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Quantum process tomography with
unsupervised learning and tensor networks

Giacomo Torlai 1,2 , Christopher J. Wood 3, Atithi Acharya2,4,
Giuseppe Carleo 2,5, Juan Carrasquilla6 & Leandro Aolita7,8

The impressive pace of advance of quantum technology calls for robust and
scalable techniques for the characterization and validation of quantum hard-
ware. Quantum process tomography, the reconstruction of an unknown
quantum channel from measurement data, remains the quintessential primi-
tive to completely characterize quantum devices. However, due to the expo-
nential scaling of the required data and classical post-processing, its range of
applicability is typically restricted to one- and two-qubit gates. Here, we pre-
sent a technique for performing quantum process tomography that addresses
these issues by combining a tensor network representation of the channel with
a data-driven optimization inspired by unsupervised machine learning. We
demonstrate our technique through synthetically generateddata for ideal one-
and two-dimensional random quantum circuits of up to 10 qubits, and a noisy
5-qubit circuit, reaching process fidelities above 0.99 using several orders of
magnitude fewer (single-qubit) measurement shots than traditional tomo-
graphic techniques. Our results go far beyond state-of-the-art, providing a
practical and timely tool for benchmarking quantum circuits in current and
near-term quantum computers.

Digital quantum computers and analog quantum simulators are
entering regimes outside the reach of classical computing hardware1.
Coherent manipulation of complex quantum states with dozens of
qubits have been realized across several platforms, including trapped
ions2,3, Rydberg atomarrays4, cold atoms in optical lattices5, and super-
conducting qubit circuits6,7. In particular, programable 2D quantum
circuits with between 536 and 657 qubits, and tens of gate layers, have
been run with high fidelity in the latter platforms. Over the next few
years, it is expected that quantum devices will attain hundreds of
qubits, unlocking a variety of quantum computing applications with
far-reaching scientific and technological ramifications.

As the size and complexity of quantum hardware continues to
grow, techniques capable of characterizing complex multi-qubit error
processes are essential for developing error mitigation for near-term

applications8–11. Recent efforts have focused on generalizations of
randomized benchmarking12 to recover partial information about the
strength and locality of correlated errors in multi-qubit devices13–15.
However, these approaches capture only averaged features (their so-
called Pauli projections14) of the noise channel, leaving aside, e.g., all
non-unital channels, including the important amplitude damping
noise. Other approaches exist for the validation of average fidelities of
a prepared quantumstate through a reduced set ofmeasurements16–20,
but only provide limited information about the nature of the noise in
the preparation circuit. None of the above methods tackles the char-
acterization of arbitrary quantum processes.

Quantum process tomography (QPT)21,22, a procedure that
reconstructs an unknownquantumprocess frommeasurement data, is
a fundamental tool for diagnostic and full characterization of quantum
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gates and circuits.Adirect approach toQPT relies on a informationally-
complete (IC) set of measurement settings, which inevitably leads to
an algorithmic complexity—in terms of number of measurements and
classical post-processing—that scales exponentiallywith the number of
qubits. Due to these limitations, QPT has only been experimentally
implemented on up to 3 qubits23–30.

In most practical scenarios, however, a process to be character-
ized in a quantum computer typically contains structures that may
facilitate its reconstruction. The origin of these structures can be
traced back to, e.g., the limited availability and degree of locality of the
Hamiltonians used to implement the unitary set of operations in a
quantum computer, as well as the nature and strength of the inherent
noise of the device, which is often local and exhibits weak correlations
among the different qubits. While manipulating and reconstructing a
fully generic process requires exponential classical resources28, these
observations suggest that it may be possible to accurately describe
relevant quantum channels implemented in real devices by means of
classical resources with only polynomial overhead. In fact, similar
insights have been leveraged successfully in quantum state tomo-
graphy, the data-driven reconstruction of a quantum state. Notable
examples include matrix product state (MPS) tomography31–33,
exploiting low-entanglement representations of quantum states, and
compressed sensing28,34, relying on the assumption of sparsity of the
measurement data.

More recently, an alternative theoretical framework for quantum
state tomography based on machine learning has been put
forward35–37, and implemented in a cold-atom experiment38. This
approach leverages the effectiveness of unsupervised machine learn-
ing in extracting high-dimensional probability distributions from raw
data39, combined with the high expressivity of neural networks for
capturing highly-entangled quantum many-body states40–43. In con-
trast, approximate algorithms for QPT applicable to near-term quan-
tumdevices are currently lacking.While progress hasbeenmade in the
context of learning non-Markovian dynamics44,45, the question of a
scalable method capable of reconstructing noisy quantum circuits
remains wide open.

In this work, we present a technique to perform QPT of quantum
circuits of sizes well beyond state-of-the-art. By exploiting the struc-
ture of the problem, our approach alleviates important scaling issues
of standard QPT. We combine elements of two state-of-the-art classes
of algorithms, namely a tensor-network representation of a quantum
channel and a data-driven global optimization inspired by

unsupervised learning algorithms. The latter is in stark contrast with
previous approaches where the optimisation is driven from local
reconstructions on system sub-blocks30–33; and is key for the scalability
of our method. We show numerical experiments on synthetic data for
the computationally challenging case of random unitary circuits,
reaching reconstruction fidelities above 0.99 for 2D 10-qubit depth-4
instances using less than 105 single-shot measurements out of a
tomographycally complete set of ~1012 settings. We also demonstrate
the reconstruction of a single 5-qubit parity-checkmeasurement in the
surface code undergoing amplitude damping noise. Our proposed
method paves the way to the robust and scalable verification of
quantum circuits implemented in current experimental hardware.

