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Improving de novo protein binder design
with deep learning

Nathaniel R. Bennett 1,2,3,8, Brian Coventry1,2,4,8, Inna Goreshnik1,2,
Buwei Huang1,2,5, Aza Allen 1,2, Dionne Vafeados 1,2, Ying Po Peng1,2,
Justas Dauparas 1,2, Minkyung Baek 1,2, Lance Stewart 1,2, Frank DiMaio1,2,
Steven De Munck 6,7, Savvas N. Savvides 6,7 & David Baker 1,2,4

Recently it has becomepossible todenovodesignhigh affinity proteinbinding
proteins from target structural information alone. There is, however, con-
siderable room for improvement as the overall design success rate is low.Here,
we explore the augmentation of energy-based protein binder design using
deep learning. We find that using AlphaFold2 or RoseTTAFold to assess the
probability that a designed sequence adopts the designedmonomer structure,
and the probability that this structure binds the target as designed, increases
design success rates nearly 10-fold.We find further that sequence design using
ProteinMPNN rather than Rosetta considerably increases computational
efficiency.

Methods for designing proteins which bind with high affinity and
specificity to protein targets of interest are of considerable importance
in biomedicine for generating candidate therapeutics1, diagnostics2,
and imaging reagents3, 4. Currently, the most widely used methods
involve immunization of an animal with the target to elicit antibodies5,
or screening high complexity random libraries of antibody6 or other
scaffolds7 for binding activities. Although powerful, these methods
require considerable experimental effort and do not provide sub-
stantial control over the properties of the resulting bindingmolecules.
Methods for computationally designing binders could potentially
provide much faster routes to affinity reagents having desired bio-
physical properties that target specific surface patches, and there has
been considerable progress in computational design of protein bind-
ing proteins based on extension of bindingmotifs observed in protein
structures8–12. Recently, a general Rosetta-based approach to designing
binding proteins using only the structure of the target was developed
and used to design binding proteins to 13 different target sites13. Given
a specified region on a target of interest, the method designs
sequences predicted to fold up into protein structures that have shape
and chemical complementarity to the region. While providing a gen-
eral computational route to designing binders to arbitrary protein

targets, the method requires screening of large numbers of compu-
tationally designed binders to identify hits as only a small fraction
typically have sufficiently high affinity for experimental detection.

In parallel with advances in physical model based protein binder
design, deep learning methods have achieved unprecedented accu-
racy in protein structure prediction. In contrast to Rosetta and other
physically basedmolecular mechanics methods, which employ energy
functions with one or two thousand parameters obtained from struc-
tural and thermodynamic data on proteins and small molecules14, the
deep learning structure prediction methods AlphaFold215 (AF2) and
RoseTTAFold16 (RF) have hundreds of millions of parameters obtained
by training on very large datasets of protein sequences and structures,
and make no assumptions about pairwise decomposability or func-
tional form. In place of the energy-guided stochastic conformational
sampling approaches utilized by physically based approaches –

molecular dynamics inmany protein dynamics studies orMonte Carlo
plus minimization in the case of Rosetta– the deep learning methods
learn iterative transformations of representation of the sequence and
possible structure that very rapidly converge on often quite accurate
models (the successive transformations are analogous to the structure
updates in traditional simulation, but are more concerted, more
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directed to the likely correct structure, and there is a more accurate
stopping criterion17). For accurate prediction of the structures of
naturally occurring proteins, both AF2 and RF generally require mul-
tiple sequence alignments (which contain rich co-evolutionary infor-
mation on residues likely to be in contact, etc), but for de novo
designed sequences,which are generallymore stable andmore regular
than naturally occurring proteins, accurate predictions can be
obtained from single sequences18, 19. There has also been progress in
accuracy prediction for protein structure models; for example Dee-
pAccuracyNet (DAN), which uses a representation consisting of 3D
convolutions of local atomic environments20, achieved state-of-the-art
performance in accuracy prediction in CASP14.

