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Spatially resolved multi-omics highlights
cell-specific metabolic remodeling and
interactions in gastric cancer

Chenglong Sun 1,2,3,9, AnqiangWang 4,9, Yanhe Zhou 1,9, Panpan Chen 2,3,
XiangyiWang 1, JianpengHuang 1, JiaminGao 1, XiaoWang 2,3, Liebo Shu5,
Jiawei Lu 5, Wentao Dai 6,7,10 , Zhaode Bu 4,10 , Jiafu Ji 4,10 &
Jiuming He 1,8,10

Mapping tumor metabolic remodeling and their spatial crosstalk with sur-
rounding non-tumor cells can fundamentally improve our understanding of
tumor biology, facilitates the designing of advanced therapeutic strategies.
Here, we present an integration of mass spectrometry imaging-based spatial
metabolomics and lipidomics with microarray-based spatial transcriptomics
to hierarchically visualize the intratumor metabolic heterogeneity and cell
metabolic interactions in same gastric cancer sample. Tumor-associated
metabolic reprogramming is imaged at metabolic-transcriptional levels, and
maker metabolites, lipids, genes are connected in metabolic pathways and
colocalized in the heterogeneous cancer tissues. Integrated data from spatial
multi-omics approaches coherently identify cell types and distributions within
the complex tumor microenvironment, and an immune cell-dominated
“tumor-normal interface” region where tumor cells contact adjacent tissues
are characterized with distinct transcriptional signatures and significant
immunometabolic alterations. Our approach for mapping tissue molecular
architecture provides highly integrated picture of intratumor heterogeneity,
and transform the understanding of cancer metabolism at systemic level.

Metabolic reprogrammingwas recognized as a core hallmark of tumor
cells. A key feature of tumor cell metabolism is the ability to obtain
nutrients from a frequently nutrient-poor microenvironment and uti-
lize thesenutrients tomeet the demands of growth andproliferation1,2.
In addition, themetabolic interaction between tumor and surrounding
normal cells such as immune cells and stromal cells have profound
effects on cancer progression and antitumor immune response3,4.
Recent metabolomics and transcriptomics studies on distinct cancer
tissues have revolutionized our understanding of tumor metabolism,
paving ways to the development of novel strategies for tumor diag-
nosis and therapy5.

However, given the complexity of cellular metabolic networks,
the heterogeneity of tumor microenvironment, and the diversity of

intercellular metabolic communications, it is still challenging to com-
prehensively visualize the reprogrammed tumor metabolism and cell-
cell interactions atmultiplemolecular levels. Thedevelopmentofmass
spectrometry imaging (MSI) technique offers an insight approach to
characterize the spatial signatures of metabolites and lipids in het-
erogeneous tumor tissues6–8. MSI-based spatially resolved metabo-
lomics (SM) and spatially resolved lipidomics (SL) allow in situ
screening of tumor initiation-, progression-, and metastasis-related
metabolic biomarkers, thus allowing for the characterization of
metabolic architecture of tumor and its surrounding
microenvironment9–14. Spatially resolved transcriptomics (ST) was
recently developed for the visualization and quantification of tran-
scriptome with spatial resolution in individual tissue sections15,16. The
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introduction of ST into cancer tissue transcriptome-wide profiling has
greatly revealed tumor metabolic mechanisms and cell-cell interac-
tions in tumor-microenvironment at the transcriptional level17–20.

Gastric cancer is one of the most prevalent malignant diseases
worldwide, with more than 1,080,000 new cases and over 760,000
deaths per year21. Metabolomics and transcriptomics exploitation on
homogenized lesion tissue have advanced our understanding of gas-
tric cancer biology, but the molecular informations regarding tissue
architecture are lost during the course of sample pretreatment22–24.
Single-cell RNA sequencing (scRNA-seq) on gastric cancer have
enabled a better understanding of the transcriptional regulation of
intratumoral heterogeneity and tumor-associated cellular
reprogramming25–28, but the cell-specific metabolite and lipid altera-
tions and interactions in gastric tumormicroenvironment could not be
acquired by scRNA-seq.

In this work, we propose an integrated spatially resolved multi-
omics approach to explore the cell-specific metabolic remodeling and
interactions in gastric cancer microenvironment. Adjacent frozen
cancer tissue sections from gastric adenocarcinoma patients are pre-
pared toperformSM,SL, and ST analysis, providing anatlasof spatially
resolved metabolite, lipid, and gene expression patterns across tumor
and surrounding normal cells. Identifying and imaging tumor-
associated molecular alterations and cellular interactions of gastric
cancer with its local microenvironment at both metabolic and tran-
scriptional levels not only gives an insight into intratumor biochemical
heterogeneity, but also helps to decipher the role of metabolic
reprogramming in cancer growth and development.

Results
Spatially resolvedmulti-omics reveals intratumorheterogeneity
With the goal of understanding intratumor metabolic remodeling and
interactions in gastric tumor microenvironment, we proposed a spa-
tially resolvedmulti-omics approach to integrate multilayer molecular
information in heterogeneous tumor tissues (Fig. 1a). Gastric cancer
tissues from seven individuals were cut into 10μm frozen sections and
then subjected to AFADESI-MSI based SM and MALDI-MSI based SL
analysis, and four of themwere used to perform 10×Genomics Visium-
based ST analysis. For the integration of different omics data, the
spatial resolution applied in this study was set to 100μm. Fig. 1b
illustrates the typical H&E images of gastric cancer tissue from patient
No. 0429, and it suggests that in addition to tumor tissue, the gastric
cancer sample also contains tumor and glandularmixed tissue, normal
epithelium, intestinal metaplasia, lymphoid follicle, muscularis
mucosa, peritumoral muscularis, lamina propria, blood-containing
tissue, and connective tissue. Histology images of other representative
gastric cancer samples also showed significant intratumor hetero-
geneity (Supplementary Fig. 1).

Data-driven tissue section segmentation map was built based on
region-specific metabolite and lipid fingerprints, and different tissue
regions with similar metabolite and lipid signatures were grouped
together and given a specific color. The representativemetabolite- and
lipid-driven segmentation map of cancer tissue was shown in Fig. 1c.
Different tissue regions in gastric cancer section exhibit obvious color
diversity from cool blue to hot red, suggesting that there are sig-
nificant differences in the spatial expression of metabolites and lipids.
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Fig. 1 | Spatially resolved multi-omics reveals intratumor heterogeneity of
gastric cancer. a Strategy of integrated spatially resolved multi-omics for high-
lighting tumormetabolic remodeling and interactions.bH&E stain image of gastric
cancer tissue section frompatient “No.0429” and×40magnifiedH&E stain imageof
different gastric cancer tissue regions, scale bar = 2mm for whole tissue section,

scale bar = 100μmformagnified images. The experimentwas repeated three times.
cMetabolite and lipid-driven tissue section segmentation based on theMALDI-MSI
data. d Metabolite and lipid-driven in situ PLSA analysis. e Visium array spots
colored by graph-based clustering algorithm.
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We further carried out unsupervised probabilistic latent semantic
analysis (PLSA) based on the spatial expressions of tissue metabolites
and lipids. All the detected variables were decomposed into five fun-
damental components to show the main spatial features of tissue
metabolites and lipids (Fig. 1d). Component 1 represents metabolites
and lipids that are significantly up-regulated in intestinal metaplasia
and tumor tissues. Component 2 and component 3 characterize
metabolites and lipids that are highly expressed in connective tissue
andmuscularismucosa, respectively. Component 4 indicates a class of
metabolites and lipids that are up-regulated in tumor and glandular
mixed tissue. Metabolites and lipids that are specifically distributed in
blood-containing tissue are decomposed as components 5. These
results suggest significant intratumor metabolomic and lipidomic
heterogeneity in gastric cancer tissue.