Results
Quantum process tomography
The unavoidable interaction of a quantumdevicewith its environment
typically introduces non-unitary dynamics in the underlying quantum
state. The time evolution of the corresponding density operator ρ is
generated by a quantum channel, a linear map E : ρ�!EðρÞ that is
completely-positive (CP) (E � 1 ≥0) and trace-preserving (TP)
(trðEðρÞÞ= trðρÞ)46. There are several equivalent mathematical repre-
sentations of aCPTPmap (see ref. 47 for summary). One example is the
Kraus representation, where the channel is expressed as a set of Kraus
operators {Ki}, leading to the dynamics EðρÞ=PiK iρK

y
i (Fig. 1a). From

the CPTP nature of the channel, it follows
P

iK
y
i K i =1.

In the context of quantum tomography, it is natural to instead
consider the Choi matrix of the channel48,49, a positive semidefinite
operator

ΛE = 1� Eð Þ
ON
j = 1

Φ +
j

��� E
Φ+

j

D ���" #
, ð1Þ

where E is applied to one half of the tensor product of N unnorma-
lized Bell pairs ∣Φ+

j i=
P

σj = τj
∣σjτji, and ∣σji and ∣τji are the input and

the output degrees of freedom to the channel (Fig. 1b). The channel E
is CP if and only if the Choi matrix is positive-semidefinite (ΛE ≥0). It
follows that ΛE is isomorphic to an unnormalized density operator
over an extended (bipartite) 2N-qubit Hilbert space (TrΛE =d

N , with
d the dimension of the local Hilbert space, i.e., d = 2 for qubits). The
TP condition of the channel E requires that the partial trace of
the Choimatrix over the output indices should yield the identity over
the input indices: Trτ ΛE =1σ

47. The evolution of a generic quantum
state ρ under the channel E is obtained through the Choi matrix as47

(Fig. 1c)

EðρÞ=Trσ ðρT � 1τ ÞΛE
� �

, ð2Þ

where ρT denotes matrix transposition.
Unlike the Kraus representation, the Choi matrix of a quantum

channel is unique. This implies that QPT simply accounts of fitting the
matrix elements of ΛE to the data, which consists of a special set of
prepared input states to the channel and a set ofmeasurements on the
output states. In particular, a set of input states and measurements is
called informationally-complete (IC) if the inputs {ρα} and the mea-
surement operators {Mβ} span in full the input and the output Hilbert
spaces of the quantum channel, respectively. In this case, the prob-
ability distribution

PEðβ∣αÞ=Trτ MβEðραÞ
h i

=Trτ,σ ðρT
α �MβÞΛE

h i ð3Þ

that ameasurement on the output state EðραÞ of the channel applied to
the input state ρα yields outcome Mβ contains complete information
on the channel. That is, PE ðβ∣αÞ uniquely characterizes the channel,

Fig. 1 | Representations of a quantum channel (withN = 3 qubits). a Evolution of
a density operator ρ under a quantum channel E in the Kraus representation, where
the channel has decomposition over D Kraus operators. b Representation of the
channel with the Choi matrix ΛE , a rank-4N tensor with the upper and lower 2N
indices corresponding, respectively, to the input f∣σig and output f∣τig Hilbert
spaces. c Evolution of ρ using Choi representation. The output state of the channel
EðρÞ is obtainedbyfirst contracting the input space f∣σigwith the transpose stateρT,
followed by a trace, resulting into EðρÞ over the output space f∣τig.
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and can be used to reconstruct the corresponding (unknown) Choi
matrix ΛE .

The standard approach to performQPT consists of parametrizing
the Choimatrix (i.e., using a 4N × 4N matrix) and extracting its elements
by solving the maximum likelihood estimation problem22. There are
two fundamental limitations of this approach. First, it requires the
parametrization of the full Choi matrix, which scales exponentially
with the number of qubits. Second, in order to achieve a high-fidelity
fit, the full IC set of input states and measurements is required, which
also scales exponentially with N. For these reasons, full QPT has
remained restricted to very small system sizes.

Tensor-network Choi matrix
In order to mitigate the exponential complexity of full QPT, we first
introduce an efficient representation of Choi matrices in terms of
tensor networks, whose total number of parameters is small compared
to the dimensionof the processHilbert space. Specifically, we consider
a parametrization of the Choi matrix Λϑ (with ϑ the set of variational
parameters) in terms of locally-purified density operator (LPDO), a
class of matrix product operators that are non-negative by
construction50 (Fig. 2a). Given a basis for the input f∣σig and the output
f∣τig Hilbert spaces, the matrix elements hσ,τ∣Λϑ∣σ 0,τ 0i of the LPDO
Choi matrix are given by

½Λϑ�τ,τ
0

σ,σ 0 =
X
fμ,μ0g

X
fνg

YN
j = 1

½Aj �τj ,σj
μj�1 ,νj ,μj

½A*
j �
τ0j ,σ

0
j

μ0
j�1 ,νj ,μ

0
j

, ð4Þ

whereϑ = {Aj}. Here, weassume that {Aj} already incorporate theproper
normalization Trσ,τΛϑ =d

N . Each tensor Aj has input index σj, output
index τj, bond indices (μj−1, μj) and Kraus indexνj. The bond and Kraus
dimensions of the LPDO are defined as χμ =maxjfχμj

= dim½μj �g and
χν =maxjfχνj = dim½νj�g. By setting χν = 1, the resulting Choi matrix is
rank-1, Λϑ = ∣Ψϑ

�
Ψϑ
�

∣, where ∣Ψϑ
�
is an MPS with physical dimension

d2 and bond dimension χμ. This corresponds to E being a unitary
channel.

