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Functional variants identify sex-specific
genes and pathways in Alzheimer’s Disease
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The incidence of Alzheimer’s Disease in females is almost double that ofmales.
To search for sex-specific gene associations, we build a machine learning
approach focused on functionally impactful coding variants. This method can
detect differences between sequenced cases and controls in small cohorts. In
the Alzheimer’s Disease Sequencing Project with mixed sexes, this approach
identified genes enriched for immune response pathways. After sex-separa-
tion, genes become specifically enriched for stress-response pathways in male
and cell-cycle pathways in female. These genes improve disease risk prediction
in silico and modulate Drosophila neurodegeneration in vivo. Thus, a general
approach for machine learning on functionally impactful variants can uncover
sex-specific candidates towards diagnostic biomarkers and therapeutic
targets.

Alzheimer’s Disease (AD) is a fatal neurodegenerative illness char-
acterized by progressive dementia. Familial early onset AD (FAD, <1%
AD cases)1 is dominantly inherited and involves mutations in APP 2–4 or
PSEN1/24–7 genes. The more prevalent sporadic late-onset AD (LOAD,
>90% of cases1) is a complex trait disease, which stems from genetic
risk8 and environmental factors9–12 with an estimated heritability of
0.60~0.8013,14. Genome-wide association studies (GWAS) have found
more than 30 LOAD-associated loci15–18 accounting for ~0.3319 of the
heritability (mostly explained by APOEε4)20,21. Often LOAD-associated
GWAS loci fall in difficult to interpret non-coding regions.

Males and females differ in AD prevalence and progression. After
controlling for APOE status and age22–24, females suffer faster cognitive
loss25, cerebral atrophy26,27, andhippocampal volume loss27, whilemales
experience greater mortality28,29. Depression30–33, sleep disturbances34,
and cardiometabolic disorders28,35 associated with menopause com-
bined with longer average life expectancy may partially explain the
increased likelihood of AD in female36–38. However, the role of genetics

in sex-specific AD risk has not been systematically studied. Females
who carry an APOEε4 allele have higher cerebrospinal fluid (CSF) tau
levels and higher AD risk thanmales39. Gene-by-sex interaction analyses
have revealed sex-specific effects on AD risk for ACE40, BDNF41 and
RELN42 and a recent family-based association study found four addi-
tional genes (GRID1, RIOK3, MCPH1, ZBTB7C) that conferred a sex-
specific association to AD43. Beyond these targeted studies, only one
GWAS has been performed where the cohort was separated by sex
usingCSFAβ42 and tau as endophenotypes44.Most large-scale genome
widemeta-analyses have focused on AD status and have not attempted
sex-based separation, likely due to the loss of statistical power that
halving the sample entails. It is critical to identify genetic contributors
that underlie sex-differences in AD as it could lead to more accurate
disease risk assessment and more tailored therapeutic approaches45,46.
Bridging this gap will require analytical methods capable of extracting
meaningful genetic information from smaller samples than those used
in traditional genome-wide approaches.

Received: 27 January 2022

Accepted: 28 April 2023

Check for updates

1Department of Molecular and HumanGenetics, Baylor College of Medicine, Houston, TX 77030, USA. 2Jan and Dan Duncan Neurological Research Institute,
Texas Children’s Hospital, Houston, TX 77030, USA. 3Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX
77030, USA. 4Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA. 5Computational and Integrative
Biomedical Research Center, Baylor College ofMedicine, Houston, TX 77030, USA. 6These authors contributed equally: Thomas Bourquard, Kwanghyuk Lee,
Ismael Al-Ramahi. e-mail: lichtarg@bcm.edu

Nature Communications |         (2023) 14:2765 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7781-9696
http://orcid.org/0000-0001-7781-9696
http://orcid.org/0000-0001-7781-9696
http://orcid.org/0000-0001-7781-9696
http://orcid.org/0000-0001-7781-9696
http://orcid.org/0000-0002-6670-2983
http://orcid.org/0000-0002-6670-2983
http://orcid.org/0000-0002-6670-2983
http://orcid.org/0000-0002-6670-2983
http://orcid.org/0000-0002-6670-2983
http://orcid.org/0000-0003-2686-0976
http://orcid.org/0000-0003-2686-0976
http://orcid.org/0000-0003-2686-0976
http://orcid.org/0000-0003-2686-0976
http://orcid.org/0000-0003-2686-0976
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0001-5476-5955
http://orcid.org/0000-0001-5476-5955
http://orcid.org/0000-0001-5476-5955
http://orcid.org/0000-0001-5476-5955
http://orcid.org/0000-0001-5476-5955
http://orcid.org/0000-0003-4057-7122
http://orcid.org/0000-0003-4057-7122
http://orcid.org/0000-0003-4057-7122
http://orcid.org/0000-0003-4057-7122
http://orcid.org/0000-0003-4057-7122
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38374-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38374-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38374-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38374-z&domain=pdf
mailto:lichtarg@bcm.edu


In order to identify novel sex-specific genetic drivers linked to AD,
we developed a machine learning method that exploits whole exome
sequencing (WES) data from the Alzheimer’s Disease Sequencing
Project (ADSP)18 to identify genes that differentiate cases from con-
trols. Figure 1 presents a graphical summary of this study. Unlike other
approaches to this problem, our algorithm focuses on the functional
impact of non-synonymous coding variants. These coding variants
typically have unknown significance, but here we estimated their
deleterious effect with the evolutionary action (EA) score47. For a given
aminoacid substitution at a givenprotein sequence location, this score
is a product of the magnitude of the substitution times the functional
sensitivity of the position. The former is estimated from amino acid
substitution matrices. For example, an alanine to serine transition
represents a small substitution magnitude while an alanine to trypto-
phan is a large one. The latter portion of EA is estimated from the
evolutionary importance of each sequence position. For example, a

position that varies often between phylogenetically close species is
less sensitive than one that varies seldom and between phylogeneti-
cally distant species48. In this way, evolutionary action interprets the
potential harm of human coding variants in light of past evolutionary
divergences, providing consistently goodperformancewith respect to
other state-of-the-art methods and support in many practical appli-
cations. Notably, the evolutionary action score performed well in
objective, blinded community challenges48,49 and was instrumental in
suggesting candidate genes in autism spectrum disorder50, Alzhei-
mer’s disease51, and cancer52,53.

Here for the first time, we combine evolutionary action with
machine learning (EAML) by using it as a training feature to rank all
genes in the genome for their ability to separate AD cases from con-
trols. Strikingly, EAML maintains its accuracy in smaller samples and
can be used separately onmales and females to search for sex-specific
ADgenes. The geneswe find are significantly involved in ADbiology by
multiple computational and experimental criteria and point to a cell-
cycle/DNA repair module predictive of AD status specifically in
females. These proof-of-concept findings support a general approach
to identify geneticmechanisms linked to complex diseases bymachine
learning over case-control sequence data using phylogenetic evolu-
tionary information. InAD, the results are newpotential biomarkers for
sex-sensitive diagnosis, drug development, and therapy.