Furthermore, we explored the in situ transcriptional landscape
and their heterogeneity in distinct regions of gastric cancer tissues by
performing ST analysis. Four frozen cancer tissue sections which
adjacent to the ones used for SM and SL were subjected to 10×
Genomics Visium platform. Despite the limitation of sample analysis
area, most tissue regions of gastric cancer tissue sections from dif-
ferent individuals could be contained within the 6.5 × 6.5mm Visium
array. Graph-based clustering algorithm was constructed to evaluate
the intratumor transcriptomic heterogeneity in gastric cancer tissue.
As shown in Fig. 1e, the whole cancer tissue section can be divided into
ten different clusters based on underlying gene expressions. More-
over, it was found that the spatial patterns strongly recapitulated tis-
sue histology. Cluster 1 and cluster 7 basically match the spatial
features of connective tissue and the blood-containing tissue (Sup-
plementary Fig. 3a, g). The spots in cluster 2 and cluster 9 are more

distributed in normal epithelium and intestinal metaplasia (Supple-
mentary Fig. 3b, h). Cluster 3 has obvious spatial correlation with
lamina propria and muscularis mucosa (Supplementary Fig. 3c). The
spots in cluster 4 and cluster 8 are mainly located in peritumoral
muscularis (Supplementary Fig. 3d). Cluster 5 show significant spatial
matching with tumor tissue, and cluster 6 exhibit obvious matching
with tumor and glandular mixed tissue (Supplementary Fig. 3e, f). The
spots in cluster 10 are more distributed in lymphoid follicle (Supple-
mentary Fig. 3i).

Region-specific molecule profiles in gastric cancer tissue
Currently, SM, SL and ST analyses canonly be performed separately on
adjacent tumor sections. Tumor tissue is highly heterogeneous, so
although the distance between adjacent sections is only 10μm, dif-
ferent sections may still bring certain spatial errors in the process of
section preparation and section transfer. 10× Genomics Visium-based
ST enables point-by-point sampling and analysis of different micro-
regions in H&E-stained tissue section. The sampling spots are dis-
tributed over tissue section with a spatial resolution of 100μm. To
more accuratelymatch the spatial characteristics of SM, SL and STdata
in tumormicroenvironment, we labeled the ST sampling spots-labeled
H&E images in this study. The coordinate of first spot in the upper left
corner of H&E image was defined as x1y1, the spot with a horizontal
interval of 100μm is x2y1 and the spot with a vertical interval of
100μm is x1y2. By analogy, we completed the definition of all sampling
spots in H&E image (upper panel of Fig. 2a). Then, the gene expression
profiles in different micro-regions of gastric cancer tissue can be
extracted in a targeted manner using Loupe Browser software (lower
panel of Fig. 2a). Furthermore, we can perform dimension reduction

Fig. 2 | The extraction of gene, lipid, andmetabolite profiles in different tumor
micro-regions. a The process of extracting gene expression profiles in different
tumor micro-regions of gastric cancer according to H&E stain image, scale bar = 2
mm for upper panels, scale bar = 500 μm for lower panels. The H&E stain experi-
mentwas repeated three times.bUMAPanalysis and cluster heatmapof specifically
expressed genes in different tumor micro-regions. c Spatial expression images of
representative genes in gastric cancer tissue section (intensity in colour scale is
log2 transformed). d The process of extracting metabolite and lipid profiles
according to sampling spots-labeled H&E stain image, scale bar = 2mm for upper
panels, scale bar = 500μm for lower panels. The H&E stain experiment was

repeated three times. e Sankey diagram showing the distribution of marker genes
and metabolites in different tissues. Each rectangle in the left represents a gene,
each rectangle in the right represents a metabolite or lipid, each rectangle in the
middle represents a tissue type, and the connection degree of each variable is
showed based on the size of the rectangle. f Extracted region-specific metabolite
and lipid profile. g MS images of representative metabolites and lipids in gastric
cancer tissue section (intensity in colour scale is relative value). IM Intestinal
metaplasia, LM Lamina propria, LT Lymphoid tissue, NE Normal epithelium, PM
Peritumoral muscularis, TG Tumor and gland tissue, TT Tumor tissue.
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and cluster analysis based on tissue in situ gene expression signatures
(Fig. 2b), and visualize the spatial features of differentially expressed
genes (Fig. 2c).

Furthermore, we imported the sampling spots-labeled H&E image
into AFADESI-MSI software MassImager and MALDI-MSI software
SCiLS Lab for image fusion and spatialmatching (upper panel of Fig. 2d
and Supplementary Figs. 4, 5). Afterwards, the region-specific in situ
AFADESI-MS and MALDI-MS profiles were extracted based on the
sampling spots labeled-H&E image and used for spatial metabolomics
and spatial lipidomics analysis (lower panel of Fig. 2d, f). Differentially
expressed metabolites and lipids can be screened and imaged with
spatial signatures (Fig. 2g). By this, region-specific metabolomic, lipi-
domic and transcriptomic fingerprints can be precisely extracted and
visualized in highly heterogeneous gastric cancer tissue. Furthermore,
we build a metabolome-transcriptome association network by inte-
grating differentially expressed metabolites, lipids, genes and their
spatial signatures. As shown in Fig. 2e, the spatial relationship between
metabolites and gene expressions in tumor or surrounding normal
tissues can be easily discovered through the metabolome-
transcriptome association network.

Region-specific metabolites, lipids, and gene expressions
Principal component analysis (PCA) model built based on the expres-
sions of metabolites and lipids in different regions of gastric cancer
tissue is shown in Supplementary Figure 6, and it indicates that dif-
ferent tissue micro-regions exhibit obvious clustering and grouping
trends. The metabolite and lipid profile of tumor tissue is relatively
close to that of intestinal metaplasia and epithelial tissue, and is quite
different from that of connective tissue. AFADESI-MSI based SM plat-
form exhibited better MS imaging performance for low-molecular-
weight (m/z < 500) metabolites such as amino acids, polyamines,
cholines, carnitines, organic acids, nucleotides, nucleosides, etc., with
high sensitivity and low background interference. While, MALDI-MSI
based SL platform showed better MS imaging performance for dif-
ferent kinds of lipids including fatty acids (FAs), phosphatidylcholines
(PCs), phosphatidylethanolamines (PEs), ceramide-phosphates
(CerPs), phosphatidylserines (PSs), phosphatidylglycerols (PGs),

phosphatidylinositols (PIs), phosphatidic acids (PAs), sulfatide (SFTs),
and lysophosphatides (LysoPLs). Supplementary Figs. 7, 8 show the
spatial distributions of representative metabolites and lipids in gastric
cancer tissue section imaged byAFADESI andMALDI, respectively. The
combination of AFADESI-MSI and MALDI-MSI ensures high-coverage
imaging of metabolites and lipids in different metabolic pathways of
cellular metabolic networks. However, it should also be noted that
some metabolites in the same metabolic pathway can be detected
while some metabolites cannot be detected due to their low levels or
the lack of easily ionized groups in their structure. Supplementary
Fig. 9 demonstrates the numbers of imaged metabolites and lipids in
key metabolic pathways including nucleotide metabolism, carbohy-
drate metabolism, lipid metabolism, amino acid metabolism, etc.
Supplementary Figs. 10–35 illustrate the metabolites and lipids can be
imaged in twenty-six specific metabolic pathways. Significantly, most
metabolites and lipids exhibit highly heterogeneous spatial char-
acteristics. Marker genes in different regions of gastric cancer tissue
were screened and imaged in Supplementary Fig. 36.