We reasoned that these newly-developed DL methods could
increase the success rate of Rosetta-based protein binder design. As
noted above, while providing a general computational route to
designing binders to arbitrary protein targets, the overall success rate
is quite low. The approach has twoprimary failuremodes (Fig. 1a):first,
the designed sequence may not fold to the intended monomer
structure, and second, the designed monomer structure may not
actually bind the target (Fig. 1b). The physically based Rosetta
approach frames both the folding and binding problems in energetic
terms; for the approach to succeed, the designed sequencemust have
as its lowest energy state in isolation the designedmonomer structure,
and the complex between this designed monomer structure and the
target must have sufficiently low energy to drive formation of the
design-target protein complex. The primary challenges in accurate
design of both the monomer structure and the protein-protein inter-
face are inaccuracies of the energy function which for computational
tractability is generally represented as a sum of pairwise decom-
posable terms (in Rosetta: Lennard Jones, hydrogen bonding, elec-
trostatic, solvation, and bonded geometry), and the very large size of
the space whichmust be sampled; if the energy function is inaccurate,
or conformational sampling is incomplete, the designed sequencemay
not fold to the intendedmonomer structure and/or themonomermay
not bind to the target as intended.

In this work, we develop a deep learning-augmented de novo
protein binder design protocol. We show retrospectively and pro-
spectively that this improved protocol has nearly 10-fold higher suc-
cess rate than the original energy-based method.

Results
Retrospective analysis of type I failures
We began by investigating the ability of deep learning methods to
discriminate binders from non-binders (a task we call filtering) in the
set of ~1 million experimentally characterized designs for 10 different
targets described in Cao et al. 15,000–100,000 designs were experi-
mentally tested for each target, and the number of actual binders
ranged from 1 to 584.

We first focused on identifying Type I failures (Fig. 1) in which the
designed sequence does not fold to the intendedmonomer structure.
As a baseline, we used the Rosetta energy of themonomer, normalized
by chain length (since energy is an extensive quantity). Not surprisingly
as this metric was already used as a stringent filter in generating the
input scaffold set for the Rosetta interface design calculations21, it
provided little discriminatory power (Fig. 1d). In contrast, the deep
learning-based accuracy prediction method DAN was able to partially
discriminate binders from non-binders (Fig. 1d).

While DAN is very fast, taking ~0.5GPU seconds per monomer
structure, AF2 structure predictions are relatively slow (~5 GPU sec-
onds). As an initial test of the utility of AF2 for monomer structure
modeling, we evaluated the ability of AF2 to predict the structures of
the bindermonomers for the fiveminibinder structures fromCaoet al.
for which structures have been solved experimentally (for designs in
complex with TrkA, FGFR2, IL-7Rɑ, and the SARS-CoV-2 Spike protein).
Given only the single sequence for the designed binder, AF2 predicted

the monomer structure with binder Cɑ accuracy between 0.2Å−0.8 Å
for all binders except for LCB1 whichwas predictedwith 1.5 Å accuracy
(Supplementary Fig. 1). An updated version of RoseTTAFold (RF222, 23)
was also found to predict all monomer structures with binder Cɑ
accuracy between 0.2 Å−0.8Å, except for TrkA which was predicted
with 1.8 Å accuracy (Supplementary Fig. 1).

Encouraged by this accuracy, we set out to filter the entire set
of Cao et al. designs based on the similarity of the AF2 or RF2
predicted monomer structure to the designed structure (dis-
agreement is an indication of a possible Type I failure). For each
designed sequence for each target, using AF2 or RF2 with a single
sequence as input, we predicted the structure of the binder
monomer. We found that the closer the prediction of the binder
structure was to the Rosetta-designed structure in Cɑ RMSD, the
more likely a binder was to be successful (Supplementary Fig. 4).
We also found that the prediction confidence metric pLDDT was
predictive of success (Fig. 1d); the two metrics are quite corre-
lated (Supplementary Fig. 5; the pLDDT of AF2 and RF2 were
equally discriminative). These results suggest that Type I failures
contribute to the low success rate of binder design, and that such
failures can, in part, be identified by discrepancies between
design models and AF2 or RF2 structure predictions.

