
Article https://doi.org/10.1038/s41467-023-38299-7

Cellular automata imbedded memristor-
based recirculated logic in-memory
computing

Yanming Liu1,2,5, He Tian 1,2,5 , FanWu1,2,5, Anhan Liu1,2, Yihao Li3, HaoSun 1,2,
Mario Lanza 4 & Tian-Ling Ren 1,2

Memristor-based circuits offer low hardware costs and in-memory computing,
but full-memristive circuit integration for different algorithm remains limited.
Cellular automata (CA) has been noticed for its well-known parallel, bio-
inspired, computational characteristics. Running CA on conventional chips
suffers from low parallelism and high hardware costs. Establishing dedicated
hardware for CA remains elusive. We propose a recirculated logic operation
scheme (RLOS) using memristive hardware and 2D transistors for CA evolu-
tion, significantly reducing hardware complexity. RLOS’s versatility supports
multiple CA algorithms on a single circuit, including elementary CA rules and
more complex majority classification and edge detection algorithms. Results
demonstrate up to a 79-fold reduction in hardware costs compared to FPGA-
based approaches. RLOS-based reservoir computing is proposed for edge
computing development, boasting the lowest hardware cost (6 components/
per cell) among existing implementations. This work advances efficient, low-
cost CA hardware and encourages edge computing hardware exploration.

Cellular automata (CA) is a distinguished model that can be used to
study system behavior and complex phenomena. CA not only con-
ducts as mathematical computation models, but is also an effective
medium to simulate the natural phenomena1 and systems2. When
studying complex systems, CA is an efficient computing platform for
its self-replication and self-organizing characteristics. As a ubiquitous
and massively parallel computational model proposed by Von Neu-
mann, CA has been used in many fields, including natural evolution3,
cryptography4, image processing5, theoretical biology6, physics and
microstructure modeling7.

CA is typically implemented in software, which demands high
hardware costs. Consequently, numerous studies focus on hardware
realization of CA. Popular implementationmethods include very large-
scale integration (VLSI) CMOS circuits8 and field-programmable gate
array (FPGA)9, 10. VLSI results in a specific circuit configuration, limiting

flexibility in converting different CA transition rules. While FPGA
allows circuit reconfiguration, it incurs higher hardware costs. A brief
schematic of CA FPGA implementation is in Supplementary Fig. 1.
Thus, CA hardware realization requires a new design ensuring low cost
and high flexibility for implementing CA transition rules.

In recent years, memristive circuits have emerged as low-cost,
high-performance solutions for implementing in-memory computing.
Various algorithm applications using memristive devices, such as
reservoir computing11–13, neural signal analysis14, and convolutional
neural networks15,16, have been realized. However, basic operations in
memristive devices primarily involve matrix multiplication or logic
operations. Matrix multiplication in memristive circuits is often used
to accelerate data-intensive tasks like artificial neural networks17.
Memristor-based logic operations typically design logic circuits, such
as adders18,19 or logic gates20,21. Some CA transition rules can be

Received: 2 August 2022

Accepted: 20 April 2023

Check for updates

1School of Integrated Circuits, Tsinghua University, 100084 Beijing, China. 2Beijing National Research Center for Information Science and Technology
(BNRist), Tsinghua University, 100084 Beijing, China. 3Weiyang College, Tsinghua University, 100084 Beijing, China. 4Physical Science and Engineering
Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. 5These authors contributed equally: Yanming Liu, He Tian,
Fan Wu. e-mail: tianhe88@tsinghua.edu.cn; RenTL@tsinghua.edu.cn

Nature Communications | (2023) 14:2695 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7328-2182
http://orcid.org/0000-0001-7328-2182
http://orcid.org/0000-0001-7328-2182
http://orcid.org/0000-0001-7328-2182
http://orcid.org/0000-0001-7328-2182
http://orcid.org/0009-0007-1734-0326
http://orcid.org/0009-0007-1734-0326
http://orcid.org/0009-0007-1734-0326
http://orcid.org/0009-0007-1734-0326
http://orcid.org/0009-0007-1734-0326
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0002-7330-0544
http://orcid.org/0000-0002-7330-0544
http://orcid.org/0000-0002-7330-0544
http://orcid.org/0000-0002-7330-0544
http://orcid.org/0000-0002-7330-0544
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38299-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38299-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38299-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38299-7&domain=pdf
mailto:tianhe88@tsinghua.edu.cn
mailto:RenTL@tsinghua.edu.cn