Results
Learning AD-associated genes from the mutational impact of
coding variants
To identify genes underlying LOAD we studied 2729 AD patients and
2441 control subjects from the ADSP cohort (dbGaP phs000572.v7.
p4). Our ensemble computational approach, EAML, included nine
separatemachine learningmethods, namely, PART54, JRip55,Multi-layer
Perceptron56, Naive Bayes57, Logistic Regressions58, Nearest
Neighbors59, Decision Trees Random Forest60, J4861, and Adaboost62.
Each one used EA scores and the homo- or heterozygous status of
coding variants of subjects (see Methods 4) to measure, with a Mat-
thews Coefficient Correlation (MCC)63, how well each gene could
separate patients from controls. After trying multiple aggregation
metrics, including a voting system, cross-entropy-based ranking, and
the MCC average, the average MCC over all nine algorithms was used
to rank 17,400human genes by their ability to predict AD and 98 genes
met a significance cutoff (FDR <0.01, Supplementary Data 1). The top
gene was APOE, which suggested that EAML has the potential to
identify AD risk genes.

EAML genes are dysregulated in LOAD brains and enriched in
pathways disrupted in AD
In order to assess these 98 EAML candidate genes, we asked whether
they were functionally connected with genes previously linked to AD.
Label propagation in biological networks measures the functional
proximity between two sets of genes64–68, and we computed propa-
gation over the generic STRING v11 protein-protein interaction (PPI)
network, first removing APOE from the 98 genes given its known
connectivity to AD. To control for biases due to the high network
connectivity of the EAML candidate genes, we also performed label
propagation for 100 sets of 97 randomgeneswith a similardistribution
of degree connectivity. Compared to the random genes with equiva-
lent connectivity, the 97 EAML candidates diffused significantly to
twenty-five LOAD-associated genes from GWAS17 (z-score ~3.76 and
AUC of 0.74, Fig. 2A and Supplementary Table 1). Additionally, pre-
vious studies show that genes and diseases whose keywords are co-
mentioned in biomedical literature are likely to be biologically
connected69,70 and the confidence of their associations is based on the
number of papers with co-mentions. Thus, we repeated the diffusion
analysis on a different network71 built from the keyword co-
occurrences of genes, diseases, and drugs in biomedical papers from

Fig. 1 | Schematic overview of study. This figure illustrates 4 steps of the study:
ADSPWESdata preparation, EAML runon theADSPWEScohort, EAML runs ofmale
and female separated cohort, and the criteria of success experiments to investigate
predicted genes from EAML.
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PubMed. The 97 EAML geneswere significantly connected to AD genes
(z-score ~6.2) and to dementia-related disorders compared to random
disorders (z-score >3, Table 1). Thesedata suggest that EAMLgenes are
related to functional pathways enriched for AD genes and are con-
sistent with roles in AD pathology and dementia.

To further assess EAML candidates, we investigated whether they
were connected to AD-related molecular changes. Leaving APOE aside

again, we assessed the expression of the remaining 97 EAML candidate
genes across AD brain data using the AMP-AD sequencing
repository72–77. Forty-five EAML candidates were significantly dysre-
gulated in AD patients versus controls in at least one brain region,
suggesting that they either respond to or underlie AD-related insults
and may therefore play a role in AD pathogenesis (Supplementary
Fig. 1, hypergeometric test p = 0.04).
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Fig. 2 | The top 98 EAML genes are connected to GWAS genes, dysregulated in
AD patients, and capable of separating AD and healthy control samples.
A Diffusions from the top 98 EAML genes from the full cohort to the 25 GWAS
genes. AUC-ROC curve, x: False Positive Rate, y: True Positive Rate. This AUC-ROC
curve represents the predictive power of 97 EAML genes to prioritize the 25 GWAS
genes. Density distribution of randomly generated 100 AUCs based on randomly
selected genes. The arrow indicates the AUC calculated from Fig. 2A. B (left)
Integration of EAML candidates with expression networks dysregulated in AD.
EAML candidates mapped into the AD consensus modules network (organic dis-
tribution) based on gene co-expression analysis75,76,78. The main function enriched

in each module75,76,78 is indicated. Darker, thicker edges connect genes that are
more highly correlated. Genes with a red ring are dysregulated in at least one brain
region in AD vs control. (right) Heat map indicating which of the genes in the
“immune system”module aredysregulated in ADbrains. Also shown is the cell type
in which their expression is enriched in the brain. C Risk prediction that based on
the EAMLgenes for the full cohort. The box plot indicatesminimumandmaximum
(lower and upper) whiskers, median (horizontal line), and first and third quartile
(box). The mean AUCs of two groups (APOE vs. 98 FDR genes) and p-value of
standard t-test (two sided) are shown.
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Next, we performed a functional enrichment analysis with respect
to AD-related and brain-specific pathways using transcriptomic data
from AMP-AD72–78 brain tissue. Various approaches have been devel-
oped to discover consensus transcriptional changes taking place in AD
brains compared to controls. These efforts have led to the identifica-
tion of several AD co-expression modules that are enriched in specific
biological processes75–78. We mapped the EAML predicted genes onto
these co-expression networks. We found that of the 53 EAML candi-
dates that have been analyzed in the AD transcriptome, 22 belonged to
modules related to immune response (Fig. 2B left, Fisher’s p <0.005,
consensus module B in75,78). Subnetworks within these immune mod-
ules revealed EAML candidates potentially involved in cytokine signal-
ing (HLA-C, ACSL5, PTGDR2, BAZ1A, DCLRE1B), synapse pruning (FGD2,
RHBDF2) and microglia pathogen phagocytosis (EHP1L1, CD300A,
FGD2, RHBDF2 and PTGS1) (Supplementary Fig. 2). These functional
enrichment results are consistent with the cell types in which these
genes are expressed. The expression profile of these 22 genes in pub-
lished snRNAseq79,80 datasets revealed that nine are enriched in astro-
cytes, 10 in microglia and three in endothelial cells, supporting their
potential roles in neuroinflammation (Fig. 2B right). Among the three
endothelial genes, the prostaglandin receptor PTGDR2 stood out as we
also identified the prostaglandin-endoperoxide synthase PTGS1, a key
enzyme in prostaglandin production, which has been linked to AD
pathology81. We also found enrichment in the immune system module
when we integrated the 45 EAML candidate genes that were dysregu-
lated in the AD brain transcriptome with the AD consensus modules
(Fig. 2B left, consensus module A in75,76,78). These results support a role
of many EAML candidates in neuroinflammation, microglial, and
astrocytic biology. This is consistent with the observation that many
AD-risk factors identified17,18 using different genetic approaches are
involved in neuroinflammation and suggests that the EAML candidates
may act through these same pathways.