Retrospective analysis of type II failures
To estimate the likelihoodof the designed binder structure forming an
interface with the intended target, Cao et al. primarily used the dif-
ference in energy of the bound complex and the unbound monomers
allowing sidechain repacking as computed by Rosetta (Rosetta ddG),
and despite the extensive use of this metric during the original cal-
culations, Rosetta ddG remains an effective filter (Fig. 1e). We investi-
gated the efficacy of DAN in supplementing Rosetta in assessing the
accuracy of the designed complex structure.We foundDAN’s complex
accuracymetric to be approximately as predictive of binder success as
Rosetta ddG (Fig. 1e).

We next investigated whether AF2 and RF2 complex prediction
could be used to discriminate designs that form the intended complex
structure from those that do not. We again began by evaluating the
ability ofAF2 andRF2 to reproduce thefive experimentally determined
minibinder structures from Cao et al. Given an MSA for the target
protein and the single sequence of the designed binder, AF2 predicted
the complex structure with binder Cɑ accuracy between 1.0Å−2.0 Å for
three of five, and RF2 for four of five. The two structures that were not
correctly predicted by AF2 were LCB1 and LCB3 which both target the
SARS-CoV-2 Spike protein; AF2 was not able to correctly model a long
loop in the Spike protein which caused the binders to be predicted as
unbound. RF2 also predicted LCB1 as unbound (Supplementary Fig. 1).
To enable AF2 to be used for binding prediction in cases where the
target is incorrectly modeled, we investigated providing the target
structure to the model as a template. We found this allowed AF2 to
predict the correct COVID spike structures but caused all of the
interfaces except FGFR2 to be predicted incorrectly (Supplementary
Fig. 1). We next investigated initializing the AF2 pair representation
with an encoding of the Rosetta binder structure; we call this protocol
“AF2 initial guess” (see AF2 Initial Guess in Methods). Using AF2 with
target template and an initial guess, AF2 is able to recapitulate the
experimentally determined structures for all 5 minibinder interfaces
with binder Cɑ accuracy between 1.0Å−2.0Å RMSD (Supplementary
Fig. 1). Notably, for all structures except LCB1 and LCB3, the AF2-
predicted structures are closer to the experimentally determined
structure than the original design models, even after extensive
relaxation using Rosetta.

We used the AF2 initial guess approach and RF2 without a
starting model to generate complex models for each designed
sequence for each target, and compared the predicted structure of
the complex to the designed complex structure. The Cɑ RMSD of
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Fig. 1 | Monomer andprotein complex structure predictionmetrics distinguish
previously designed binders from non-binders. a For binder design to be suc-
cessful, the designed sequence must fold to the designed binder monomer struc-
ture (left), and this structure must form the designed interface with the target
protein (right).b, cDesign failuremodes.bType-1 Failures. The designed sequence
does not fold to the designed monomer structure. c Type-2 Failures. The designed

sequence folds to the designedmonomer structurebut does not form the designed
interface. d, e The retrospective experimental success rate (YSD SC50 < 4 μM) for
the top 1% of designs selected according to different monomer (d) or protein
complex (e) basedmetrics over 10 targets fromCao et al. Source data are provided
as a Source Data file.
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the predicted complex to the Rosetta-designed complex model
was predictive of design success in both cases (Fig. 1e). We
obtained the best discrimination of binders from non-binders
using the pAE prediction confidence metrics produced by the two
methods (Fig. 1e). For the IL7Ra, TrkA, FGFR2, InsulinR, and PDGFR
datasets from Cao et al, the average pAE of interchain residue pairs
(pAE_interaction) was extremely effective in identifying the
experimentally confirmed binders (Fig. 1e); confident predictions
had very high success frequencies (see the Receiver Operator
Characteristic (ROC) curves in Supplementary Fig. 6) with sharp
increases in success rates for designs with pAE_interaction <10.
AF2 had slightly better performance than RF2 (Fig. 1e), and we
used this in the new design campaigns described in the following
section. The excellent performance of both AF2 and RF2 on the
binder discrimination task strongly suggest that Type II errors are
primarily responsible for the low success rates of Cao et al.