QPT via unsupervised learning
To perform process tomography with LPDOs, we consider the stan-
dard QPT setup of positive operator valued measures (POVM)

Mβ =
NN

j = 1Mβj
, where fMβj

gKm

βj = 1
are single-qubit POVMs with Km mea-

surement outcomes (Mβj
≥0 and

P
βj
Mβj

=1j). As input states to the

channel, we take product states ρα =
NN

j = 1ραj
. The preparation states

and output measurements are identified by the classical strings
α = (α1,…, αN) and β = (β1,…, βN), respectively. In the following, we use

for convenience the same POVM set for the input states ρα = t
�1
α Mα

(i.e.,Km =Kp ≡K), where tα =TrMα =
Q

jTrMαj
is a normalization factor.

We generate a training data set by first preparing a finite set ofM
input states fρðkÞ

α gMk = 1, randomly sampled according to a fixed prior
distribution Q(α). We then apply the channel to each state, and
perform a measurement at its output, recording the outcomes
fM ðkÞ

β gM
k = 1

. The resulting data set is specified byM strings of 2NK-valued
integers, D= fðαðkÞ,βðkÞÞgMk = 1, with joint probability distribution
PDðα,βÞ=QðαÞPEðβ ∣αÞ. Similarly, we can estimate the corresponding
probability distribution Pϑ(β∣α) for the Choi matrix Λϑ. Since both
input states and output POVMs factorize over the extended Hilbert
space, estimating the probability translates into local contractions
of the tensors Ajwith the tensor product ρT

αj
�Mβj

at all sites j (Fig. 2b).
The cost of this operation isOðd2Nχνχ

3
μÞ, remaining efficient as long as

the bond dimensions (χμ, χν) are sufficiently small.
The learning procedure, inspired by generative modeling of

neural networks inmachine learning applications39, consists of varying
the parameters ϑ to minimize the distance between the LPDO
distribution Pϑ(β∣α) and the target distribution PEðβ ∣αÞ, averaged over
the input prior Q(α). As distance, we adopt the Kullbach-Leibler
divergence51:

DKL =
X
fαg

QðαÞ
X
fβg

PEðβ ∣αÞ logPEðβ ∣αÞ
Pϑðβ ∣αÞ , ð5Þ

Minimizing this quantity is equivalent to minimizing the negative log-
likelihood

CðϑÞ= � 1
M

XM
k = 1

logPϑðβk ∣αkÞ, ð6Þ

where the average is taken over the data setD. This is the cost function
of our optimization problem. This type of tensor network optimiza-
tion, also explored for quantum state tomography52, is in contrast with
the local optimization used in the original formulation of MPS tomo-
graphy, which relies onmeasurements of local subsystems and entails
and exponential scaling with the size of the subsystems30,33.

The LPDO parameters are iteratively updated using gradient
descent ϑ ! ϑ� η∇ϑCðϑÞ (or a variation thereof), where η is the size of
the gradient update (i.e., the learning rate). In our simulations, we
optimize the LPDO using automatic differentiation software53, a fra-
mework that is being increasingly explored in tensor networks
applications54,55. However, the gradients of the cost function can also
be derived analytically56,57, and are shown in the Supplementary
Material. We also point out that, due to the tensor-network para-
metrization of the Choi matrix, the optimization landscape is non-
convex, which means that there is no a priori guarantee that the
training will yield the exact target Choi matrix in the limit of
infinite data.

In defining our parametrized model Λϑ, we exploited the fact that
Choi matrices are isomorphic to density operators, which justifies the
use of LPDOs. However, while Λϑ =Λ

y
ϑ and Λϑ ≥0 by construction, the

LPDO is not inherently TP. That is, the condition Trτ Λϑ =1σ is not
enforced at the level of the elementary tensors {Aj}.We expect that, ifM
is large enough and the model faithfully learns the quantum channel
underlying the training data set, this property should also be
approximately satisfied. Nonetheless, we can approximately impose
the TP constraint by adding a regularization term to CðϑÞ, which
induces a bias towards trace-preserving matrices. We define this reg-
ularization term as

Γϑ =
ffiffiffiffiffiffiffiffiffi
d�N

q
k ΔϑkF =

ffiffiffiffiffiffiffiffiffi
d�N

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trσ ΔϑΔ

y
ϑ

� 	r
, ð7Þ

Fig. 2 | Quantum process tomography with tensor networks. a The quantum
process (N = 4) is represented by a Choi matrix Λϑ, parametrized by a locally-
purified density operator (LPDO). The input and output indices of the process are
{σj} and {τj}, respectively. b Tensor contraction evaluating the conditional prob-
ability distribution Pϑ(β∣α), i.e., the probability that the LPDOChoimatrix associates
with the measurement Mβ given the state ρα = t�1

α Mα at the input of the channel.
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where Δϑ =TrτΛϑ � 1σ . The final cost function becomes
CðϑÞ= � hlogPϑðβ∣αÞiD + κ Γϑ, where κ is a hyper-parameter of the
optimization.