EAML candidates are modifiers of neurodegeneration
If EAML candidate genes belong to pathways that contribute to AD
pathophysiology,wehypothesized that theywouldmodifyneurological
phenotypes in vivo from two well-characterized Drosophila AD models
expressing either secreted Aβ42 or wild-type human 2N4R tau82,83 spe-
cifically in neurons. Expression of either Aβ42 or tau inDrosophila leads
to late-onset progressive neuronal dysfunction that can be accurately
quantified using behavioral (i.e., motor performance) readouts. We
used an automated system that video records animals as they climb a
vial and uses their trajectories to calculate movement metrics such as
speed84. This task provides a quantitative measure of motor perfor-
mance that can be monitored longitudinally, as the animals age, and
serves as an assay for neuronal dysfunction. We obtained loss of func-
tion, and shRNA strains available from public repositories targeting the
Drosophila homologs of the 98 EAML candidate genes and tested each
one in tau and Aβ42 Drosophila models (Supplementary Fig. 3A, B and
Supplementary Data 2). In total we were able to test the homologs of 73
genes. We found that 36 of these genes modulated tau-induced
degeneration when their function was decreased (12 worsened tau-

induced degeneration while 24 ameliorated it). In the case of the
secreted Aβ42model, 17 genes were loss of function enhancers while 12
ameliorated Aβ42-induced neurodegeneration. These results repre-
sented a significant enrichment in genetic modifiers (Fisher’s test
p =0.0001 for tau modifiers and p=0.0115 for the Aβ42 ones) when
compared with the usual hit rate (between 15–20%) of our frequent
unbiased genetic screens82,85,86. These results strongly connect the
EAML candidates with the ability to modulate neurodegeneration
in vivo. Importantly, we identified 27 genes whose knockdown attenu-
ates neuronal deficits in vivo, highlighting their therapeutic potential.

AD risk prediction
Since our EAML candidates arose from their individual ability to
separate AD patients from controls, we reasoned that the combined
genes set should perform well in predicting patient risk stratification.
For this model, three efficient classifiers were retained: (1) Adaboost62

is an ensemble method that combines weak learners (e.g., decision
stumps) into a stronger one with significant performance for binary
classification; (2) Logistic regression58 is a less computationally inten-
sive classifier that is particularly useful when relevant learning features
are employed; (3) Random Forest60 is a decision tree-basedmodel that
effectively handles high dimensional genomic data. The three classi-
fiers were then combined using a stacking approach87 supported by a
decision tree algorithm inorder to strengthen theperformanceof each
individual method. Our predictive AD model was trained by 10-fold
cross-validation, measuring predictive performance using the area
under the curve (AUC) of the receiver operator characteristic. As a
control, a similar model was built based on APOE genotype status plus
age of onset information. This predictive model built with EAML can-
didates significantly outperformed the one built with APOE genotype
plus age of onset (t-test p <0.0001) (Fig. 2C). These data show that
machine learning predictors trained with gene features selected by
EAML performbetter than APOE status andmay have prognostic value
for the risk of developing AD.

EAML retains robust predictive power at small cohort sizes
Given the strength of these associations between EAML genes and AD,
we next sought to test the robustness of these findings through down-
sampling.Wecompared gene candidates foundbyEAMLwhen applied
to sequentially smaller sub cohorts of randomly selected case and
control subjects, starting from the full original 2729 cases versus 2441
controls down to 60 versus 60. For each different sample size, we
performed independent EAML analyses on 10 different sets of ran-
domly picked cases and controls (n = 10), resulting in 100 total
experiments. For comparison, we ran in parallel the commonly used
gene-based association analysis using SKAT-O88 (seeMethods 3) on the
same randomly selected cases and controls (10 iterations), and the
same non-synonymous variants used in the corresponding EAML
experiments. To assess performance in these down-sampled cohorts,
we compared the top 50 candidates of 10 iterated experiments at each
sample size from the EAML or SKAT-O results to the top 50 genes
obtained from applying EAML or SKAT-O to the full ADSP cohort,
calculating the Kendall-Tau ranking coefficient89 and hypergeometric
overlap p-values to measure consistency. Strikingly, EAML produced
consistent outputs and robust prediction capabilities at progressively
smaller sample sizes. For example, at n = 700 AD cases (Fig. 3A), EAML
identifies greater than 50% (hypergeometric p = 10−58) of the candi-
dates identified in the full cohort compared to 8% (hypergeometric
p = 10−4) identified by SKAT-O. Top EAML genes also ranked con-
sistently across the decreasing sample sizes compared to the perfor-
mance of the SKAT-O predictions at similar cohort sizes
(Supplementary Fig. 4). Interestingly, the down-sampled hypergeo-
metric p-value curve of SKAT-O was similar to the in-silico simulated
GWAS power curve (gray line in Fig. 3A; seeMethods 3). The simulated
GWAS power decreased drastically as the sample size dropped (max:

Table 1 | Diffusion (Z scores) from EAML genes to MeTeOR
network

Entity Name Sample Set

Combined Male Female

Alzheimer Disease 6.27 5.29 6.80

Dementia 1.84 1.58 1.88

Frontotemporal Dementia 1.49 0.71 0.60

Vascular Dementia −0.14 0.48 0.44

Multi-Infarct Dementia −0.15 −0.22 −0.07

AIDS Dementia Complex −0.35 −0.35 −0.10
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0.85 at 2500, min: 0 at 250). Nine genes including APOE were recov-
ered consistently by EAML (10 out of 10 iterations per sample size)
across all conditions starting at 500 cases and 500 controls: PRSS57,
CPXM2, GJA3, PTGDR2, EHBP1L1, GZMA, DTL and GLB1L3 (Supplemen-
tary Data 3). Notably, most of these recurrent top genes have been
linked to AD biology or are dysregulated in AD. PRSS57 falls near the
ABCA790,91 locus. CPXM2 regulates CLU levels and is linked to synaptic
remodeling and several CPXM2 SNPs are associated with LOAD92–95.
PTGDR2 is a receptor of prostaglandins, which play critical roles in
inflammatory response and may contribute to AD96–102. EHBP1L1 is an
interactor ofBIN117 and its levels are increased inAD103.GZMA is a factor
related to cytotoxicity following Herpesvirus infection and its levels
are increased in effector memory T cells from AD patients104. DTLmay
mediate cell-cycle re-entry in ADneurons105 andGLB1L3 is decreased in
AD bulk brain tissue and single cells transcriptome (Supplementary
Fig. 1). Taken together these data suggest that the power of EAML
remains stable, consistent, and robust even at sample sizes too small
for other methods, opening the possibility of interrogating smaller
cohorts separating male and female to identify sex-specific modifiers.