Prospective analysis
The retrospective analysis in Fig. 1 suggests incorporation of AF2 or
RF2 into the design pipeline as a final evaluation filter could con-
siderably increase the design success rate. To directly test this
hypothesis, we carried out binder design campaigns on four targets of
considerable biological importance: ALK24, LTK24, IL10 receptor-ɑ (IL-
10Rɑ)25, and IL2 receptor-ɑ (IL-2Rɑ)26–29. As is clear from the retro-
spective analysis of the Cao et al. data (Fig. 1d, e), binder success rate
and the predictivity of metrics varies between targets: generating
designs for new targets (where there is no a priori knowledge of which
filters would be predictive) is the most unbiased approach for com-
paring different design protocols. For IL-2Rɑ, two separate sites were
targetedwith independent campaigns. Using the Rosetta-based design
protocol of Cao et al., we generated computational libraries of ~2
million designs for each target and filtered these down to ~20,000
designs to be experimentally tested for each target: ~15,000 designs
using the physically based filters of Cao et al. and ~5000 designs with
AF2 pAE_interaction <10 (these designs were also filtered by additional
metrics as described in the Supplement). Synthetic genes were
obtained for the ~80,000 designs, transformed into yeast, and the
resulting library sorted for display of the proteins on yeast cells, fol-
lowed by sorts at 1μM target with avidity, and sorts at decreasing
concentrations of target. The frequencyof eachdesign at each sortwas
determined by deep sequencing, and SC50 values (the concentration
where half of the expressing yeast-cells are collected) estimated as
described in Cao et al. Designs with SC50 values better than 4μMwere
considered successes; the number of successes for the four targets
ranged from 1 to 17. For each target, several designs found to bind by
YSD were expressed in E. coli and binding was confirmed by single-
concentration Biolayer Inferometry (BLI). All designs which showed
binding by YSD also showed binding by BLI (Supplementary Fig. 9; for
IL-10Rɑ where only one binder was identified, only this single design
was screened by BLI). For all four targets, there was a considerably
higher success rate (number of successes / number of designs tested)
in the AF2-filtered design set than in the Rosetta set (Fig. 2). Physically
based filtering yielded successful binders for two targets: LTK and Site
1 of IL-2Rɑ; for these the AF2-filtered libraries had 8- and 30-fold higher
success rates, respectively. AF2-filtered libraries also yielded success-
ful binders to both ALK and IL-10Rɑ; physically based filtering yielded
no successful binders to either of these targets (Neither filtering
method was able to generate successful binders to Site 2 on IL-2Rɑ).
Thus, AF2 filtering performs as expected in prospective tests,
increasing success rates (for targets where physically based filtering is
successful) and expanding the set of targets for which successful
minibinders can be generated.

Increasing binder design pipeline compute efficiency with Pro-
teinMPNN. While an effective predictor of binder success, the AF2

filter is computationally expensive (~30 GPU-seconds per design) and
only ~2.3% of designs pass, so large numbers of prediction calculations
must be run. To enable the testing of large (~5,000) pools of designs, it
is desirable to decrease the computational demand of the design
pipeline, in particular to maximize the number of designs passing the
AF2 filter a method can generate per unit compute time (the time to
generate all designs and run AF2; we use a conversion factor of 100
CPU-s to 1 GPU-s because of the relative scarcity of GPU resources).

