’s last pre-COVID-19 vaccination and
their COVID-19 diagnosis date.

All analyses were conducted using Python (version 3.6.10) with
the Statsmodels (0.12.2) and Lifelines (0.26.4) packages. Preprocessing
was done in R (3.5.1) and Python (3.6.10) with the PySpark (3.2.1),
pandas (0.25.3), and numpy (1.19.5) packages. Study design elements,
methods, and results were reported as consistent with STROBE
guidelines50.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is available in the N3C Data Enclave to those with an approved
protocol and data use request from an institutional review board. Data
access is governed under the authority of the National Institutes of
Health; more information on accessing the data can be found at
https://covid.cd2h.org/for-researchers. See Haendel et al. for addi-
tional detail on how data is ingested, managed, and protected within
the N3C Data Enclave13.

Code availability
The N3C Enclave is available for public use. To access data used within
this manuscript, institutions must have a signed Data Use Agreement
executed with the US National Center for Advancing Translational
Sciences (NCATS) and their investigators must complete mandatory
training andmust submit a DataUseRequest (DUR) toN3C. To request
N3C data access, researchers must follow the instructions at https://
covid.cd2h.org/onboarding. Code is available to those with valid login
credentials for the N3C Data Enclave. It was written for use in the
enclave on the Palantir Foundry platform51, where the analysis can be
reproduced by researchers. It can be exported for review upon
request.
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