EAML identifies sex-specific LOAD-associated genes
In light of its robustness to small sample sizes, we searched for sex-
specific AD related genes in the ADSP cohort by applying EAML
separately tomale (1215 AD cases + 1104 controls) and female (1514 AD

cases + 1337 controls). EAML identified 157 and 127 top AD-associated
genes in male and female, respectively (FDR <0.01, Fig. 3B and Sup-
plementary Data 1). In each of the sex-separated cohorts,we recovered
APOE as the top hit. Next, we investigatedwhether the identified genes
in the sex-separated EAML approach are connected to the 25 ADGWAS
genes17 using the same network-based label propagation analyses
performed above. Network diffusion of either the 157 male or the 127
female EAML candidates revealed robust and significant connectivity
to the 25 GWAS genes over the STRING network (z-scores ~6.22 and
~5.0, Fig. 3C), and to Alzheimer’s Disease in the MeTeOR network (z-
scores ~5.29 and ~6.79 for male and female, respectively, Table 1).
Remarkably, connectivity for genes identified by the sex-separated
EAML was significantly higher for both male and female (male z-score
6.22, female z-score 5.0, Fig. 3C) than in the sex combined approach
(full cohort z-score 3.76, Fig. 2A). This increased connectivity of the
sex-separated EAML candidates was also supported by the alternative
prioritization approach, where sex-specific EAML candidates sig-
nificantly prioritized the GWAS genes more than hits from the com-
bined EAML (full cohort AUC of 0.74 in Fig. 2A, male AUC 0.86 and
femaleAUC0.85 in Fig. 3C). This increased network connectivity to the
AD genes may not derive from the higher overlap of the sex-specific
genes to the GWAS catalog loci since the network connectivity relies
on STRING d/b while the overlap to GWAS catalogue loci depends on
genomic locations. Taken together our results indicate that applying

Fig. 3 | Down-sampling analyses and sex-separated analysis led to better risk
prediction. A Down-sampling analyses, x: The number of randomly selected
samples of AD cases; an equal number of control samples were also randomly
selected. y: Hypergeometric P-values (one-tailed Fisher’s Exact test) comparing the
top 50 genes from each iterated experiment to the top 50 genes from full cohort,
solid-line: EAML, dot-line: SKAT-O; numbers indicatesmeannumber of overlapped
genes between each set and full cohortADSP, the error bar indicates standarderror
for the mean number of overlapped genes; gray-line indicates simulated GWAS
power using GWAS power calculator. B Venn-diagrams intersection between top
EAML predicted genes from full cohort, male, and female. The number indicates
the number of overlap genes between each EAML analysis. The hypergeometric

p-value (one-tailed Fisher’s Exact test) was calculated using SuperExactTest R
package156. C Diffusions from the top 157 genes from male (blue) and the top 127
genes from female (red) to the 25 GWAS genes. D Risk predictions that based on
the EAML genes for male (blue), female (red). EAML significantly (p ~ 0.0001)
improvedprediction AUC comparing toAPOE inmale and female combined.When
separating sexes,male’s genes significantly better predict than the combined (AUC
0.878 vs. 0.825) although female genes’ prediction AUC stay same (AUC 0.824 vs.
0.825). (*GD: APOE alleles + Age). The box plot indicates minimum and maximum
(lower and upper) whiskers, median (horizontal line), and first and third quartile
(box). The mean AUCs of two groups (APOE vs. 98 FDR genes) and p-value of
standard t-test (two sided) are shown.
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the EAML algorithm to sex-specific cohorts improves our ability to
discover AD-related genes.

As with the full cohort, we next used the male and the female
EAMLcandidates toperform sex-specific risk prediction. Evenwith half
the cohort size, the ability to predict AD status was significantly
improved in male (Fig. 3D left, AUC 0.878, p≅0.0001) and was similar
in female (Fig. 3D right, AUC 0.824, p≅0.99) compared to full cohort
(Fig. 2C, AUC 0.825). This further highlights the potential value of

performing sex-specific analyses to improve the pre-symptomatic
diagnosis of AD in male and female.

EAML candidates from sex-separated cohorts identify pathways
affected differentially in male and female
We sought to gain functional insights from the EAML candidates iden-
tified in the male and female cohorts. We integrated the EAML candi-
dates with transcriptomic data from AD brains using the AMP-AD72–78
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transcriptomic dataset to assess for enrichment in AD-related brain-
specificpathways. Aswith theEAMLcandidates in the combinedcohort,
we observed a significant enrichment in genes belonging to the AD-
consensusmodules associatedwith immune response and extracellular
matrix in both the male and female EAML candidates (Supplementary
Fig. 5).Wenext explored theunderlyingbiologyof theEAMLcandidates
that were identified only in the female cohort (female specific EAML
genes), or only in the male cohort (male specific EAML genes). Inte-
gration of the male specific EAML candidates with the AD tran-
scriptomic network revealed an enrichment in modules involved in
stress response andorganelle biology (p <0.05, Supplementary Fig. 5A).
On the other hand, integration of the female specific EAML candidates
with the AD transcriptional signatures revealed an enrichment in
modules associated with cell-cycle and DNA quality control (p <0.05,
Supplementary Fig. 5B). Promptedby this, we sought to identify specific
pathways in which these male or female candidate genes may act. We
used the STRING database to connect the sex-specific EAML candidates
with sex-specific transcriptionally dysregulated genes from theAMP-AD
database72–78,106. This effort did not highlight any additional modules in
the male specific EAML candidates. However, this integration uncov-
ered a module composed of several female specific EAML candidates
that interact with genes dysregulated more frequently in female AD
brains (Supplementary Fig. 6). Interestingly, this module included two
genes previously linked to AD: CD2AP15,107 and MCM7108 (Fig. 4A). The
main functional enrichment in this module was cell cycle control and
DNA quality control. Among all the genes in the module, ANLN stood
out as a female-specific EAML candidate and is dysregulated at the
transcriptional level only in female AD cases. Furthermore, expression
ofANLN andPOLD1correlatedwithADneuropathology inhumanbrains
(Fig. 4B). Accumulation of cell cyclemarkers in post-synaptic neurons is
a hallmark of AD and other neurodegenerative diseases109–119. Interest-
ingly, a large number of cell cycle/DNA quality control genes that
accumulate in AD neurons are direct STRING interactors of genes
identified in the female specific EAML module. Prompted by this, we
investigated whether the EAML candidates in this module and their
interactors could modulate neuronal dysfunction associated with AD.
We tested the Drosophila homologs of the genes in this module and
their interactors (Fig. 4B) for their ability tomodify Aβ42 or tau-induced
neurotoxicity using loss of function and overexpression alleles.
Decreasing the expression of 3 female specific EAML candidates (ANLN,
POLD1 and WDHD1) resulted in amelioration of Aβ42 and/or tau-
induced neuronal dysfunction in vivo (Fig. 4C). Knockdown of the
Drosophila homologs for three other genes in this module (BARD1,
CCNA2 and CD2AP120) also modulated neuronal dysfunction in Droso-
phila. Among the cell cycle genes that accumulate inADneurons,BRCA1
stoodout in thismodule as it interactswithANLN andBARD1, two genes
whose modulation ameliorates neurodegeneration. Therefore, we tes-
ted the effect of knocking down theDrosophila homologs of BRCA1 o`n
neurodegeneration. We found that reducing expression of BRCA1
Drosophila homologs significantly attenuated tau-induced neuronal
deficits (Fig. 4C). Taken together, our results support a role for these
cell-cycle and DNA quality control genes in AD pathogenesis, but more
importantly they also suggest that these genes play a different role in

female versus male, as they are more strongly associated to AD risk in
female than male.