Ef f iciency= Success Rate*Throughput =
Number of Designs with pAEinteraction < 10

Total Number of Generated Designs

*
1

Compute Time toGenerateOneDesign

ð1Þ
Using this metric, we find that Rosetta-design has an efficiency of

about 7.6×10−7 successful designs per CPU-s equivalent.
We investigated whether the recently developed deep learning

graphical model based sequence designmethod ProteinMPNN30 could
be used to increase the efficiency of the design pipeline. ProteinMPNN
is very fast, generating a sequence for a minibinder backbone in ~2
CPU-s compared to ~350 CPU-s for Rosetta-design. We first compared
the experimental success rate of ProteinMPNN designs to Rosetta
designs by generating sequences for backbones generated by AF2 for
Rosetta designs to the four new targets that had low complexCɑRMSD
to the AF2 prediction (~104 designs in total). Genes encoding designs
with AF2 pAE_interaction <10 (~103 per method) were synthesized, and
the binding evaluated by FACS followed by deep sequencing as
described above. For each target, several designs from ProteinMPNN
were expressed in E. coli and their binding was verified with BLI, we
again found that all designs which bound by YSD showed binding by
BLI (Supplementary Fig. 9). We found that the design success rate of
ProteinMPNN and Rosetta-design were similar (Supplementary Fig. 7),
thus the considerable increase in speed comes with no decrease in
performance.

Encouraged by the speed and performance of ProteinMPNN
design, we next evaluated its efficiency in generating sequences pas-
sing the AF2 cutoffs. ProteinMPNN design alone had an efficiency of
1.6 × 10−6 successful designs per CPU-s equivalent. The average of
the fold efficiency improvement over all targets is ~5-fold greater
for ProteinMPNN compared to Rosetta-design (Fig. 2c). Since unlike
Rosetta, ProteinMPNN keeps the protein backbone fixed, it is sensitive
to the input backbone structure quality. Inspired by the very efficient
alternation between sequence optimization and structure refinement
in Rosetta flexible backbone design31, we evaluated similar cycling
between ProteinMPNN and Rosetta structure refinement (FastRelax),
hoping to converge on a high-quality backbone that would then allow
ProteinMPNN to generate a high-quality sequence. This hybrid Pro-
teinMPNN/Rosetta sequence design protocol (henceforth referred to
as ProteinMPNN-FR) generated AF2pAE_interaction <10 structures at a
rate of ~6.6% with a throughput of 1 design per 120 CPU-s for an effi-
ciency of 2.2×10−6. The average per-target efficiency improvement of
ProteinMPNN-FR over Rosetta-design is ~8-fold (Fig. 2c).

Discussion
These experiments show that by complementing physically based
methods with deep learning-based approaches trained on large num-
bers of protein structures, significant improvements to the one-sided
protein-interface design challenge can be achieved. Our retrospective
and prospective studies suggest an increase in design success rate of
ten fold. In contrast to Rosetta energy calculations and DAN structure
accuracymeasures, which operate on singleprotein structures (orwith
Rosetta relax calculations, structures very close to the query), struc-
ture prediction calculations implicitly assess the fit of the sequence
with the desired target structure compared to all others. As observed
previously32, such consideration of the overall folding landscape
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Fig. 2 | Incorporation of structure prediction metrics increases design success
rate on new targets. a Results of Prospective Campaigns. For each target the SC50

from YSD is shown for all designs which showed binding by YSD (like Kd’s, lower
values are better). The number of designs included in each library for each target is
indicated by the bars in the top panel. The AF2-predicted structure of the top
scoring on-target design is shown as a cartoon. No binders were identified to Site 2

of IL2 receptor-ɑ so this campaign is not included here or in panel C. b The
experimental success rate for libraries filtered by DL-based filtering versus Physi-
cally based filtering for the four prospective targets. cThe computational efficiency
(the number of designs with pAE_interaction <10 per CPU-s) for the ProteinMPNN
sequence design plus Rosetta relax protocol outperforms that of the original
Rosetta sequence design protocol. Source data are provided as a Source Data file.
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enables considerably more accurate assessment of the likelihood a
design will fold and bind as intended compared to evaluation of only
the depth of the designed energywell. Although the protocol reported
here is anorder-of-magnitude improvementover theprevious state-of-
the-art, it is clear that much about interface energetics remains poorly
understood; success rates among the targets remain low (<1%) and no
binders were identified to Site 2 of IL2 receptor-ɑ. There is also con-
siderable room for improvement in designing high affinity; as with the
original pipeline the initially generated binders are in the high nM
affinity range. Given the rate of progress in the field, we anticipate
further increases in design success rates and affinities in the near
future, which will make computational protein design methods even
more powerful compared to empirical selection methods for gen-
erating affinity reagents and therapeutic candidates. While continued
progress is nearly certain, an open question is whether this will come
from integration of deep learning and physically based methods, or
from deep learning alone–there are exciting times ahead!