Numerical experiments
We study the performance of LPDO-based QPT for unitary and noisy
quantum channels. We adopt, for both the input states and measure-
ments, the POVM set built out of the rank-1 projectors of the K = 6
eigenstates of the Pauli matrices. This POVM is informationally over-
complete and experimentally-friendly, as it can be implemented with
routinely available single-qubit measurements. For all the instances
described, we generate the training data set D using a uniform prior
distribution Q(α) =K−N. We split the data set into a training set and a
validation set, containing, respectively, 80% and 20% of the total data.
The training data set contains the measurements used to compute the
gradients and train the LPDO. The remaining held-out data is used for
cross-validation for selecting the optimal model. That is, the cost
function computed on the validation data set is used to verify that the
model is not overfitting the training data set, and to choose the opti-
mal training epoch (see “Methods”). Details on the data generation and
the LPDO trainings are provided in the Supplementary Material.

We start by studying the case of a unitary channel characterized
by a rank-1 Choimatrix ΛE = ∣ΨE

�
ΨE
�

∣. We performQPT by setting the
Kraus dimension to χν = 1, leading to the parametrized Choi matrix
Λϑ = ∣Ψϑ

�
Ψϑ
�

∣ expressed in terms of an MPSΨϑ. We also set the bond
dimensionof the LPDO χμ equal to the bond dimension χE ofΨE . Thus,
there is no approximation in the representation of the channel, and
any reconstruction error generates solely from the finite size of the
data set and any potential inefficiency of the optimization procedure.
We point out that, when the ideal target quantum circuit is known, it is
possible to estimate what is the minimum value of χE leading to a
faithful tensor-network representation of the quantum circuit. Both
conditions on χμ and χν will be lifted for the reconstruction of a noisy
channel, later in this section.

During the training, we measure the cost function computed on
both the training and validation data sets. The former monitors the
learning progress, while the latter monitors the overfitting and is used
to select the optimal parameters (as those in the training epoch that
minimize the validation cost function). In addition, we also measure
the quantum process fidelity F ðΛE ,ΛϑÞ of the reconstruction to the true
channel used to generate the data, which measures the average-case
performance of the reconstruction. The process fidelity is equivalent
to the quantum state fidelity between the two (properly normalized)
Choi matrices

F ðΛE ,ΛϑÞ=d�2N Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛE
p

Λϑ

ffiffiffiffiffiffi
ΛE

pq
 �2

, ð8Þ

which reduces to F ðΛϑ,ΛEÞ=d�2NhΨE ∣Λϑ∣ΨEi when the target Choi
matrix ΛE is rank-1. In addition, in the latter rank-1 case, the process
fidelity also directly gives other process-closeness quantifiers, such as
the Frobenius-normdistancebetween theChoi states inquestion58.We
note that—being an average-case metric—the process fidelity can lead
to reconstruction error estimates that may differ from worst-case
estimates (as quantified, for instance, by the diamond-norm distance)
by orders ofmagnitude (see e.g., ref. 59 and refs therein). Nevertheless,
the fidelity is significantly easier to estimate than other more stringent
metrics, whichmakes it one of the most practical and commonly used
metric for experimental state or process reconstruction.

In the numerical experiments, we show the fit fidelity between the
target and the learnedChoi states, since it provides a directmeasureof
the quality of the tomographic reconstruction. However, QPT is typi-
cally used to extract valuable information about a device, rather than
returning a single figure of merit (which can be obtained with more
efficient methods16). One important example is whether the Choi state

factorizes over a specificpartitionof thedevice.Within our framework,
this can be easily checked in a scalable manner by simply tracing out
local tensors in theChoi LPDO (if averaging over both input andoutput
states).

The first test-case is a unitary quantum circuit containing a single
layer of Hadamard gates acting on all qubits. We train LPDOs for dif-
ferent sizes M of the training data set, and we show in Fig. 3a the cor-
responding reconstruction fidelitiesmeasured at each training iteration
(epoch), for N =4 qubits. From this data, we can compute theminimum
number of training samples M* required to reach a fixed accuracy ε in
the reconstruction infidelity 1� F ðΛϑ,ΛEÞ. By repeating the same
experiment for several systems sizes up to N = 10 (with ε =0.025), we
show the sample complexity in Fig. 3b—the valueM* as a function ofN—
observing a favorable scaling consistent with a linear behavior. We
repeat the same experiment for a single layer of random single-qubit
rotations R(φj), observing a similar scaling with a steeper slope.

We also consider a quantum circuit containing D layers of
controlled-NOT (CX) gates applied between neighboring qubits in a
one-dimensional geometry. Each layer is applied in a staggered
manner (inset of Fig. 3d). We perform the same analysis as for the
one-qubit circuits, and plot the fidelity curves for various M for a
circuit with N = 4 qubits and depth D = 4 (Fig. 3c). The sample com-
plexity, computed in an analogous manner, is shown in Fig. 3d for
different depths D. As expected, the threshold M* increases with the
depth of the circuit.