Dysregulated arginine and proline metabolism
Using the above strategy, we comprehensively investigated tumor-
associated metabolic remodeling in gastric cancer. SM analysis sug-
gested that arginine and proline all exhibit highly heterogeneous
spatial distributions in gastric cancer tissues (Supplementary Fig. 37).
Arginine plays significant roles in numerous metabolic pathways.
Previous studies have demonstrated that arginine can modulate T cell
metabolism and cell autophagy to influence tumor growth29,30. Proline
and arginine are closely related inmetabolic pathways, and it has been
shown to be involved in the proliferation and invasion of tumor cells31.
Here, we visualized key metabolites and regulatory genes in the entire
arginine and proline metabolism pathways (Fig. 3a). Glutamine and
glutamate are key components for the synthesis of arginine and pro-
line, in which glutamine is down-regulated in tumor tissue, while the
expression of glutamate was found to be up-regulated in tumor tissue
(Fig. 3a1, a2).GLUL catalyzes themetabolismof glutamate to glutamine
and is highly expressed in tumor tissue, lymphoid tissue and muscu-
laris mucosa (Fig. 3a3, b1). GLS, in turn, can metabolize glutamine to

Fig. 3 | Visualization of reprogrammed arginine and proline metabolism
pathway in gastric cancer. aMS images of keymetabolites and spatial expression
images of key genes in arginine and proline metabolism pathway (intensity in MS
image colour scale is relative value, intensity in gene image colour scale is log2
transformed). b Violin plot show expression levels of key genes in arginine and

proline metabolism pathway. *Ornithine only identified by high resolution MS
spectrum. TT Tumor tissue, TG Tumor and gland tissue, NE Normal epithelium, IM
Intestinalmetaplasia, LT Lymphoid tissue,MMMuscularis mucosa, PM Peritumoral
muscularis, LM Lamina propria, CNT Connective tissue.
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glutamate. Gene expression image shows that GLS only highly
expressed in tumor and lymphoid tissues (Fig. 3a4, b2). Both arginine
and proline exhibit stronger expressions in tumor tissue, epithelium,
and surrounding lymphoid tissues (Fig. 3a7, a11). Correspondingly,
ASS1,ALDH18A1 and PYCR, which regulate the synthesis of arginine and
proline, also showed up-regulated expression in tumor and lymphoid
tissues (Fig. 3a5, a6, a10, b3–b5). Arginine and proline can be further
metabolized into putrescine, spermine, spermidine and other poly-
amines under the catalysis of OAT, AGMAT, ODC1, SRM, and SMS.
Fig. 3a14, a16, a18 illustrate the spatial distributions of putrescine,
spermine and spermidine in gastric cancer tissue section, and the
results suggest that polyamines are mainly distributed in tumor tis-
sues, followed by epithelium, intestinal metaplasia and lymphoid tis-
sues. OAT, AGMAT, and SMS are only up-regulated in tumor tissue
(Fig. 3a9, a12, a17, b6, b8, and b10), while ODC1 and SRM are highly
expressed in tumor and lymphoid tissues (Fig. 3a13, a15, b7, and b9).
Overall, we found that the arginine and proline metabolism pathway
was altered in gastric cancer, and the synthesis and metabolism of
arginine and proline in tumor tissue were enhanced at both the
metabolic and transcriptional levels.

Significantly reprogrammed lipid synthesis and metabolism
Lipid metabolic reprogramming has been increasingly recognized as a
hallmark of tumor cells32. As an important lipid, fatty acid (FA) plays
indispensable roles in cell energymetabolism and cell signalling33. ACC

and FASN catalyze the de novo synthesis of palmitic acid (FA-16:0),
which can continue to be desaturated and elongated into different
types of FAs under the catalysis of SCD, FADS, and ELOVL (Fig. 4b). By
integrating SL and ST approach, we investigated the alteration of FA
synthetic pathway in heterogeneous gastric cancer tissues.
Figs. 4d1–d3 and e1 illustrate the MS images and expression levels of
representative FAs in different gastric cancer tissue regions (Supple-
mentary Data 1). Elevated expressions of FA-16:0 was found in tumor
tissues. However, FA-20:4 was not only highly expressed in tumor tis-
sues, but also up-regulated in lymphoid tissue, suggesting that FA-20:4
may be related to the immune response of lymphoid tissue. Corre-
spondingly, FASN showed elevated expressions in tumor tissues
(Fig. 4f1, g1). SCD and FADS are responsible for the desaturation of FAs.
SCD is highly expressed in tumor tissues (Fig. 4f2), while FADS is more
expressed in lymphoid tissues (Fig. 4f3, g3). ELOVL, whichpromote the
elongation of FA carbon chain, exhibited up-regulated expression in
both tumor and lymphoid tissues (Fig. 4f4, g4). These help to explain
why FA-16:0 was only up-regulated in tumor tissues, while poly-
unsaturated long-chain FAs, such as FA-20:4, FA-22:4 and FA-22:5, were
up-regulated in both tumor and lymphoid tissues (Fig. 4e1 and Sup-
plementary Fig. 38).

Phospholipids are fundamental building blocks for cellar mem-
branes and are likely to be further involved in signaling events
important for tumor growth and metastasis34. Here, the spatial sig-
natures of different phospholipids include PC, PE, PI, PS, PG, PA, and

Fig. 4 | Visualization of reprogrammed lipid synthesis and metabolism path-
ways in gastric cancer. a H&E stain image of gastric cancer tissue section from
patient “No.0429”, “No.0602”, and “No.0716”, scale bar = 2mm. The experiment
was repeated three times. b Fatty acid de novo synthesis pathway. c Synthesis and
metabolism pathways of phosphatidylcholine and phosphatidylethanolamine.
d MS images of representative lipids in gastric cancer tissues (intensity in colour
scale is relative value). e Expression levels of representative lipids in different
region spots of gastric cancer tissue from patient “No.0429” (seven tissue samples
for spatial lipidomics, n = 6 independent section regions from patient “No.0429”,

mean ± SD), p-values were calculated using the unpaired two-tailed t-test at con-
fidence intervals 0.95. f Spatial expression images of key genes in lipid synthesis
and metabolism pathways (intensity in colour scale is log2 transformed).
g Expression levels of lipidmetabolism-related key genes in differentmicro-regions
of gastric cancer tissue from patient “No.0429”. TT Tumor tissue, TG Tumor and
gland tissue, NE Normal epithelium, IM Intestinal metaplasia, LT Lymphoid tissue,
MM Muscularis mucosa, PM Peritumoral muscularis, LM Lamina propria, CNT
Connective tissue, SGS Serrated glandular structure, HCM Heterotopic cystic
malformation.
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LysoPL were investigated. Interestingly, we found that the levels of
saturated PC and PE such as PC-32:0 and PE-34:0 in lymphoid tissue
were much higher than those in other tissue regions (Fig. 4d4, d7, e2,
e3), while monounsaturated PC-34:1 and PE-36:1 exhibited stronger
expressions in tumor, epithelium, and intestinal metaplasia tissues
(Fig. 4d5, d8, e2, e3). Polyunsaturated long-chain PC and PE such as PC-
38:4 and PE-38:4 presented up-regulated expressions in both tumor
and lymphoid tissues, which matched the spatial features of poly-
unsaturated long-chain FAs (Fig. 4d6, d9, e2, e3). PC and PE are gen-
erated by combining FAs to phosphocholine (PPC) and
phosphoethanolamine (PPE) under the catalysis of CHKA, ETNK, and
CEPT1 genes, and they can also be metabolized to FAs, choline and
ethanolamine by the catalysis of PLD, PLA2, and LYPLA2 genes (Fig. 4c).
Both ETNK1 and CHKA genes were found to be up-regulated in tumor
tissue, but ETNK1 genes also showed elevated expression in lymphoid
tissue (Fig. 4f5, f6, g5, g6). PLD and LYPLA2 genes presented up-
regulated expression in tumor and lymphoid tissues (Fig. 4f7, f8, g7,
g8). The spatially resolved characterization of lipids and related genes
indicate that gastric tumor and surrounding lymphoid tissues possess
more active lipid synthesis and metabolism. Fig. 4d10–d18 illustrate
the MS images of other representative phospholipids in gastric cancer
tissues. Monounsaturated PI-34:1 and PI-36:1 exhibited stronger
expressions in intestinalmetaplasia, epithelium, and tumor tissues, but

very low in muscularis mucosa, connective, and lymphoid tissues
(Fig. 4d10, d11, e4). In contrast, polyunsaturated PIs such as PI-38:4 and
PI-38:5 only showed low expression in connective tissue (Fig. 4d12, e4,
and Supplementary Fig. 39). Except for the low levels in connective
tissue, all PSs exhibited strong expression in other gastric cancer
regions (Fig. 4d13–15, e5). For PGs, they are mainly distributed in
lamina propria, muscularis mucosa, and lymphoid tissues, and their
expressions are not enhanced in tumor and intestinal metaplasia
regions (Fig. 4d16–18, e6).