Methods
AF2 initial guess
The protein structure provided to the model as an initial guess is first
converted to AlphaFold atom positions. These positions are then
provided, along with the standard model inputs into the AlphaFold
Model Runner. In the AlphaFold class of the AlphaFold code, on the
first recycle, the prev_pos variable is initialized to the input AlphaFold
atom positions as opposed to the standard initialization of all zeros. A
script to run AF2 with an initial guess and the modified source code is
provided here: https://github.com/nrbennet/dl_binder_design33. The
AlphaFold model used in the script and in this work is configured to
run with a reduced number of extra MSA sequences which speeds the
inference of the network dramatically, as described in previous work34.

ProteinMPNN FastRelax
This protocol takes as input a protein complex structure. Pro-
teinMPNN is then provided the complex structure with the binder
sequence masked and asked to assign the binder a sequence. The
new sequence is then threaded back onto the binder structure in the
complex and the complex structure is relaxed using Rosetta Fas-
tRelax. The relaxed complex structure can then be used as the input
to ProteinMPNN to continue the cycle. A python script to perform
this design technique is provided here: https://github.com/nrbennet/
dl_binder_design33.

Design and filtering procedure for prospective study
The prospective study was performed at a time of rapid protocol
discovery with a tight deadline for placing the gene-order. As such, not
every experiment that could have been performed was performed.
However, the comparison of Rosetta filtering to AF2 filtering was the
main goal and the data required for this comparison was plentiful.

The standard procedure from Cao et. al. was followed for the 4
targets starting with the following pdbs: IL2RA “1Z92”, “2B5I”, “3NFP”,
“2ERJ”), IL10RA (“1LQS”), ALK (Privately communicated structure. Now
“7NWZ”), LTK (Privately communicated structure. Now “7NX0”). The
“recommended_scaffolds.list” from Cao et. al. were used and on the
order of 10M RifDock35 outputs were generated for each target with
about 500K FastDesigned. ~6 K motifs were extracted, grafted up to
10M docks, and 500K FastDesigned again. The resulting 1M designs
for each target were predicted by AF2.

From this set of 1M designs, 3 overlapping subsets were selected.
The first subset was the Rosetta-control group where the AF2 predic-
tions were ignored and the top ~18 K per target were selected by the
pareto-front method from Cao et al. looking at target_delta_sap, ddG,
contact_patch, and contact_molec_sq5_apap_target. The second subset
was the AF2-filtered group where all designs passing pae_interaction
<10 and af2_complex_rmsd <5Å were included. This set was typically

around 8K per target. The third subset was all predictions with
af2_complex_rmsd <5Å. These designs were designated to be rede-
signed and were typically about 12 K in scale.

These AF2-predicted interfaces were then designed either with
Rosetta or ProteinMPNN. Here, ProteinMPNN was used to generate a
protein sequence from the input coordinates and no further optimi-
zation was performed. The Rosetta-redesigned and ProteinMPNN-
redesigned pools were predicted again by AF2 and were filtered either
with the Rosetta filters mentioned above or the AF2 filters mentioned
above resulting in pools of sizes 9 K (Rosetta-Rosetta), 2 K (Rosetta-
AF2), and 2 K (ProteinMPNN-AF2). The Rosetta filters weren’t used to
filter ProteinMPNN designs because Rosetta models of ProteinMPNN
outputs didn’t exist.

DNA library preparation
DNA libraries were prepared in the manner described in Cao et al., we
review this protocol here:

The sequences of protein designs were padded to 65 amino acids
through addition of a (S)n linker at the C-terminus. The protein
sequences were reverse translated and codon optimized for Sacchar-
omyces cerevisiae using DNAworks2.036. After reverse translation, DNA
adapter sequences are added to the N (GGTGGATCAGGAGGTTCG)
and C (GGAAGCGGTGGAAGTGG) terminus. Designs were purchased
as oligonucleotide libraries from Agilent Technologies.