Discussion
Sex-specific differences in brain physiology and functionare beginning
to emerge and may underlie the differential predisposition to CNS
diseases such as autism and depression between male and female46,121.
Although sex differences greatly impact AD risk, the specific effect of
sex has been largely ignored in the context of AD genetics28. In this
study, we developed a methodology that specifically targeted the
genetic factors that influence AD risk separately in males and females.
We were able to achieve this goal by combiningmachine learning with
evolutionary data in the form of EA scores that predict the effect of
coding mutations on protein function. This EAML framework proved
robust with sufficient predictive power at small sample sizes to
examine samples of male and female separately. EAML identified
numerous AD-associated genes not found in the combined sex cohort
(Fig. 3B). Remarkably, the sex-separated analyses had better con-
nectivity to knownGWASgenes (z-scores≅ 6.22 and≅ 5.0 formale and
female, respectively, Fig. 3C) than candidates derived from the com-
bined cohort. This suggests that separating the cohort by sex pro-
duced a more sensitive analysis. A total of 50 EAML candidates
overlapped between male and female (Fig. 3A, p 5 × 10−71). Interest-
ingly, 21 of these were not identified by applying EAML to the com-
bined cohort (Fig. 3A). Five of these 21 genes (PTPLA, ABI3, OR5AC2,
MAPT, ECE2) have previously been associated to AD risk by other
groups122–126, reinforcing that EAML is effective in identifying AD-
associated genes and highlighting the increase in sensitivity upon sex
separation. Importantly, EAML also uncovered sex-specific candidates
associated with AD risk in female but not male and vice versa (Fig. 3A),
suggesting that certain biological pathways may play a greater role in
AD for one sex than the other. In line with this, we found that while
neuroinflammation was the most enriched process among the EAML
candidates identified in the combined cohort, the picture changed
once we focused on sex specific EAML genes. We found genes asso-
ciated with stress response and organelle biology were enriched in
male specific EAML hits but found cell-cycle and DNA quality control/
replication genes in female specific hits. Since cell cycle markers are
known to accumulate in AD patients, we followed up on this set of
genes. Five female specific EAML candidates (ESCO2, WDHD1, POLD1,
SWSAP1 and ANLN) clustered together with genes whose expression is
dysregulated predominantly in female AD brain. These genes corre-
lated with neuropathological hallmarks of AD and modulated tau/
Aβ42-induced neuronal dysfunction in vivo. Even though dysregula-
tion of cell-cycle proteins and their abnormal aggregation in AD neu-
rons has been previously reported109–119, our findings suggest that this
pathway may contribute more to AD risk in females than males.

The abovefindings could have implications inhowAD therapeutic
strategies are developed and implemented. Of all the genes identified
in this study, eleven have drugs that have been characterized as ago-
nists or antagonists of their function (PTGDR2, SLC6A15, OPRD1, PSMF1,
NQO1, GJA3, DDR1, TPO, PTGS1, POLD1, RET). Interestingly, of a total 97
compounds that target these genes, 40 have co-mentions with AD in

Fig. 4 | Characterization of a cell-cycle/DNA repair-associatedmodule enriched
in female-specific EAML candidates. A Integration of five female-specific EAML
candidates involved in cell-cycle/DNA repair with genes predominantly dysregu-
lated in female AD brains and cell cycle genes known to accumulate in AD neurons.
Bpositive correlationof gene expression andneuropathologic features for someof
the genes in the module shown in (A). C graphs representing longitudinal analyses
of neuronal dysfunction assessed as speed of the animals as a functionof age (days)
for the indicatedalleles. Blue corresponds to negative (healthy) controls expressing
a non-targeting hp-RNA. Purple shows the performance of β42/ non-targeting and
grey the performance of tau/ non-targeting hp-RNA diseased animals. Green or red
show the performance of animals carrying the allele indicated on top and either

expressing β42 (green) or tau (red) paneuronally. Knockdown of the Drosophila
homologs of three of the EAML female-specific candidates (ANLN, POLD1,WDHD1)
results in amelioration of the neurodegenerative phenotypes. Knockdown of the
Drosophila homolog of BRCA1 also ameliorates neuronal dysfunction (specific
alleles used are indicated in Supplementary Data 2). Each graph shows the fit curve
of the third-degree polynomial regression (dark line) and the confidence intervals
for the same regression (shaded). All experiments shown are statistically sig-
nificantly different p <0.05 (exact p values are shown in Supplementary Data 2)
when analyzed using non-linear random mixed effects model ANOVA. Four repli-
cates of ten animals each per genotype were used for these experiments.
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PubMed. Of the 11 genes, GJA3 and DDR1 are EAML AD predictors in
male only. Interestingly, the DDR1 inhibitor nilotinib is currently being
investigated in a clinical trial for AD127 while a second DDR1 inhibitor
(imatinib) has shown protective effects in mice128. On the other hand,
four genes with known pharmacological agents (TPO, PTGS1, POLD1
and RET) are EAML AD predictors in female but not male. RET stands
out in this group, as three of its inhibitors - sunitinib129, imatinib128 and
regorafenib130 - have shownbeneficial effects inmouseADmodels. The
data presented here supports the stratification of clinical trials based
on sex and indicates that some strategies may be more effective in
female or male due to sex specific genetic risk factors.

EAML also improved risk prediction ability. Early diagnosis of AD
risk based on genomic profiles would be a significant advance as
patients will likely require early intervention to avert dementia131,132.
Current risk prediction forADusingPolygenic Risk Scores (PRS) ranges
from 60133 to 80%134,135 accuracy. This needs to be improved before the
results can be used clinically as many of the loci belong to non-coding
regions. Recently, ML approaches have gotten attention for risk pre-
diction in complex diseases136 due to their ability to evaluate non-linear
genotype-phenotype associations and their interactive effects137. The
combination of EAML candidates with their EA profile as features for
ML resulted in great accuracy at predictingAD risk (AUC0.825, Fig. 2C).
Remarkably, the sex separated EAML candidates did not exhibit a
decreased prediction accuracy even though we used half of the cohort
(Fig. 3D). Furthermore, that accuracy was significantly improved in the
case of male (AUC 0.878, Fig. 3D left), highlighting the importance of
sex-separated genomic analysis in AD risk prediction approaches.