Stepwise metabolic reprogramming was imaged
Patient No. 0602 was diagnosed with adenocarcinoma, but the histo-
logical image also revealed normal epithelium and serrated glandular
structure. Gastric adenocarcinoma derived from the malignant
hyperplasia of epithelium, and serrated glandular structure is a type of
epithelium dysplasia35. The pathologic gradient alteration from epi-
thelium to serrated lesion to tumor is indicated by the arrow in Fig. 5a.
Coincidentally, metabolite- and lipid-driven segmentation map also
showed gradient color alterations, indicating the stepwise metabolic
reprogramming of gastric cancer (Fig. 5b).

Region-specific metabolite and lipid profiles of serrated lesion
and tumor tissue were extracted to perform unsupervised PCA ana-
lysis, and the results showed striking differences between the two

Fig. 5 | Visualization of stepwise metabolic reprogramming in gastric cancer.
a H&E stain image of gastric cancer tissue section from patient “No.0602”, scale
bar = 2mm. The experiment was repeated three times. b Metabolite and lipid-
driven tissue section segmentation. c PCA score plots based on AFADESI-MSI and
MALDI-MSI data of tumor tissue (TT) and serrated glandular structure (SGS).
d–qMS images and levels of glucose, glucose-phosphate, lactic acid, succinic acid,
malic acid, histidine, histamine, FA-18:1, Lyso-PC-16:1, C26:2-OH-SFT, C22:0-OH-
SFT, C22:1-OH-SFT, C24:0-OH-SFT, and C24:1-OH-SFT in different gastric cancer
tissue section spots (seven tissue samples for spatial metabolomics and lipidomics,

n = 6 independent section regions from patient “No.0602”, mean ± SD),
***p <0.001, **p <0.01, *p <0.05, p-values were calculated using the unpaired two-
tailed t test at confidence intervals 0.95, intensity in colour scale is relative value.
r Pathways enriched in SGS tissue. s Representative altered genes in oxidative
phosphorylation pathway, intensity in colour scale is log2 transformed. t, u Spatial
expression images of AOC1 and SCD, intensity in colour scale is log2 transformed.
TT Tumor tissue, SGS Serrated glandular structure, NE Normal epithelium, LT
Lymphoid tissue, MM Muscularis mucosa, MT Muscle tissue, CNT Connective
tissue.
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groups (Fig. 5c). Pathway-related discriminatory variables among epi-
thelium, serrated lesion and tumor tissue were screened (Supple-
mentary Data 2). Glucose is the direct energy source for cell
metabolism. Although there was no expression difference in epithe-
lium, serrated lesion and tumor tissue, it was significantly down-
regulated compared with other normal tissues (Fig. 5d). Phosphor-
ylation is an essential biochemical reaction for anaerobic glycolysis
and aerobic oxidation of glucose. Fig. 5e shows the MS image of glu-
cose-phosphate, and it suggests that the content of glucose-phosphate
in tumor tissue is higher than that in epithelium and serrated lesion,
and this corresponds to tumor cells tend to reprogram their metabo-
lism to increase energy metabolism. The anaerobic glycolysis product
lactic acid was found to exhibit higher expression in tumor and ser-
rated lesion, suggesting that their anaerobic glycolysis reaction is
more active than normal epithelium (Fig. 5f). Succinic acid and malic
acid are key metabolites in Krebs cycle, succinic acid showed con-
tinuous up-regulation in epithelium, serrated lesion and tumor tissues
(Fig. 5g), while malic acid presented down-regulated expression in
serrated lesion and tumor tissue than that in normal epithelium
(Fig. 5h). Histidine metabolism was screened as another abnormal
metabolic pathway. Although the expression of histidine in different
tissues did not show obvious different, its decarboxylation product,
histamine, exhibited a dramatic decrease in serrated lesion and tumor,
especially in tumor tissue (Fig. 5i, j). Unsaturated FA suchas FA-18:1 and
unsaturated lysophospholipids such as lysophosphatidylcholine
(LysoPC)−16:1 were found to be differentially expressed in normal
epithelium, serrated lesion and tumor tissues (Fig. 5k–l). Sulfatides
(SFT) play significant roles in numerous biological processes including
cell immune and tumor progression36. Interestingly, here we found
that SFT such as C22:0-OH-SFT, C22:1-OH-SFT, C24:0-OH-SFT, C24:1-
OH-SFT, and 26:2-OH-SFT all showed a stepwise up-regulation trend
from epithelium to serrated lesion to tumor tissues (Fig. 5m–q).

Furthermore, to explore whether this stepwise metabolic altera-
tion was affected by upstream gene, we extracted region-specific gene
expression data to perform transcriptomic analysis. Differently
expressed pathways were screened by KOBAS, and Fig. 5r illustrates
the altered pathways that enriched in serrated lesion (Supplementary
Data 3). Oxidative phosphorylation (OXPHOS) was the most dysregu-
lated pathway, consistent with metabolite alterations in glucose
phosphorylation, anaerobic glycolysis and aerobic oxidation found by
SM. Spatial expressions of discriminatory genes in OXPHOS pathway
were imaged, NDUFS6, NDUFA6, NDUFAB1, NDUFB4, NDUFB3, COX5A,
COX7B, COX7A2, UQCR11, UQCR10, UQCRQ, ATP5MC3, ATP5F1E, and
ATP5PF exhibited highest expressions in serrated lesion, followed by
tumor and normal epithelium (Fig. 5s and Supplementary Fig. 40).
Histidine metabolism, biosynthesis of unsaturated fatty acids, and
tryptophan metabolism were screened as pathways that enriched in
tumor tissue. The AOC1 gene regulates the oxidation of histamine and
its expression is highest in tumor tissue, followed by serrated lesion
and lowest in normal epithelium (Fig. 5t). Immunohistochemical
staining of AOC1 protein on adjacent cancer section were coincident
with the AOC1 gene expression image (Supplementary Fig. 41). Further
combining with the spatial feature of histamine (Fig. 5i), we can
speculate that the down-regulation of histamine in tumor tissue is
caused by its excessive oxidation. SCD is a key gene in the biosynthesis
of unsaturated FA, and it was found to be significantly up-regulated in
serrated lesion and tumor tissue (Fig. 5u). This is consistent with the
changing trend of unsaturated FAs and some lipids containing unsa-
turated FA side chains (Fig. 5k–l).

Immunometabolic reprogramming in tumor interface region
The spatial transcriptome landscape of tumor and neighboring tissues
were explored and a total of ten distinct clusters were identified. Sig-
nificantly, whenweprojected the cluster assignments back onto tissue
section coordinates, we discovered a distinct “interface” cluster

(cluster 9) at the junction of tumor and neighboring tissues (Fig. 6b).
UMAP plots show that the “interface” cluster 9 is also located at the
middle transition region in UMAP-space, with normal and normal-like
cluster 1, cluster 5, cluster 6, cluster 8, cluster 10 on the left, tumor and
tumor-like cluster 2, cluster 3, cluster 4, cluster 7 on the right (Fig. 6c).