Oligonucleotide libraries were amplified using Kapa HiFi poly-
merase (Kapa Biosystems) with a qPCRmachine (Bio-Rad, CFX96). The
PCR product was run on a DNA agarose gel, the band with the correct
size was cut out of the gel and cleaned (Qiagen QIAquick Clean up kit).
The extracted DNA products were then re-amplified and purified fol-
lowing the above protocol. The resulting DNA inserts and linearized
pETcon3 vector were transformed into EBY100 yeast following an
established protocol37.

To prepare libraries for deep sequencing, yeast plasmids were
isolated from 5 × 107 to 1 × 108 yeast cells by Zymoprep (Zymo
Research). Two qPCR amplifications were then performed following
the protocol in the above paragraph. Illumina adapters and 6-bp pool-
specific barcodes were added in the second amplification. The final
DNA product was purified by gel extraction. The libraries were
sequenced using Illumina NextSeq sequencing.

Yeast surface display
Yeast surface display experiments were performed in the manner
described in Cao et al., we review this protocol here:

EBY100 yeast were grown in C-Trp-Ura media supplemented
with 2% (w/v) glucose. Yeast cells were centrifuged and resus-
pended in SGCAA media supplemented with 0.2% (w/v) glucose.
Cells were resuspended to a concentration of 1×107 cells per ml
and induced at 30°C for 16-24 hours. Cells were washed with PBSF
(PBS with 1% (w/v) BSA) and then labeled with biotinylated target.
To allow for the identification of low affinity binders, an initial sort
with target avidity was performed for all libraries. In the avidity
sort, the cells are incubated with biotinylated target, anti-c-Myc
fluorescein isothiocyanate (FITC, Miltenyi Biotech) and
steptavidin-phycoerythrin (SAPE, ThermoFisher). To allow all SAPE
molecules to display four biotinylated target molecules, the bio-
tinylated target is provided at a 4x excess over the concentration
of SAPE. When sorting without avidity, the cells are incubated first
with biotinylated target alone, then washed in PBSF and subse-
quently incubated with SAPE and FITC. Each library was sorted
against a titration of target concentrations. Sorts were performed
using a Sony SH800S cell sorter with software version 2.1.5.

Protein expression
Proteins were expressed and purified in the manner described in Cao
et al., we review this protocol here:
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Genes encoding the designed protein sequences were purchased
from Integrated DNA Technologies (IDT). All genes included an
N-terminal 8-His tag followed by a TEV cleavage site. The genes were
cloned into modified pET-29b(+) E. coli plasmid expression vectors.
Plasmids were transformed into chemically competent E. coli
BL21(DE3) cells (NEB). Cells were either grown overnight in Studier
autoinduction media supplemented with antibiotics or induced using
the IPTG expression system and then grown overnight. Cells were then
lysed by sonication and the protein samples were purified by immo-
bilized metal affinity chromatography (Qiagen) followed by size-
exclusion fast protein liquid chromatography (Superdex 75 10/300GL,
GE Healthcare).

Target protein preparation
Expression and purification of biotinylated ALK and LTK ectodo-
mains. DNAencoding for the cytokine bindingdomains of ALK (ALKTG-

EGFL, residues 648-1030) and LTK (LTKTG-EGFL, residues 63-420) were
cloned in the pHLsec vector in frame with a N-terminal chicken RTPμ-
like signal peptide sequence and a C-terminal Avi-tag followed by a
caspase-3-cleavable Fc-Hisx6 tag

38.
Proteins were produced in HEK293S suspension cells maintained

in growthmediumconsisting of 50% Freestyle (Thermofisher) and 50%
Ex-Cell (Sigma-Aldrich). Transient transfection was performed using
linear 25 kDA polyethyleneimine (Polysciences) as transfection
reagent. To allow specific in vivo biotinylation of the Avi-tag, both
constructs were co-transfected with the pDisplay-BirA-ER plasmid in a
4:1 pHLsec:pDisplay stoichiometric ratio39. The growth medium was
supplemented with D-biotin to a final concentration of 100μM to
ensure complete biotinylation of the recognition sequence. After
4 days of expression, conditioned medium was clarified by cen-
trifugation and filtered through a 0.22μm filter prior to
chromatographic steps.