We now move to the more challenging case of 10-qubit random
quantumcircuits with depthD, for both one- and two-dimensional qubit
arrays. Each layer in the circuit consists of N random single-qubit rota-
tions followedbya layer ofCXgates. For theone-dimensional circuit, the
CX gates alternate between even and odd layers (Fig. 4a). For the two-
dimensional circuit, the CX gates are applied in a sequence according to
the colors shows in Fig. 4b. In the plots of Fig. 4c, dwe show the process
infidelity during the training for depth-4 circuits and different values of
the data set sizeM. We observe that, with enough number of single-shot
samplesM, the reconstructions surpass a fidelity of F =0:99.

Fig. 3 | Process reconstruction for unitary quantum circuits containing single-
qubit and two-qubit quantum gates. a Reconstruction fidelity during the LPDO
training for a circuits withN = 4 qubits containing a single layer of Hadamard gates.
Different curves corresponds to an increasing sizeMof the data set.b Scaling of the
minimum number of samples M* as a function of N to reach a reconstruction
infidelity of ε =0.025 (i.e., the sample complexity) for a circuitwithHadamard gates
(red) and a circuitwith randomsingle-qubit rotationsR(φj) (blue). cReconstruction
fidelity for a circuit with N = 4 qubits containing 4 layers of controlled-not (CX)
gates, for various data set sizesM. d Sample complexity for quantum circuits with
different depths D containing layers of CX gates. For the sample complexity plots,
the valueM* is obtainedby sequentially increasingM until the threshold in accuracy
is met. Error bars are given by the step-size in M, and dashed lines are linear fits.
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We evaluate the optimal LPDO parameters using cross-validation
on the held-out data, a metric that does not rely on any prior infor-
mation about the process and available in an experimental setting. We
show in Fig. 4e, f the corresponding lowest infidelities obtained during
the training as a function ofM. As in the previous case, the number of
samples to reach a given accuracy increases with the depth of the
circuit. For the one-dimensional circuit, the fidelity reaches F >0:99
with 4 × 104 measurements up to D = 4, and converges to F ≈0:999
and F ≈0:998 for D = 2 and D = 4, respectively. For the two-
dimensional circuit, the fidelity converges to F >0:99 up to D = 4 at

M = 2 × 105, whileF ≈0:93 forD = 5. In this case, the bond dimension of
the target circuit is χμ = 32, a four-fold increase from χμ = 8 of the D = 4
circuit. We emphasize that the sizeM of the data set used is very small
in comparison with any IC set of input states and measurement set-
tings. For instance, for our choice of POVMs, the total number of
experimental configurations for a 10-qubit circuit is 6N3N ~ 1012.

Finally, we turn to the case of a quantum circuit undergoing a
noise channel. As a test case, we study a single X-stabilizer measure-
ment of the surface code, a paradigmatic model of topological quan-
tum computation60,61. The circuit contains a total ofN = 5 qubits, where
a single measurement qubit is used to stabilize the X parity-check
between four data qubits. The quantum circuit for the stabilizer
measurement consists of a Hadamard gate on themeasurement qubit,
four CX gates between the measurement qubit and each data qubit,
followed by an additional Hadamard gate on the measurement qubit
(Fig. 5a). We apply a single-qubit amplitude damping channel to each
qubit involved in a quantum gate after its application, with a fixed
decay probability γ∈ [0,…, 0.05].

We perform the reconstruction by varying both the bond
dimension and the Kraus dimension, until convergence is found, and
we show the results for χμ = χν = 6. During the training, wemeasure the
reconstruction fidelity, as well as the purity TrΛ2

ϑ of the LPDO. For all
values of the decay probability γ, we observe that the purity converges
to the correct value (solid lines) computed from the exact Choi matrix
(Fig. 5b), suggesting that the Kraus dimension of the LPDOs is suffi-
cient to capture the target noisy channel. We also show the process
infidelity curves obtained using a total of M = 5 × 105 measurement
samples, for different values of γ (Fig. 5c). While for the noiseless
channel the fidelity reachesF >0:999, the learning appears to become
increasingly harder for larger values of γ. The lowest fidelity F ≈0:985
is found at γ =0.05, which is a fairly large decay probability for current
experiments. For lower levels of noise, the reconstruction reaches
remarkably high fidelities F >0:99.

Discussion
We introduced a procedure for quantum process tomography that
integrates a tensor network representation of the Choi matrix in terms
of a locally-purified matrix product operator50, and an optimization
strategy based on by machine learning algorithms for generative

Fig. 4 | Randomquantum circuits. aOne-dimensional quantum circuit withN = 10
qubits and D = 4 layers, each one consisting of random single-qubit rotations and
CX gates, the latter applied in a staggered pattern between even and odd layers.
b Two-dimensional random quantum circuit, where each layer applies random
single-qubit rotations andCXgates according to the colored sequence shownat the

bottomof the image. In the panels (c) and (d),we show the reconstruction infidelity
at each epoch, respectively, for a one- and two-dimensional quantum circuit with
depth D = 4, for various data set sizesM. Subplots (e) and (f) show the lowest
infidelities, obtained via cross-validation on held-out data, as a function of the data
set size M for different depths.