To better understand the composition and biological repre-
sentation of gene expression-driven clusters, we annotated these cell
clusters with their dominant gene markers. The detail annotations of
these clusters were demonstrated in Fig. 6d (Supplementary Data 4).
Strong concordance was observed between pathologist-annotated
region and cell cluster annotation. For example, cluster 3, cluster 4,
and cluster 7 were identified as tumor tissues according to patholo-
gist’s annotations. Cell annotation results showed that cluster 3 is
heterogeneous including cancer stem cell, secretory cell, and glial cell,
while cluster 4 is mainly composed of cancer cells, cluster 7 contained
endothelial cells and few plasmacytoid dendritic cells. Cluster 2 exhi-
bits some gene signatures of intestinal metaplasia with array spots
mainly located in the serrated lesion regions. Coincidentally, serrated
lesion mostly occurs in colorectum. Most notably, although only very
few amounts of tumor-infiltrating immune cells were identified in
tumor tissue, we discovered that “interface” cluster 9 exhibits sig-
nificant immune and inflammation-related signatures with plenty of
plasma B cell, follicular B cell, and Th2-like CD4+ T cells. The pathol-
ogist re-examined cluster 9 region and found that it contained some
lymphoid tissue. To validate plasma B cell and follicular B cells in
cluster 9, we explored the concordance between cell annotation and
staining of the corresponding proteins within the cancer section.
Immunohistochemical staining of CD 20 andCD 38 on adjacent cancer
sections were coincident with the defined plasma B cell- and follicular
B cell-enriched cluster 9 region (Supplementary Fig. 42). Located at
tumor boundary where the tumor contacts neighboring tissues, the
immune and inflammation-related cluster 9 is believed tobe important
for tumor cell invasion and progression.

Accumulating evidence suggest that tumor cells can reshape their
metabolism to create a microenvironment suitable for tumor growth
and suppress the immune surveillance system37,38. In immune and
inflammation-related cluster 9, we found two lymphoid tissues with
different distances from tumor boundary, the one adjacent to tumor
cells was defined as peritumoral lymphoid tissue (PLT, Fig. 6e), and the
one adjacent to normal epithelium was classified as distal lymphoid
tissue (DLT, Fig. 6e). SM and SL analysis indicate that PLT undergoes
remarkable metabolic reprogramming. For instance, glutamine plays
energy-generating and biosynthetic roles in growing cells, and many
tumor cell lines display glutamine addiction39, this phenomenon was
further confirmed here in gastric cancer (Fig. 6f). More interestingly,
we found a dramatic decrease in glutamine levels in PLT compared to
DLT, suggesting that glutamine is also reprogrammed in PLT (Fig. 6f, i,
Supplementary Data 5). SLC transporters represented by the heavily
studied SLC1A5 are essential for pushing glutamine into the cells, and
then glutamine was converted to glutamate by glutaminase (GLS). In
contrast to glutamine, the content of glutamate in PLT was sig-
nificantly higher than that inDLT (Fig. 6g, j). Meanwhile, wediscovered
GLS gene and glutamine transporter SLC1A5 exhibited higher expres-
sion inPLT (Fig. 6h, k, l). These data indicate that glutamine uptake and
metabolism is up-regulated in PLT.

FAs are indispensable for tumor energy metabolism and
signaling33. Here, we also found that FAs, especially long-chain unsa-
turated FAs such as arachidonic acid, docosahexaenoic acid, doc-
osapentaenoic acid, and docosatetraenoic acid were also significantly
up-regulated in PLT (Fig. 6m–p). Previous studies suggest that the
increased synthesis of FAs in tumor cells will generate a FA-rich
microenvironment, which affects the biofunctions of immune
cells40–42. Following ST analysis showed that FA synthesis-related FASN,
SCD and ELOVL genes were also up-regulated in PLT (Figs. 6q–s).
Arachidonic acid can be metabolized to prostaglandins, leukotriene,
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and lipoxin, involved in chronic inflammation43. The ALOX5AP gene
promotes the metabolism of arachidonic acid through 5-lipoxygenase
pathway to generate leukotriene inflammatory mediators, and its
expression in PLT is much higher than that in other tissues (Fig. 6t).
Docosahexaenoic acid was proved to be substrate for the biosynthesis
of anti-inflammatory proresolving endogenous mediators43. The
upregulation of these long-chain polyunsaturated FAs in PLT matches
the biological features of immune and inflammation-related cluster 9,
and also indicates that PLT exhibited an enhanced inflammatory
response than DLT to inhibit the proliferation of tumor cells.

Discussion
Tumor cells can reprogram the regulatory and functional properties of
their metabolism to support the synthesis of building blocks and
energy components required for cancer development. Understanding
how reprogrammed metabolic networks affect tumor growth holds
the key for identifying potential metabolic vulnerabilities for better
cancer treatment44,45. However, tumor tissues often exhibit significant
molecular heterogeneity, and metabolic communications between
tumor and surrounding normal cells are critical for tumor growth,
proliferation, and metastasis46–48. MSI enables in situ analysis of
metabolites and lipids in heterogeneous cancer tissues while retaining
spatial information, and thus allows for spatially resolved mapping of
cancer-associated metabolite and lipid changes49,50. In this study, we
performed MSI-based SM and SL analysis and 10× Genomics Visium-
based ST sequencing on gastric cancer tissues. Tumor-, epithelium-,
intestinal metaplasia-, lymphoid follicle-, muscularis mucosa-, lamina
propria-, serrated lesion-, and connective tissue-specific metabolic
profiles and gene expressions can be accurately extracted for

dimension reduction analysis and discriminatory variable screening.
The integration of SM, SL, and ST adds extra value for exploring tumor
metabolism: (i)metabolites and lipids are interconnected inmetabolic
networks, and the combined SM and SL profiling provide a more
comprehensive picture of tumor metabolism; (ii) the expressions of
metabolites and lipids are regulated by upstream genes, and the
introduction of ST can help us visualize complex tumor metabolic
reprogramming at multiple interrelated levels.

However, the fact that more than 40,000 metabolites are dis-
tributed in the cellular metabolic network with significant content
variation,whichmakes their in situMSI challenging51. AFADESI-MSIwas
developed for high-sensitive tissue metabolites imaging by our group,
and the spatial features of over 1500 metabolites such as amino acids,
polyamines, carnitines, cholines, nucleosides, nucleotides, nitrogen
bases, organic acids, carbohydrates, etc. in biological tissues were
successfully mapped use this technique9,52. MALDI-MSI is the most
commonly usedMSI technique, which ismore suitable for the imaging
of lipids 7,53,54. Here, we carried out AFADESI-MS and MALDI-MS ima-
ging analysis onadjacent gastric cancer tissue sections, respectively, to
ensure high-coverage visualization of metabolites and lipids. The
imaged metabolites are extensively distributed in cancer-associated
carbohydrate metabolism, energy metabolism, lipid metabolism, and
aminoacidmetabolismpathways, and thus allows for a comprehensive
and deep exploring of altered metabolites in different metabolic
pathways.

Arginine and proline metabolism was found to be significantly
reprogrammed in gastric cancer. Both arginine and its synthesis-
related ASS1 gene are up-regulated in tumor tissues (Fig. 3a5, a7, b3).
The elevated arginine in gastric cancer cells can be used for nitric

Fig. 6 | Imaging the immunometabolic reprogramming in tumor interface
region of gastric cancer. a Pathologist-annotated regions of cancer tissue section
from patient “No.0602”. b Visium array spots colored by graph-based clustering
algorithm. c UMAP plot of gastric cancer tissue colored by clusters. d Cell cluster
annotation of gastric cancer tissue. e The fusion image of visium array spots and
H&E stain image, scale bar = 2mm. The H&E stain experiment was repeated three
times. f, g MS images of glutamine and glutamate in whole gastric cancer tissue
section and in lymphoid tissue regions, intensity in colour scale is relative value.
h Spatial expression images of GLS in whole gastric cancer tissue section and in
lymphoid tissue regions, intensity in colour scale is log2 transformed.
i–l Expression levels of glutamine, glutamate, GLS genes and SLC1A5 in different
gastric cancer tissue section spots (seven tissue samples for spatial metabolomics,