Proteins were captured via their Fc tag on a protein A column
(HiTrapProtein AHP, Cytiva) and eluted inHBS (20mMHEPES, pH 7.4,
150mM NaCl) after an on-column digestion with caspase-3 for 1 h at
37 °C and an additional 2-h incubation at room temperature. As a final
polishing step, recombinant proteins were concentrated and injected
onto a Superdex 200 increase 10/300 GL (Cytiva) size-exclusion
chromatography column pre-equilibrated with HBS. Purified biotiny-
lated proteins were flash frozen in liquid nitrogen and stored at −80 °C
until further use.

Biotinylated IL-10Rɑwas purchased fromR&DSystems (AVI9044).
Biotinylated IL-2Rɑwas purchased from Acro Biosystems (ILA-H82E6).

Biolayer interferometry binding experiments
Biolayer interferometry (BLI) measurements were performed on an
Octet Red96 (ForteBio) or Octet R8 (Sartorius) instrument with Octet
BLI Discovery 12.2.1.18 software, with streptavidin coated tips (Sar-
torius Item no. 18-5019). The binding buffer consisted of 1X HBS-EP +
buffer (Cytiva BR100669) supplemented with 1.0% w/v bovine serum
albumin. 30-50 nM (depending on target availability) of target protein
was loaded onto the tips. After target loading, a baselinemeasurement
was performed in binding buffer alone for 120 s. The tips were then
dipped in a solution of 500 nM (1000nM for the IL-10Rɑ design)
protein analyte in bindingbuffer for600 s (associationphase). The tips
were then dipped back into binding buffer alone for 1000 s (dis-
sociation phase).

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data from the prospective study, the raw scores of the ret-
rospective analysis, the input structures and benchmarking scores for
the efficiency study, and the raw data from the biolayer interferometry
measurements are available at the following repository hosted by the
Institute for Protein Design:

The main supplement (136 MB)
Contains these files:
design_models_final_combo_optimized/
design_models_sequence/
design_models_ssm_natives/
design_stats/
dna_production_scripts/
figure_data/
ngs_analysis_scripts/
files.ipd.uw.edu/pub/improving_dl_binders_2023/supplemental_

files/scripts_and_main_pdbs.tar.gz
Experimental data and data derived from that data (155 MB)
Contains these files:
ngs_data/
ngs_data_analysis/
files.ipd.uw.edu/pub/improving_dl_binders_2023/supplemental_

files/experimental_data_and_analysis.tar.gz
All ordered proteins in.pdb.gz format: (~100K files; 15 GB)
Contains these files:
design_models_pdbs/
files.ipd.uw.edu/pub/improving_dl_binders_2023/supplemental_

files/design_models_pdb.tar.gz
All ordered proteins in Rosetta binary silent format (6.1 GB)
Contains these files:
design_models_silent/
files.ipd.uw.edu/pub/improving_dl_binders_2023/supplemental_

files/design_models_silent.tar.gz
The docks we used for the efficiency benchmark (6.1 GB)
Contains these files:
efficiency_benchmark_docks/
files.ipd.uw.edu/pub/improving_dl_binders_2023/supplemental_

files/efficiency_benchmark_docks.tar.gz. Source data are provided
with this paper.

Code availability
The Rosetta macromolecular modeling suite (https://www.
rosettacommons.org) is freely available to academic and non-
commercial users. Commercial licenses for the suite are available via
the University of Washington Technology Transfer Office. Scripts for
running ProteinMPNN-FastRelax and AF2 with templating and initial
guess are available at https://github.com/nrbennet/dl_binder_design33.
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