Fig. 5 | Noisy stabilizer in the surface code. a A X-stabilizer plaquette embedded
into the surface code (left) and the quantum circuit performing the parity-check
measurement (right), containing Hadamard and CX gates. b Purity of the LPDO
Choi matrix during training (markers), compared to the exact Choi matrix (solid
lines). c Infidelity measurement during training for a data set size of M = 5 × 105

single-shot measurement outcomes.
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modeling of high-dimensional probability distributions39. We demon-
strated the power and scalability of the technique using simulated data
for unitary randomquantum circuits, reaching system sizes of up to 10
qubits and depth 5, and a stabilizer measurement of the surface code
undergoing amplitude damping noise. In both cases, the resulting
process fidelities reach values close to F =0:99, using single-shot
samples corresponding to a small fraction of the total number of
preparation and measurements in the corresponding informationally-
complete set, amenable to current experiments.

Due to the entanglement structure induced by a tensor network
with small bond dimension, our technique lends itself extremely well
to the characterization of quantum hardware operating circuits of
sufficiently low depth. The stringent limitation of standard process
tomography in the accessible number of qubits is lifted, allowing the
reconstruction of large quantum circuits for the case of one-
dimensional geometries, as well as two-dimensional thin strips.

Our work demonstrates how infusing state-of-the-art tensor net-
work algorithms with machine learning ideas has the potential to
unlock progress in the validation and characterization of currently
available quantumdevices, and in the design of better errormitigation
protocols. This combination makes our techniques relevant for tack-
ling several key obstacles to realizing large-scale quantum computa-
tion, including the need for quantum error correction and fault
tolerance, which naturally calls for the systematic characterization
of effective error terms in large quantum circuits such as the ones
studied here.

We anticipate that our strategy will enable progress in the ongo-
ing push for the construction of quantum hardware with lower gate
error rates, which will decrease the overhead cost of quantum error
correction. This, in turn, will facilitate the faithful execution of more
sophisticated quantum algorithms beyond the capabilities of modern
classical computers, and help materialize the scientific and technolo-
gical promises of the nascent second quantum revolution.

Methods
Data sets generation
In our numerical experiments, we adopted, both for input states and
measurement operators, the set of the rank-1 projector into the

eigenstates of the Pauli matrices:

M0 =pz j0i h0j, M1 =pz j1i h1j, ð9Þ

M2 =px j+ i h+ j, M3 =px j�i h�j, ð10Þ

M4 =pyj+ ii h+ ij, M5 =pyj � ii h�ij ð11Þ

Weassume throughout equal probabilitiespx = py = pz = 1/3. The full set
for the N-qubit system is obtained from the tensor product of the
operators single-qubit operators

Mα =Mα1
�Mα2

� � � � �MαN
, ð12Þ

and it is specified by a string α = (α1,…, αN), with αj =0,…, 5. The input
states are simple product states ρα = t

�1
α Mα with proper normalization

tα =TrMα =
Q

jTrMαj
. The measurement operators Mβ are defined

analogously, and identified by a string β = (β1,…, βN).
We now provide the step-by-step procedure used to generate the

training data for the case of the unitary quantum circuits. Even though
the operators we implement are rank-1, we give a description for a
more general case of an IC positive operator valued measures (POVM)
M beyond the standard projective measurements. For a given circuit
architecture, containing a set of single-qubit and two-qubit gates, we
first contract each gate together to obtain the MPO corresponding to
the full circuit unitary U. After each application of a two-qubit gate, we
restore the tensor network into anMPO structure bymeans of singular
value decomposition. During this step, we only discard zero singular
values, which implies that there is no approximation in the unitary
MPO, and that the bond dimension χU generally grows exponentially
with the depth of the circuit.

Next, we fix a uniform prior distribution Q(α) =K−N for the input
states, where K is the cardinality of the single-qubit POVM (e.g., K = 6
for the Pauli projectors). The POVM string α is randomly sampled from

Fig. 6 | Generationofone trainingdata sample. a First, we sample a random input
POVM state α = (α1,α2,…,αN) from a reference prior distributionQ(α). b The string
α specifies an input product state ρα = t�1

α Mα to the channel. c The output state of
the channel is obtained by contracting the input state with the circuit MPO U,
resulting into a new MPO Eðρα Þ. d The measurement POVM Mβ. e The process
probability distribution PE ðβ∣αÞ=Trτ ½MβEðρα Þ�. f Sampling scheme to obtain a
single measurement outcome β from PE ðβ∣αÞ. By tracing the indices β2,…, βN (i.e.,

contracting with a vector [1,…, 1]), the resulting tensor network with one open
index is theprobability PE ðβ1 ∣αÞ, which canbe sampled to generate ameasurement
outcome �β1. By sweeping left to right, this procedure is repeated for each qubits,
generating an outcome �β from the correct probability distribution PE ðβ∣αÞ. The
final result of this procedure is one single training sample (α, β). The data set are
generated by repeating these steps consecutively.
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Q(α) (Fig. 6a), which defines a specific input state (Fig. 6b)

ρα =
Mα

tα
=
Mα1

tα1

�Mα2

tα2

� � � � �MαN

tαN

ð13Þ

For the set of Pauli eigenstates projectors, this translates into applying
one layer of single-qubit gates, according to the string α. The output
state of the channel is then estimated by contracting ραwith the circuit
MPOU, EðραÞ=UραU

y (Fig. 6c). The output state EðραÞ is itself anMPO
describing a properly normalized density operator.