n = 6 independent section regions from patient “No.0602”, mean ± SD), p-values
were calculated using the unpaired two-tailed t-test at confidence intervals 0.95.
m–p MS images and expression levels of arachidonic acid, docosahexaenoic acid,
docosapentaenoic acid, and docosatetraenoic acid in different gastric cancer tissue
section spots (seven tissue samples for spatial lipidomics, n = 6 independent sec-
tion regions per tissue sample,mean± SD), intensity in colour scale is relative value.
q–t Spatial images and expression levels of FASN, SCD, ELOVL1, and ALOX5AP in
gastric cancer tissue, intensity in colour scale is log2 transformed. TTTumor tissue,
SGS Serrated glandular structure, NE Normal epithelium, LT Lymphoid tissue, PLT
Peritumoral lymphoid tissue, MM Muscularis mucosa, MT Muscle tissue, CNT
Connective tissue.
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oxide, protein, and nucleotides synthesis, and as a direct activator of
mTOR55,56. Given the indispensable roles of arginine plays in cancer
growth, arginine deprivation through targeting arginine deiminase or
arginase has been developed as an effective approach for cancer
therapy57,58. Moreover, it should be noted that arginine is a key pre-
cursor metabolite for cellular polyamine synthesis. An important fea-
ture of cancer cell is the ability to upregulate the expressions of
polyamines to promote tumor growth, invasion and metastasis59. And
this was further confirmed in our study, as shown in Fig. 3a16, a18,
polyamines including spermine and spermidine exhibit significant up-
regulation in gastric cancer cells. ODC1 gene, which catalyzes the first
step of polyamine biosynthesis, also showed elevated expression in
gastric cancer tissues (Fig. 3a13, b7). Suggestive evidence forODC1 can
be induced during carcinogenesis by a variety of oncogenic stimuli has
beenprovidedby earlier observations60,61. Therefore,we speculate that
the up-regulated expressions of polyamines in gastric cancer should
be attributed to the enhancement of polyamine synthesis.

In the tumor microenvironment, glutamine is indispensable for
both tumor cells and immune cells. Targeting glutamine metabolism
or blocking glutamine were proved to be effective approaches for
inhibiting tumor growth62,63. Here, we found that glutamine is over-
utilized within the tumor tissue, and its content also exhibited a dra-
matic decrease in peritumoral lymphoid tissue (Fig. 6f, i). Given the key
influences of glutamine on immune cells such as regulate macrophage
polarization and active effector T cell to exert antitumor function64,65,
we speculate that the low levels of glutamine in tumor and peritumoral
lymphoid tissues should be an important reason for the inability of
immune cells to inhibit the growth and proliferation of gastric cancer.
Histamine is an important inflammatory biogenic amine and is also
recognized as a main mediator of cell proliferation66. SM analysis
showed that histamine was significantly down-regulated in gastric
tumor tissues (Fig. 5j). However, elevated levels of histamine have been
discovered in other tumors including colon, melanoma, and breast
cancer67,68. Growing evidence suggests that histamine involved in the
modulation of immune responses such as enhancing T helper type 1
responses and promoting myeloid cell differentiation to suppress
cancer formation69,70. Coincidentally, we identified very few infiltrating
immune cells in the analyzed gastric cancer tissue sections. The low
expression of histamine and the lack of infiltrating immune cells in the
tumor microenvironment may be another reason why the immune
system fails to suppress gastric cancer growth.

Lipid reprogramming was recognized as a prominent metabolic
alteration in tumor. To support the synthesis of biological membranes
and to generate energy components, tumor cells usually increase their
lipogenesis and FA oxidation32,71,72. In this study, we carried out SL
analysis and imaged the spatial alterations of different lipids including
FA, PC, PE, PS, PG, PI, PA, ST, CerP, LysoPL, and cholesterol in gastric
cancer tissues. In general, we found that lipids showed the following
spatial characteristics: (i) except for PS and PI, most lipids exhibited
elevated expressions in tumor tissues; (ii) some lipids with short FA
chains presented totally different spatial signatures with those con-
tainedpolyunsaturated FA chains, such as FA, PC, PE, and PI (Fig. 4d, e).
Following ST analysis revealed that FASN, SCD, FADS and ELOVL genes
which catalyze the synthesis, elongation, and desaturation of FA;CHKA
and ETNK1 genes which regulate phospholipid synthesis; PLD and
LYPLA2 genes which control lipid metabolism; CPT1A and CRAT genes
which catalyze the β-oxidation of FA all showed up-regulated expres-
sions in tumor tissues (Fig. 4f, g, and Supplementary Fig. 43). Tran-
scription factors sterol regulatory element-binding proteins (SREBPs)
coordinate genes for lipid synthesis. SREBP1 (encoded by SREBF1)
mainly controls genes involved in the FA synthesis pathway such as
FASN, SCD, FADS, and ELOVL, while SREBP2 (encoded by SREBF2) tends
to regulate genes in the cholesterol biosynthesis pathway such as
ACAT2,HMGCS1, andHMGCR34,73,74. Here, we found SREBF1 and SREBF2
genes also exhibited increased expressions in tumor tissues

(Supplementary Fig. 44). Spatially resolved characterization of up-
regulated lipids, lipid synthesis-related enzyme genes, and transcrip-
tional regulator genes in gastric cancer once again proves that tumor
cells have to reshape the regulatory and functional properties of their
lipid synthesis and metabolism pathways to maintain cell activity.

It’s also worth noting that tumor-associated lipid alterations
strongly impact the differentiation and activation of immune cells, and
the immune cells can also reprogram their lipid metabolism to inhibit
tumor growth75–77. Here, only paucity of T cells was discovered in the
parenchyma and stroma of gastric cancer tissues, which can be char-
acterized as an immune-desert phenotype. However, we found a thin
cluster rich in Plasma B cell, Follicular B cell, and Th2-like CD4 + T cell
at the interfaceof tumor parenchymaandneighboring tissues, and this
cluster also includedplenty lymphoid tissue (Fig. 6a–e). In addition, we
identified significant lipid alterations in lymphoid tissue at the inter-
face regions. Comparedwith distal lymphoid tissue, the expressions of
FA de novo synthesis-related FASN, SCD, ELOVL genes are up-regulated
in interfacing lymphoid tissue (Fig. 6q–s).Moreover, the levels of long-
chain polyunsaturated FAs such as arachidonic acid, docosahexaenoic
acid, docosapentaenoic acid, and docosatetraenoic acidwere found to
be dramatically up-regulated in interfacing lymphoid tissue, even
higher than those in tumor tissues (Fig. 6m–p). And, this consistent
with previous report that the accumulation of long-chain FAs in
immune cells and tumor microenvironment drives dysfunction of
immune cells, leading to the immunosuppression of tumor41. In addi-
tion to FAs, several studies have shown that cholesterol is enriched in
the tumor microenvironment, and cholesterol can inhibit T cell dif-
ferentiation and induce T cell functional exhaustion78–80. Here, our
results indicate that the level of cholesterol sulfate were increased in
the tumor parenchyma and epithelium of gastric cancer (Supple-
mentary Fig. 45). Moreover, cholesterol synthesizing enzyme genes
HMGCS1 and HMGCR, as well as SREBF2 genes that regulate genes in
cholesterol synthesis pathway, all were elevated in tumor and inter-
facing lymphoid tissues (Supplementary Figs. 44, 46). We speculated
that the upregulation of FA and cholesterol synthesis at transcriptional
level, and the accumulation of long-chain polyunsaturated FAs and
cholesterol at lipid level should be one of the reasons why immune
cells could not effectively inhibit the growth of gastric cancer.

In conclusion, our study shows how SM, SL, and ST approach can
be integrated for characterizing the complex tumor metabolic remo-
deling and tumor-microenvironment metabolic interactions in highly
heterogeneous cancer tissues. Metabolite, lipid, and gene expression
signatures and their spatial alterations in tumor microenvironment
were precisely imaged and further linked in distinct metabolic path-
ways. Insights into cancer-associated metabolic dependencies and
immunometabolic alterations emerged fromour analysis notonly help
to better understand the molecular mechanisms of tumor, but also
provide potential vulnerabilities that could be targeted for cancer
therapy.

Methods
Ethics approval
This research complies with all relevant ethical regulations. The study
of human tumor samples was performed according to the Declaration
of Helsinki and Good Clinical Practice and approved by the Ethnical
Committee of Peking Cancer Hospital (grant no. 2022KT87). Informed
written consent was obtained from all participants. The animal
experiments were conducted with the approval of the Animal Ethical
Committee at the Institute of Materia Medica, Chinese Academy of
Medical Science, and Peking Union Medical College (grant no.
00007751).