Of note, we did not perform hyperparameter tuning and optimi-
zation with each individual ML algorithm and instead we used the
preset parameters. Tuning can improve ML prediction accuracy.
However, if done inadequately, tuning can lead to overtraining with
poor performance on test data different from the training sets. This
general contest between optimization and overtraining currently
pervades ML approaches. In order to add robustness to the ML pre-
dictions we took several steps. First, rather than optimizing each
individual algorithm, we ranked the hit genes based on their repro-
ducibility across classifiers, thus attenuating the risk of artefactual
overfitting in one specific algorithm. Second, additional confidence in
thehit genes came fromperforming ten-fold cross validationwith each
classifier. Importantly, we optimized the quality of the information we
input to the off-the-shelf classifiers by incorporating functional
mutational information.We reasoned thesemeasureswill decrease the
likelihood of selective overtraining and instead increase our method’s
likely range of validity to data other than those trained upon. Our
confidence in the resulting hit genes is supported by multiple inde-
pendent criteria for success that all show that our candidate genes are
reliably linked to AD, experimental evidence showing candidate genes
modulate neurodegeneration in a live animal model and the ability of
the hit genes to stratify patients. These independent lines of evidence
suggest that parameter tuning was not a significant issue in this study,
and it is likely not weakening the findings. We speculate that the the-
oretical advantage of optimizing parameters may not warrant the risk
of overfitting that this would entail. We will explore this possibility in
future studies. Additionally, we did not take into account synonymous
variants or those affecting non-coding DNA regions, epigenetic phe-
nomena such as methylation and histone modification, and we also
limited to European ancestry. These additional sources of data would
be complementary to our findings since studies have shown that dif-
ferent genetic ancestries play important role in AD138,139 as well as non-
coding DNA variations140 and epigenetic efects141. As more and larger
cohorts become accessible, we will expand the EAML approach to
additional ancestries, other interesting subgroup comparisons such as
stratifying by comorbidities or presence of certain neuropathological
features as well as hyperparameter tuning of each ML algorithm to
improve performance without overfitting.

In summary this work indicates that application of machine
learning approaches to WES andWGS increased our resolution for AD
risk genes compared with current standard statistical methods (e.g.,
SKATO). These data offer a proof-of-concept for the combination of
evolutionary information and phylogenetic speciation with case-
control sequencing data to identify genetic mechanisms linked to
complex diseases. Importantly, focusing the study on sex-specific sub-
cohorts increasedour resolution to identify disease-relatedgenes. This
emphasizes the need to systematically apply sex separation to disease-
gene association analyses, beyond analyzing the combined cohorts.
Our pipeline has identified a significant number of AD-associated
genes with sex-sensitive pre-symptomatic diagnostic power and
potential therapeutic value that we will follow up on in pre-clinical
studies. As larger sequencing datasets becomeavailable, application of
EAML will help generate a more complete picture of the different sex-
specific mechanisms involved in AD and other polygenic disorders.

Methods
This study protocol (H-37394) was approved by the Institutional
Review Board for Human Subject Research for Baylor College of
Medicine and Affiliated Hospitals (BCM IRB). The information about
informed consent from the study participants can be found in the
study homepage (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000572.v7.p4#restricted-access-section).

Whole exome sequencing data
We obtained whole exome sequencing (WES) data from the Alzhei-
mer’s Disease Sequencing Projects (ADSP) Discovery cohort from
dbGaP (phs000572.v7.p4). In total, we analyzed 2729 Alzheimer’s
Disease cases and 2441 healthy control white samples.

Quality controls (QC)
We carried out QC processes to identify potentially false-positive
variants and outlier samples. We calculated the Ti/Tv and the number
of variants in different variant classifications such as non-synonymous,
synonymous as well as the total number of variants and singletons.
HWE (HardyWeinberg Equilibrium) exact test142 was performed on the
control samples of each cohort.We counted the ratio of heterozygotes
and homozygotes in the sex chromosome to compare to the self-
reported sex. Then we filtered out non-European descendants. We
used Annovar143 to annotate the consequences of variants. We focused
on the non-synonymous single nucleotide variants (SNVs) and small
indels, which lead to the loss of functions of genes, excluding CNVs
(copy number variants). We used PCA (Principal Component Analysis)
to cluster the genetic background and identify outliers within the
cohort samples. We inferred the genetic relationships between each
sample by estimating the kinship coefficients and IBD (Identical by
Descent). We used BCFTOOLS144 and PLINK145 for variant filtering and
statistics, KING146 for inferring relationships, and SMARTPCA from
Eigenstrat package for PCA147.

GWA (genome wide association) analysis and power simulation
We performed variant-wide GWA for common variants (MAF ≥0.05)
and gene-based association test for rare variants (MAF <0.05). The
APOEε4 variant (rs429358) yielded genome-wide significant p-values
10−20 without covariate APOEε4 status. With covariates sex, APOEε4
status, PC1 and 2, only TREM2 gene yielded a significance (p < 5 × 10−6)
in ADSP. In the variant levels of TREM2 gene, we found 50 alleles in AD
cases versus 9 in controls (Fisher’s Exact p = 2.1 × 10−7) for the pre-
viously known missense variant p.R47H148,149.

We performed association analyses for non-synonymous variants,
whichwere used in the EAML analyses. For a common variant (≥minor
allele frequency 0.05), we carried out variant-wide association test
including the covariates - sex, age, APOEε4 allele counts, and the first
and second principal components from PCA to correct the effects of
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sex, age, ethnic differences and APOEε4 status using the logistic-
regression function in PLINK software. We used the SKAT-O test88 in
EAPCTS analysis package (https://genome.sph.umich.edu/wiki/
EPACTS) to test gene-wide associations for burdens of rare variants
(minor allele frequencies <0.05). The GWAS power calculated on GAS
power calculator (http://csg.sph.umich.edu/abecasis/cats/gas_power_
calculator/) assuming Significance Level: 5E-6, Prevalence: 0.01, Dis-
ease Allele Frequency: 0.05, Genotype Relative Risk: 1.6.

EAML framework
The first stepmeasures the impact of the amino acid on overall fitness.
Rather than attempt to compute this effect stepwise on successive but
poorly characterized features, such as protein folding, dynamics,
expression, translation, and myriad interactions among diverse com-
ponents of multiple pathways, we modeled all these perturbations in
aggregate through a formal evolutionary fitness (potential) function f
that maps genotypes γ to points in the fitness landscape φ. Assuming,
as a hypothesis, that f exists and is differentiable, a single coding
perturbation dγ then has an impact given by:

∇f � dγ =dφ ð1Þ

where, as shown before47,∇f is the gradient of f approximated with the
Evolutionary Trace algorithm150, and dγ is the magnitude of a single
missense substitution approximated with amino acid substitution
log-odds.

Gene-level metric. The underlying basis of our approach rests on the
ability to amalgamate all variant level effects into one metric at the
gene level. Todo this, we developed a novel scoring systemwhichuses
EA at its core, dubbed EA probability or (pEA). This is defined as:

0 if f silent mutation

xiEA >C = 1�
Qk

j = 1 1� EAj=100
� �zygo

8EA>C

1, if f stop or indels mutations

8
>><

>>:
ð2Þ

where k is the total number of variants in an individual, and EAj is the
Evolutionary Action scores from (1) of a given variant. This allows us to
estimate the complete mutational effect of all variants within a given
gene for a given individual.