Given the output state and the measurement operator Mβ

(Fig. 6d), the process probability PEðβ∣αÞ is obtained by contracting
(and tracing) these two objects together (Fig. 6e). This probability can
then be exactly sampled using the chain rule of probabilities37,62. The
measurement probability for qubit 1 is computed as

pðβ1Þ=
X

β2,β3,...,βN

pðβ1,β2,β3, . . . ,βNÞ ð14Þ

where we introduced the short-hand notation pðβÞ=PEðβ∣αÞ. The
probability p(β1) is calculated by tracing out each local POVMsubspace
via a contraction of the tensor network for PEðβ∣αÞ with constant
vectors (11, 12,…, 1K) (blue triangles) at each site j = 2,…,N (Fig. 6f).
Once known, the distribution can be sampled to generate measure-
ment outcome �β1 ∼Pðβ1Þ. Next, the probability distributionpðβ2∣�β1Þ for
the second qubit, conditional on the measurement of the first qubit, is
calculated as the ratio between pð�β1,β2Þ (shown in the second network
of Fig. 6f) and pð�β1Þ. By repeating this procedure, one obtains a final
configuration �β sampled from the correct probability distribution
pðβÞ=PEðβ∣αÞ. Importantly, each N-qubit measurement outcome is
completely uncorrelated from any other.

For the noisy quantum channels studied in the paper, since there
are only N = 5 qubits, we perform a direct simulation of the channel to
obtain the full Choi matrix. The training data is obtained directly from
the Choi matrix, using input states and measurement operators iden-
tical to the ones described above.

Trace-preserving regularization
In general, the LPDO representation does not enforce the TP condition
on the corresponding quantum channel, i.e., Trτ Λϑ ≠1σ . However, this
condition can be easily added to the cost function as a regularization
term, which biases the optimization to yield a set of optimal para-
meters ϑ that minimizes the negative log-likelihood, while also mini-
mizing the distance between Trτ Λϑ and 1σ . As a distance measure, we
choose the Frobenius norm of the difference Δϑ =TrτΛϑ � 1σ :

k ΔϑkF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trσ ΔϑΔ

y
ϑ

� 	r
: ð15Þ

The tensor network for Δϑ can be easily computed by performing an
MPO subtraction63, which in this case it increases the bond dimension
of Λϑ by 1 (Fig. 7a). The regularization term is then

Γϑ =
ffiffiffiffiffiffiffiffiffi
d�N

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trσ ΔϑΔ

y
ϑ

� 	r
, ð16Þ

where we introduced a normalization pre-factor
ffiffiffiffiffiffiffiffiffi
d�N

p
. This leads to

the final cost function

CðϑÞ= logZϑ � h log ePϑðβ ∣αÞiD + κΓϑ, ð17Þ

where κ is an additional hyper-parameter.
We show the measurement of the regularization term Γϑ (Fig. 7b)

at each training iteration for the reconstruction of one-dimensional
random quantum circuits of different depths. By comparing these

curves with the reconstruction infidelities (Fig. 7c), one can clearly see
the correlation between the accuracy of the reconstruction and the
amount of violation of the TP condition.

Overfitting and model selection
The goal of training the LPDO using unsupervised learning is to effi-
ciently extract the relevant structure and features characterizing the
unknown channel from a limited set of measurements. In other words,
the model needs to be able to generalize beyond the measurements
provided for its training. If the number of samples in the data set D is
too low, it is likely that the LPDO training leads to overfitting, i.e., the
LPDO learns features present in the data that are not representative of
the unknown channel, but only stems from the limited number of
training samples.

A strategy tomonitor theoverfitting, routinely used in the training
of deep neural networks, is to divide the data set into two sub-sets: a
training data setDT and a validation data setDV . Here, wedo so using a
80%/20% split ratio. The training data set DT is used for the learning
procedure, i.e., the calculation of the gradients used to update the
model. During training, we compute the training loss (i.e., the average
of the cost function on the training data set)

LT ðϑÞ= � 1
∣DT ∣

X
ðα,βÞ2DT

logPϑðβ∣αÞ, ð18Þ

which signals whether the model is actively learning (i.e., a decreasing
LT ðϑÞ). At the same time, we also compute the validation loss on the
held-out data

LV ðϑÞ= � 1
∣DV ∣

X
ðα,βÞ2DV

log Pϑðβ∣αÞ: ð19Þ

Fig. 7 | Trace-preserving regularization. a Tensor network for Δϑ, obtained by
subtracting the identityMPO (with bond dimension 1) to the (properly normalized)
LPDO Λϑ, and tensor contraction required to compute Γϑ. We show the measure-
ment of the regularization Γϑ (b) and the reconstruction infidelity (c) during the
training for a one-dimension random quantum circuit with N = 10 qubits and depth
D = 2, for different number of the total data set size M.
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Here, ∣DT ∣ and ∣DV ∣ are the size of the training and validation data sets,
respectively.