Human gastric cancer tissue specimen
Postoperative cancer tissue from seven male patients diagnosed with
gastric cancer and underwent surgery were included in this study. The
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age distribution is 50–89. All the tumor classification of these seven
patients is adenocarcinoma. And all patients did not undergo che-
motherapy or radiotherapy before the surgery. The collected cancer
tissues were immediately placed in dry ice and then transferred to a
−80 °C refrigerator. This study is mainly focused on the development
of integrated spatial multi-omics analysis method and the exploration
of tumormetabolic remolding, sono gender-based analyses have been
performed.

Xenograft tumor specimen
Xenograft model in nude mice with human gastric cancer
SGC7901 cells were built. NPG mice (female, 6 weeks, 18–20 g, stock
no. SCXK2019-0002) were obtained from Beijing Vitalstar Bio-
technology Co.,Ltd. Mice were kept on a 12 h/12 h light/dark cycle with
the temperature at 20–24 °C and humidity at 40–70%. The experi-
mental protocols (00007751) were approved by the Animal Ethical
Committee at the Institute of Materia Medica, Chinese Academy of
Medical Science, and Peking Union Medical College. The care and use
of animals compliedwith the Guide for the Care andUse of Laboratory
Animals published by the National Institutes of Health. Anesthesia was
given before tumor implantation subcutaneously. Seven, thirteen, and
twenty-one days after the transplantation of cancer cells, mice were
euthanized by CO2 inhalation and tumors were harvested for mass
spectrometry imaging analysis. Our animal protocol sets the maximal
tumor size at 1.5 cm diameter. In these studies, all the tumor size was
not exceeded 1.5 cm in diameter.

Preparation and processing of cancer tissue section
The postoperative gastric cancer tissues were embedded in OTC and
cut into 10μmserial frozen sections at −20 °Cona cryostatmicrotome
(Leica CM 1860 UV). Two sets of tissue sections were mounted onto
SUPERFROST PLUS slides (Thermo) for AFADESI-MSI. Two sets of tis-
sue sections were mounted onto indium tin oxide (ITO)-coated glass
slides for MALDI-MSI analysis. One set of tissue sections were stained
with hematoxylin and eosin and evaluated by pathologists. The
pathologists evaluated the cellular composition and heterogeneity of
the tissue sections, and then selected a 6.5 × 6.5mmareawith themost
significant tumor heterogeneity from the entire tissue section. Then,
we cut the original tissue sample according to the rectangular area
delineated by the pathologist, and only the regions with significant
tumor heterogeneity were retained. New adjacent tissue sections were
prepared on retained cancer tissues andmounted onto 10 ×Genomics
Visium array slides for spatially resolved transcriptomics analysis.
Before AFADESI-MSI and MALDI-MSI analysis, the tissue sections were
dried in vacuum for about 15min.

AFADESI-MSI
Custom-built AFADESI-MSI platform equipped with Q-Exactive Orbi-
trap mass spectrometer (Thermo Scientific, Bremen, Germany) and
AFADESI ion source was used for tissue metabolites imaging. The
experiment was carried out in both positive and negative ionmodes at
m/z 70–1000. The spray solvent used in this study was acetonitrile and
water (80:20, v/v), and the flow rate of spray solvent was set to 5.0μL/
min. Sprayer voltages were set at 4500V and −4500V in positive and
negative ion mode, respectively. The extracting gas flow of AFADESI
ion sourcewas 45 L/min. The flow rate of nebulizing gas (N2) was set to
0.7MPa. Imaging analysis was performed by continuously scanning
the tissue section in x-direction at 100 μm/sec, separated by a 100μm
vertical step in y-direction. MassImager ProTM software was used for
background subtraction, image reconstruction, and the calculation of
average metabolite expressions in region of interest81.

Matrix coating and MALDI-MSI
1,5-Diaminonaphthalene, 2.0mg/mL in acetonitrile and water (70:30,
v/v), were used as MALDI matrix for tissue MALDI-MSI. Eight cycles of

MALDImatrixwere sprayedonto cancer tissue sectionswith aflow rate
of 75μL/min by using a HTX TM-SprayerTM (HTX Technologies, Carr-
boro, NC). The pray gas pressure and spray temperature were set to10
psi and 55 °C, respectively. Track speed and spacing of the sprayer
were set to 800mm/min and 3mm, respectively. After spraying
matrix, the tissue sections were subjected to rapifleXTM MALDI TOF/
TOF MS (Bruker Daltonics, Billerica, MA) for MALDI-MSI analysis. The
m/z scan rang was set to 80–1000 in both positive and negative ion
modes. The spatial resolution of MALDI imaging was set to 50μm. The
MS imageswereviewed andprocessedusing SCiLS Lab2018b software
(GmbH, Bremen, Germany).

Spatially resolved transcriptomics analysis
All reagents were obtained from Visium Spatial Gene Expression
Reagent Kits, and the experiments were operated according to the
user guide of “Visium Spatial Protocols-Tissue Preparation Guide
(CG000240)”, “Visium Spatial Gene Expression Reagent Kits-Tissue
Optimization (CG000238)”, and “Visium Spatial Gene Expression
Reagent Kits (CG000239)”

Sample preparation. Tissue samples were prepared and processed
based on the User Guide of Visium Spatial Gene Expression. Frozen
tissue sections (10μm, adjacent to the ones being analyzed by
AFADESI-MSI and MALDI-MSI) were mounted onto 10×Genomics Vis-
ium array slides. Then, the frozen tissue sectionswere dehydratedwith
isopropanol for 1.0min, fixed inmethanol for 1.0min and stained with
hematoxylin and eosin. Next, the slides were mounted in 80% glycerol
and brightfield images were taken on 3D HISTECH Pannoramic MIDI
FL, whole-slide scanner at 40× resolution.

STbarcodedmicroarray slide information. Librarypreparation slides
were purchased from the Spatial Transcriptomics team (https://www.
10xgenomics.com/). The diameter of the array spots is 55μm, and the
distance between adjacent array spots is 100μm, covering an area of
6.5 × 6.5mm2. Each slide includes four capture areas, each with about
5000 unique gene expression spots.

Tissue optimization. Adjacent frozen cancer tissue sections on 10×
Genomics Visium array slides were fixed, stained, and permeabilized
for different times. Poly adenylated mRNA from the attached tissue
section were captured by probes on the slides. Then, add Master Mix
containing reverse transcription (RT) reagents and fluorescently
labeled nucleotides to the surface of the tissue section to obtain
fluorescently labeled cDNA. Next, remove excess tissue, leaving
fluorescently labeled cDNA covalently linked to oligonucleotides on
the Visium array slides. Then, fluorescently labeled cDNA is visualized.
The permeabilization time that results in maximum fluorescence sig-
nal with the lowest signal diffusion is optimal. If the signal is the same
at two time points, the longer permeabilization time was selected.

On-slide tissue permeabilization, cDNA synthesis, library con-
struction and sequencing. Fixed and stained tissue sections were
permeabilized using permeabilization enzyme. Then, the primers on
the spots capture the poly-adenylated mRNA released from the over-
lying cells. Add RT reagents on permeabilized tissue sections and
incubate to produce spatially barcoded, full-length cDNA from poly-
adenylated mRNA on the slide. Second strand cDNA synthesis Mix
regent was added on the tissue surface for second strand synthesis,
and this followed by denaturation and transfer of the cDNA from
capture area to a corresponding tube for amplification and library
construction. After transfer of cDNA from the slide, spatially barcoded,
full-length cDNA is amplified by PCR to generate sufficient mass for
library construction. Then, P5, P7, i7, and i5 sample indexes, and Tru-
Seq Read 2 are added via End Repair, A-tailing, Adaptor Ligation, and
PCR. The final libraries contain the P5 and P7 primers used in Illumina
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amplification. TruSeq Read 1 is used for priming and sequencing the
16 bp Spatial Barcode and 12 bp UMI, and TruSeq Read 2 is used for
priming and sequencing the cDNA insert. The two 10 bp sample
indexes are sequenced in the i5 and i7 read respectively.