Feature development anddesignmatrix architecture. By presuming
no information about a gene beforehand we allow the possibility that
any given gene can affect the phenotype in either an autosomal
dominant or recessive manner. We also presume that different levels
of EA correspond to different magnitudes of fitness effects. These
levels are as follows: EA > 1, EA > 30, EA > 70. In doing this, we can
separately address the impact of variants above a given EA threshold.
To develop features on which our framework will learn, we combine
these different levels and manners of inheritance into six features of:
Autosomal Dominant & EA > 1, Autosomal Dominant & EA > 30, Auto-
somal Dominant & EA > 70, Autosomal Recessive & EA > 1, Autosomal
Recessive & EA > 30, Autosomal Recessive & EA > 70. We define auto-
somal dominant features to include all variants of a gene which are
either heterozygous or homozygous, while recessive features only
consider variants that are homozygous. This allows us to strictly
address recessive features with only homozygous variants, while still
considering all variant effects in the dominant features. Finally, these
features are aggregated into a design matrix of the architecture n x p
where n is number of samples and p is (6 features × number of genes).
The genes tested come from the canonical RefSeq gene set.

Sub-setting of design matrix for 10-fold cross validation. To avoid
overfitting and determine key driver genes with the highest prediction

accuracy, we used a 10 folds cross validation (10-CV) method. The
cohort was separated into 90% training data to fit the classification
models and 10% testing data to validate the predictions. This process
was repeated 10 times, shuffling the training and testing data sets.

Machine learning architecture. Our learning architecture consists of
9 different classifiers. Exploiting the uncertainty in linear andnonlinear
genotype-to-phenotype relationships, these classifiers include Asso-
ciation Rules (PART54, JRip55), Function Optimizations (Multi-layer
Perceptron56, Naive Bayes57, Logistic Regressions58, and Nearest
Neighbors59), Decision Trees (Random Forest60 and J4861), and Meta
Classifiers (Adaboost)62. This architecture was implemented in Weka
(https://www.cs.waikato.ac.nz/ml/weka/). In MultiLayerPerceptron
classifier, we used backpropagation with learning rate of 0.3,
momentum of 0.2 and 4 hidden layers. In PART classifier, the con-
fidence threshold for pruning is set to 0.25 and theminimum 5 objects
per leaf is used. In Random Forest classifier we used 10 trees. In JRip
classifier we used 3 folds, where one fold is used as pruning set,
minimal weights of instances within a split is set to 2, with 2 runs of
optimization. In J48 classifier, confidence threshold for pruning is set
to 0.25 with the minimum of 2 instances per leaf. In Naïve Bayes clas-
sifier we used kernel density estimator. In Logistic Regression classifier
we used Ridge for the regularization. In KNN classifier we set k = 3,
using Euclidean distance with linear nearest neighbor algorithm. In
Adaboost classifier, we used decision stump as the base learner.

Evaluating independent gene-level associations. Notably, our fra-
mework allows us to evaluate each gene in the context of the pheno-
type independently from effects of other genes. To evaluate the
predictive power of an individual gene, we use aMatthew’s Correlation
Coefficient (MCC) defined as:

MCC =
TP x TN � FP x FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞ

p ð3Þ

This measurement is utilized due to its robustness when con-
sidering imbalanced class sizes.

Prioritization of top EAML predictions for further analyses
To prioritize EAML prediction genes for further analyses, we selected
genes with an FDR corrected p-value less than 0.01, which is derived
from the MCC distribution. These thresholds resulted in 98, 157, 127
genes from male/female full cohort, male, and female, respectively
(Supplementary Data 1).

Risk prediction (classifier)
EAML successfully identifies several genes which have been demon-
strated to be quantitatively and biologically related to AD pathophy-
siology. However, EAML identifies these genes in the context of their
individual and independent effects on disease. In order to understand
the combined effect of the EAMLpredicted genes ondisease status, we
designed an experiment to test predictive power of these genes. In
other words, can we combine the genes, identified for their individual
influence in distinguishing affected versus healthy, to create a pow-
erful predictor of disease status? We further extend this question by
asking if we can create predictive models that are sex specific. In all
three cases (cohort wide, male specific, female specific) the predictor
would stratify an individual into a phenotypic class (healthy or affec-
ted) by learning somearbitrary functionover the combinedmutational
profiles of the individual’s genes, specifically the EAML predicted
genes. In order to determine whether the predictive power of the
EAML genes is superior to traditional predictive factors, a second
predictive model was developed based on the APOE genotype status,
which is independently genotyped, and normalized age of onset of an
AD individual.
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In order to build these predictive models, input data must first be
reformatted. For predictive models based on EAML genes, this refor-
matting was done as follows. Consider any one sample n out of N
samples and h EAML predicted genes, for the purpose of a predictive
model this sample will be represented as a vector of h elements, where
each element is given by the pEA of particular EAML gene: n = [pEA1,
pEA2,...,pEAh] where pEAi is the pEA value of genei. Each sample n is
therefore represented as a vector of dimensions 1xh. ForN samples in a
cohort, we then have an input matrix of size Nxh. Similar processing is
done for all male specific, female specific, and cohort level predictive
models.

Similar reformatting was done for predictive models based on
APOEgenotype status and the age of onset, whichwere alsoused in the
complementary GWAS (see Methods 3). Each individual in the cohort
was represented as a 1 × 2 vector where the first element corresponds
to APOE variant status, and the second element of the vector is the age
of onset. APOE variant status of an individual was represented as the
pEA value for the individuals APOE variants. For example, if an indivi-
dual had APOE3/APOE3 (pEA = 0) variant and age of onset was 64, they
were represented asn = [0,64]. ForN samples in a cohort, we then have
an input matrix of size Nx2. After the cohort level matrix is calculated,
normalization is done for age of onset features by subtracting the
mean and dividing by standarddeviation so that age of onset feature is
on a similar scale as pEA features, this is a commonly used practice in
machine learning to standardize and scale input data. Similar pre-
processing was performed for all male specific, female specific, and
cohort level predictive models.

In order to fairly compare and contrast the predictivemodels, the
same machine learning architecture was used for all six predictors.
This architecturewas an ensemble learner composedof three different
classifiers: random forest, logistic regression, and adaboost. Ensemble
learning, in particular stacking, was used because stacked ensemble
learning models have been shown to be a simple yet effective method
for improving predictive accuracy compared to individual classifiers
used separately151–153. Random forest, logistic regression, and adaboost
were chosen as the ensemble classifiers due to two main character-
istics. First, out of the nine classifiers used in the EAML architecture,
these three demonstrated consistent and high MCC predictions. Sec-
ond, these three classifiers were empirically identified to train and
converge the fastest out of thenine EAMLclassifiers. Finally, inorder to
learn how to combine predictions from the three classifiers into one
final prediction for a sample, we use a decision tree-based algorithm
(Hoeffding tree) to train the individual classifiers together. Here, the
Hoeffding tree serves the purpose of computing how much weight to
give a specific classifier when making the final prediction, e.g., 30% of
the final decision may be based on logistic regression prediction, 30%
from adaboost prediction, and 40% from random forest prediction. All
classifiers were trained using default hyperparameters and regular-
izers. The split decisionwas set to 1e-6, theminimum fractionofweight
for info gain splitting was fixed to 0.01 and finally two grace periods of
resp. 200 and 300 were considered. Implementation of the complete
architecture and learning schemes, like EAML, were done using WEKA
package for machine learning.