Generally, in the early stage of the training, the validation loss
decreases hand-in-hand with the training loss. However, if the model
starts to overfit spurious features in the training data, the validation
loss will invert its trend and start increasing, an indication that more
training data is needed.We stress that both of thesemeasurements are
available in a practical experimental setting, since no information
about the channel is being used.

The validation loss LV ðϑÞ is also a useful metric to perform the
model selection, i.e., to pick a specific set of parameters ϑ(t) at epoch t
to be considered the optimal solution of the optimization problem. In
our numerical simulations, we select the optimal parameters as the
ones at the training epochs twhere themeasurement of the validation
loss returned its lowest value. This is also amodel selection procedure
that can be used in an experimental setting.

Specifics of the numerical experiments
In this final section, we provide details on the numerical experiments
presented in the main text. In all cases, the LPDO tensors feAjg are
initialized randomly, with each tensor component set to

½eAj�
τj ,σj

μj�1 ,νj ,μj
=ar + iai ð20Þ

wherear and ai are drawn fromauniformdistribution centered around
zero with width 0.2. We compute the gradients on batches of data
containing MB = 800 samples. Once the gradients are collected, we
update the LPDO tensors using the Adam optimization with para-
meters η = 0.005, ξ1 = 0.9, ξ2 = 0.999, and ϵ = 10−7.

Figure 2. Thefirst set of quantumchannels investigated are unitary
quantum circuits containing one layer of single-qubit gates. We study
two types of circuits, containing either Hadamard gates

H =
1ffiffiffi
2

p 1 1

1 �1


 �
, ð21Þ

or random single-qubit rotations

Rðθ,ϕ,λÞ= cos θ
2 �eiλ sin θ

2

eiϕ sin θ
2 eiðϕ+ λÞ cos θ

2

 !
: ð22Þ

To obtain the sample complexity curves shows in Fig. 2b, we perform
the reconstruction for an increasing number N of qubits. For each N,
we start using a small data set sizeM, and increase it with a fixed size-
step until the threshold ε = 0.025 in infidelity is met. The result is a
value M* with an error bar given by the size-step.

We repeat the same scaling study for quantum circuits containing
D layers of controlled-NOT (CX) gates

CX=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0BBB@
1CCCA: ð23Þ

For a quantumcircuit with depthD, the odd and even layers apply two-
qubit gates with the control qubit having odd and even qubit-index,
respectively. Here, the bond dimension of the LPDO Choi matrix is set
to the bond dimension of the circuit MPO.

Figure 3. We reconstruct random quantum circuits in both one
and two dimensions. In both cases, each layer of the quantum circuit
consists of one layer with N single-qubit random rotations R(θ,ϕ, λ)
(defined above) and one layer of CX gates. In the one-dimensional
geometry, the CX gates alternates as in the previous case. For the two-
dimensional quantum circuit, they are applied according to the color
scheme shown in Fig. 3b. For the simulationof the quantumcircuit and

thedata generation, the circuitMPOhas a “snake-shape” asper usual in
MPS simulations of two-dimensional geometries. After applying theCX
gates, the circuit tensor network is restored into a local formbymeans
of singular value decomposition, where only zero singular values are
discarded. This means that the representation of the target quantum
circuit is exact.

We first set of the bond dimension of the LPDO Choi matrix equal
to the bonddimensionof the circuitMPO, and set the Kraus dimension
to χν = 1. All the data shown in Fig. 3 has been collected under this
condition. However, additional simulations have also been performed
using larger values of the LPDO bond dimension, obtaining compar-
able results. During the training, we monitor the training loss, the
validation loss, the TP regularizer, and the reconstruction fidelity. We
use cross-validation on the held-out data set DV to select the best
models for each circuit configuration and for each data set sizeM. The
curves in Fig. 3e, f show the reconstruction infidelities of these selected
models.

Figure 4. Finally, we reconstruct a noisy quantum channel. We
consider the X-stabilizer measurement in the surface code, where the
parity-check between four data qubits is measured using an additional
(measurement) qubit with the quantum circuit shown in Fig. 4a. The
circuit contains two Hadamard gates and four CX gates. We apply an
amplitude-damping channel, characterized by the Kraus operators

K0 = ∣0i 0h ∣+
ffiffiffiffiffiffiffiffiffiffiffi
1� γ

p
∣1i 1h ∣ ð24Þ

K1 =
ffiffiffi
γ

p
∣0i 1h ∣ ð25Þ

where γ is the decay probability. The channel is applied to each
quantum gate in the circuit, where for the two-qubit gates the channel
is just the tensor product of the single-qubit channel shown above.

We now relax any prior information on both the quantum circuit
and the noise channel. We perform the reconstruction by varying the
bond dimension χμ and the Kraus dimension χν of the LPDO. The only
setting where convergence in the training metrics is found already for
χν =0 is the noiseless channel γ =0, as expected. Nonetheless, even by
increasing χν, the noiseless channel is still properly reconstructed. This
can be seen in Fig. 4b, where the purity of the reconstruction LPDO
Choi matrix for γ = 0 and χν = 6 reaches the correct value of TrΛϑ ≈ 1.
The infidelity curves are shown for a fixed data set size ofM = 5 × 105.

Data availability
The data sets generated during and/or analyzed during the current
study are available from the corresponding author on request.

Code availability
The softwareused in this work has been re-based into the Julia package
PastaQ65.
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