Data analysis. Loupe Browser 6 software was used to visualize the
spatial signatures of transcriptomics data, to perform dimensionality
reduction analysis, and to screen differentially expressed genes. Tissue
annotation andmulti-omics clusteringwereperformed independently.
Graph-based clustering analysis was performed to find highly-
connected “modules” in the graph according to the tissue in situ
gene expression profiles, and the spots with similar gene expressions
in the graph are given the same color. Uniform manifold approxima-
tion andprojection (UMAP) analysiswasperformed to visualize the cell
ranger among different tissue regions. Significant features tool was
used to find features expressed highly with groups, relative to other
checked groups in the selected category.

Spatially resolved metabolomics analysis
10× Genomics Visium sampling spots-labeled H&E images were
imported intoMassImager ProTM software for image fusion and spatial
matching. After background subtraction, region-specific mass spec-
trometry spectra of different tissue regions were extracted using
“arbitrary region tool” in MassImager ProTM software. The separated
sample dataset matrixes were then imported into the MarkerviewTM

software 1.2.1 (AB SCIEX) for peak picking, peak alignment and isotope
removing (process spectra options: the mass tolerance was 0.01Da).
The dataset matrixes were then further imported into SIMCA-P
14.0 software package (Umetrics AB, Umeå, Sweden) for multivariate
statistical data analyses. Discriminating metabolites can be screened
both fromMassImager ProTM and SIMCA-P 14.0 software81. P-values per
metabolite between two groups were calculated by unpaired two-
tailed t-test at confidence intervals 0.95.

Spatially resolved lipidomics analysis
10× Genomics Visium sampling spots-labeled H&E images were
imported into SCiLS Lab 2018b software. Then, region-specific mass
spectrometry spectra were extracted using “create new polygonal
region button” in SCiLS Lab. Region-specific mass spectrometry
spectra based principal component analysis (PCA) was carried out to
explore the global changes of lipids in different tissue microregions
and screen region-specific lipids. Data-driven segmentation analysis
was performed based on themass spectrometry spectra of each image
pixels, and the results can be used to evaluate lipid expression simi-
larity between different tissue image pixels. Probabilistic latent
semantic analysis (PLSA) was performed based on the in situ mass
spectrometry spectra, and the results can be interpreted as spatial
tissue components and their corresponding mass distribution in the
tissue component.

Analyte identification
The ions of interest were first extracted to compared with in-house
database (LuMet-animal database, about 2000 standards of endo-
genous metabolites built by Shanghai Luming Biotechnology Co.,
LTD), HMDB, METLIN, and LIPID MAPS databases using exact mole-
cular weights and a mass accuracy of less than 5 ppm (Q-Exactive
Orbitrap mass spectrometer) or 10 ppm (rapifleXTM MALDI TOF/TOF
mass spectrometer). Then, the ions were extracted to perform high
resolutionMS/MSanalysis direct on tissue sections. For those ionswith
very low levels for which on-tissue MS/MS spectra could not be
obtained, wemade tissue homogenates and analyzed them by LC-MS/
MS through Q-Exactive Orbitrap mass spectrometer. Resolving power
ofQ-ExactiveOrbitrapmass spectrometer forMS/MSwas set at 17,500,
the Collision energy was set at 10, 20, and 40 eV. The mass spectro-
meter operated as follows: spray voltage, 3500V; sheath gas flow rate,

40 arbitrary units for positive ion mode and 35 arbitrary units for
negative ion mode; auxiliary gas flow rate, 10 arbitrary units for posi-
tive ion mode and 8 arbitrary units for negative ion mode; capillary
temperature, 320 °C. For on-tissue MALDI-MS/MS analysis, CID was
turn on, solation window was set to ± 0.6% of precursor, fragments
shot was set to 500, and the laser applicationmode was ISD. Then, the
analytes were further identified based on the similarity of MS/MS
spectra of potential metabolites in cancer tissues and MS/MS spectra
of metabolites in LuMet, HMDB, METLIN, and LIPID MAPS database.
The fragment ions of putative metabolites should be reasonably
attributed to the structure of annotated metabolites. The structure-
specific pattern ions of the target analyte were demonstrated in Sup-
plementary Figs. 47–74.

Differential metabolic pathway screening
Spatially resolved transcriptomics-driven differential metabolic
pathway screening. Marker genes in different tissue regions of gastric
cancer tissue were extracted by Loupe Browser 6 software. Differential
expressed genes with fold change ≥ 2 and false discovery rate < 0.05
between the tumor and peritumoral tissue regions were selected. To
integrate with the metabolism data, the KEGG pathway enrichment
analyses of DEGs were performed by KOBAS-i82.

Spatially resolvedmetabolomics and lipidomics-driven differential
metabolic pathway screening. Discriminating metabolites and lipids
between the tumor and peritumoral tissue regions were screened by
spatially resolved metabolomics and lipidomics analysis. Then, the
discriminating metabolites and lipids were imported into KEGG and
MetaboAnalyst 5.0 to perform metabolic pathway analysis, and the
metabolic pathways with the most significant changes in metabolites
and lipids can be screened.

Metabolome-transcriptome association network. Marker genes in
different tissue regions with fold change ≥ 2 and P-value < 0.05
between the tumor and peritumoral tissue regions were selected, and
marker metabolites and lipids in different tissues regions with fold
change ≥ 1.5 were selected for metabolome-transcriptome association
network building. Sankey diagram for the metabolome-transcriptome
association network help to visualize the spatial relationship between
metabolites and gene expression in tumor or surrounding normal
tissues.

Cell annotation
The Cell Ranger available from 10× Genomics with default parameters,
was used to conduct the cell clustering analysis based on the UMAP
result. A total of 10 clusterswere identified and candidatemaker genes
of each cluster were selected as differentially overexpressed genes
compared to other clusters. We annotated cell clusters based on the
expression of curated known cellmarkers. The above cellmarkerswith
cell types were selected from Cell Markers and CellTypist database83,84

and these selected marker genes in the annotated clusters have log2
fold change > 1 and P-value < 0.01 to other clusters.

Immunohistochemistry
The expression of CD20, CD38, and AOC1 in adjacent cancer tissue
sectionswereexplored. Afterfixed inparaformaldehyde for 15min, the
sections were immersed in 0.25% Triton X-100 (ZLI-9308, Zhongshan
Goldenbridge Biotechnology Ltd. Co., Beijing, China) for 15min and
blocked with 1% bovine serum albumin (Sigma-Aldrich, St. Louis, MO)
for 30min. Then, the sections were incubated with antibodies against
CD20 (Abcam; ab78237; 1:100), CD38 (Abcam; ab108403; 1:500), and
AOC1 (ABP1, Abcam; ab278497; 1:500) at 4 °C overnight, followed by
rewarming at room temperature for 30min. Then, PV-9000 two-step
immunohistochemical kit was used according to the manufacturer’s
instructions (PV-9000, Zhongshan Goldenbridge Biotechnology Ltd.
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Co., Beijing, China), and a DAB kit was used subsequently to detect
antigen-antibody binding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing and spatial transcriptomics data generated in this study
have been deposited in the GSA (Genome Sequence Archive)-human
database of the National Genomics Data Center under accession
number HRA003070. The raw ADADESI-MS data and MALDI-MS data
generated in this study have been deposited in the OMIX database of
the National Genomics Data Center under accession number
OMIX002397. ADADESI-MS imaging andMALDI-MS imaging data have
been deposited in the Metaspace database which allows visualization
ofmass spectrometry imaging results, and all theMS imaging data can
be directly download from [https://metaspace2020.eu/datasets?q =
710b1782-343a-11ed-89bf-738830e26a67]. The remaining data are
available within the Article and Supplementary Information.
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