Complete training of the architecture is done through a k-fold
cross validation approach. In this approach, the cohort is split into k
equal sub-cohorts, and one of the k sub-cohorts is set aside for testing
while the other k−1 sub-cohorts are used for training. This procedure is
repeated k times such that each sample in the cohort is both trained on
and tested on independently. This is a commonly used approach in
machine learning as it is a particularly good preventative measure
againstmodel overfitting. For our implementation, we usek = 10 folds.
Predictive power of themodels ismeasured as area under curve (AUC)
for receiver operator characteristic. AUCs are reported per test set of
each of the k-folds. Finally, to compare between model performance
using EAML predicted genes and APOE variant + age, t-tests were

performed between the distribution of AUCs seen in both types of
models and the corresponding p-values are reported.

Network analyses
We performed graph-based diffusion (GID) method64–66 in order to
evaluate howwell the 98 EA-ML predictions are connected tomanually
curated AD gold standard genes 25 GWAS genes and to dementia-
related disorders in biological networks.

STRING network version 11.0 was downloaded from http://
version11.string-db.org. We used the combined score that cover evi-
dence from all sources. The network contains 19,247 genes and gene
products, in which 98 EAML genes are present. Graph-based infor-
mation diffusion (GID) method64–66 was applied to measure how well
two groups of genes are connected to each other. Through GID,
functional information was propagated from genes of interest to all
genes in the network through their connections. Genes receiving sig-
nificantly more diffusion signals than random genes are more con-
nected and, thus functionally related to the original genes. Signals
were diffused from one group or their comparative random sets to
another group. Random genes were also selected from other genes in
the network and had similar degrees of connectivity with predicted
genes that initiate signals. We validated whether the AD known genes
receive significantly more diffusion signals from the predicted AD
genes than other genes in the network, and vice versa through area
under the curve (AUC) for receiver operating characteristic (ROC). For
a diffusion experiment of each pair of predicted groups, random was
performed 100 times to obtain a distribution of random AUCs, which
was tested for normality. Z-score, which is the number of standard
deviations from the random mean, was computed for the experi-
mental AUC based on the distribution of the random AUCs.

A literature network, called MeTeOR71, was used to explore
potential literature relatedness of the predicted geneswith dementia-
related disorders. MeTeOR aggregates publication co-occurrences of
Medical Subject Headings (MeSH) terms, which aremanually curated
by PubMed to annotate key topics, genes, diseases, and chemicals of
given articles. Biological entities that are co-mentioned together in
publications are more likely to be functionally related. MeTeOR has
previously been utilized to explore known and novel meaningful
biological associations70,71. Weperformed theGIDmethod to evaluate
whether the predicted 98 genes are well connected to dementia-
related disorders in the MeTeOR literature network and thus, are
likely to be involved in dementia pathology. Dementia-related dis-
orders were selected from disease terms annotated in MeTeOR that
consist of “dementia” and “Alzheimer”. This approach yielded 6 terms
for dementia-related disorders Table 1). We compared the diffusion
signals that each of the 98 genes received from the 6 dementia-
related disorders against random genes that matched the con-
nectivity degrees with the genes in the MeTeOR network. We also
evaluated diffusion signals for each dementia disorders from the 98
genes against random. We computed z-scores to compare diffusion
signals of the predicted genes and dementia disorders against ran-
dom. Z-scores above 2.5 were considered significant.

For the coexpression analysis of single cell RNAseq, cell type
specific WGCNA networks were obtained from154. Using Cytoscape, we
identified the primary degree coexpressed nodes for the EAML genes
andbuilt coexpression communities using theHiDef-Louvain algorithm
tool in the Community Detection extension. We obtained ~100 com-
munities for each cell type, and then run the functional enrichment tool
in the Community Detection extension to explore functional overlap in
gProfiler, enrichR and iQuery databases applying an FDR q <0.05.

For the coexpression analysis of the AD-specific coexpression
networks, we used the AD- coexpression networks built in76 and used
the first-degree nodes between genes as edges tomap the EAML genes
into the different functionalmodules. Enrichmentwas calculated using
Fisher’s test and considered significant if p <0.05.
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Experimental integration
Drosophila strains and motor performance assay. Genetics and
strains: the Drosophila lines used to drive expression of either wild-
type human 2N4R tau (UAS-Tau) or secreted β42 (UAS−Aos:β42) were
previously reported82,83 and are available from the Bloomington Dro-
sophila Stock Center (BDSC), University of Indiana. For pan-neuronal
expressionweused the elav-GAL4C155driver obtained also fromBDSC.
The alleles and shRNAs tested as candidate modifiers were obtained
from the BDSC or from the Vienna Drosophila Resource Cen-
ter (VDRC).

Motor performance assays. To assess motor performance of fruit
flies as a function of age, we used ten age-matched females per
replica per genotype as previously described84. Flies are collected in a
24 h period and transferred into a new vial containing 300 μl of
media every day. Tau animalswere kept at 23 Cwhile β42 experiments
were maintained at 28 C. Four replicates were used per genotype.
Using an automated platform, the animals are taped to the bottomof
a plastic vial and recorded for 7.5 s as they climb back up on the walls
of the vials. Videos are analyzed using custom software to assess the
speed of each individual animal. Four trials per replicate are per-
formed each day shown, and four replicates per genotype are used.
Using the average performance of all 10 animals in each replicate and
4 replicates per genotype, a nonlinear random mixed effect model
ANOVA155 was applied to the average using each four replicates to
establish statistical significance across genotypes. Specifically, we
looked at differences in regression between genotypes (genotype p
value) and also between genotypes with time (additive effect,
represented by a shift in the curve, genotype+time p value). P-values
were adjusted for multiplicity using Holm’s procedure. Code for this
analysis is available upon request from the Botas Laboratory. All
graphing and statistical analyses were performed in R. The non-
targeting shRNA line V2691 from the VDRC was used to generate
negative controls (Elav-GAL4/UAS-V2691) to establish the healthy
baseline motor performance and disease controls (either Elav-GAL4/
UAS-Tau/UAS-V2691 or Elav-GAL4/UAS-Aos:β42/UAS-V2691) for the
disease baseline.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ADSP Whole Exome Sequencing data used in this study are avail-
able in the dbGaP database under accession code phs000572.v7.p4.
The raw WES data are protected and are not available due to data
privacy laws. Evolutionary Action scores of missense variants are
publicly available via web server (http://eaction.lichtargelab.org/). The
AMP-AD transcriptomic data used in this study are available in the AD
knowledge portal (https://adknowledgeportal.synapse.org/) database
under accession code syn8484987, syn8466812, syn8456629. The
EAML candidates’ genes and its fly test results generated in this study
are provided in the Supplementary Information/Data file. All data
supporting the findings described in this manuscript are available in
the main article file, the supplementary Information, the supplemen-
tary file, or by corresponding author upon request.

Code availability
The EAML code can be downloaded from GitHub (https://github.com/
LichtargeLab/EAML) including an easy installation guidance and a toy
dataset. The code for themotor performance analysis is available upon
request from the Botas Laboratory (Ismael.alramahi@bcm.edu or
jbotas@bcm.edu).
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