transformed into corresponding Boolean functions, suggesting CA
implementation using memristive circuits. Itoh et al. presented CA in
networks of memristors mathematically, applying them to various
scenarios22. The scheme uses charge stored in the memristor for cal-
culations, but size reduction is limited due to capacitance scaling
limitations23. Georgios Ch. Sirakoulis’s group proposed circuit-level
design and modeling of a memristor-based CA computing array, with
applications including shortest-path problems, pseudo-random num-
ber generation, bio-medical applications, and the game of life24–28.
Their design used traditional logic gates for rule-switching logic, with
hardware costs similar to FPGA implementation. Previous approaches
for CA implementation with memristive circuits have not fully utilized
memristor’s in-memory computing functions. There is potential for
computing systems that combine CA’s structural simplicity and par-
allelism with memristors’ unique in-memory computing properties.

In this work, we implement a recirculated logic operation scheme
(RLOS) on memristive circuitry to realize CA. This scheme combines
thememory and computing characteristics of memristors, resulting in
extremely low hardware costs. As a demonstration, an equivalent
Turing machine based on rule 110 elementary cellular automata (ECA)
has been selected to illustrate each operation during each step of
evolution. Furthermore, the entire ECA, majority classification algo-
rithm, and edge detection algorithm have been verified under RLOS.

The results show that RLOS has lower hardware costs (about 2–79
times reduction) compared to FPGA implementation. Additionally,
reservoir computing based on RLOS has been proposed, exhibiting
lower data movement. This work opens up new opportunities for
memristor applications.

The schematic of the RLOS is built and shown in Fig. 1. The left
panel of Fig. 1a depicts the crossbar structure based on memristors,
primarily implementing in-memory logic. The right panel of Fig. 1a
shows our proposed structure for RLOS, which is compatible with CA
transition rules via multiplexing. The difference between the two cir-
cuits is in Supplementary Fig. 2 and Supplementary Note 1. In the
crossbar structure, input and output memristors are always in the
same row or column, resulting in larger hardware and power con-
sumption for CA implementations. The corresponding CA crossbar
structure implementation circuit in Supplementary Fig. 3 requires
more hardware cost than RLOS. The comparison between the crossbar
structure and RLOS for CA implementation is in Supplementary
Table 1. Traditional implementation methods have redundancy due to
inconsistent calculation steps required by different CA transition rules.
RLOS perfectly matches CA transition rules and accommodates var-
ious rule lengths. Figure 1b shows an example of the basic form of the
CA transition rule, with the next state of each cell determined by
neighboring cell states. The state and inverse state of CA can be set as

Fig. 1 | Overviewof theRLOS. a The comparison of different computing units. The
left panel depicts the crossbar structure; The right panel depicts the RLOS. b The
schematic of 1D CA. c Implementation of RLOS by using the memristive array.
d Schematic illustration of RLOS. The left panel is the schematic of input signals,
which can be generated by the corresponding logic expression. In computemode,

the memristors are executed the logic operation to calculate the next state of CA.
In write mode, the calculation result will be stored back into the original memris-
tors. The right panel is the schematic of the circuit. The arrows indicate the
direction of memristor evolution.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 2

corresponding resistance states in the first and second lines of the
memristive circuit (Fig. 1c), respectively. Transistors in the circuit
prevent crosstalk during cell computations. Figure 1d is a schematic
illustration of RLOS, with the left panel showing the input signal gen-
erated by the Boolean logic formula corresponding to the CA transi-
tion rule, andwith the right panel showing themapping relationshipof
the CA transition rule, which we will discuss later. Input signals are
divided into two parts, representing compute and write modes. In
compute mode, the circuit mainly performs logic operations accord-
ing to corresponding transition rules. Since memristive devices use
storage and calculation characteristics, there is no need for a read
mode, and states can be calculated and stored directly in the device. In
write mode, the calculation result is stored in the first two lines of the
memristive circuit. Following this process, CA based on RLOS can be
run step by step.

Results
Basic logic circuit
The circuits of RLOS are composed of memristors, transistors, and
resistors. The basic step of the scheme can be decomposed into logic
operation and state storage. First, we verify the basic NAND and AND
logic operations.

For hardware implementation, the circuit needs to conform to
certain parameter indicators. To ensure the feasibility of RLOS, the
memristor shouldexhibit anOn/Off ratio above 105, which ensures that
logic operations can still be completed in a memristor-transistor
hybrid circuit. Therefore, conductive bridge random access memory
(CBRAM) and MoS2-based transistors have been fabricated and mea-
sured. Conventional CMOS can only set the transistor on the bottom
layer due to the doping process. The 2Dmaterial can be transferred to
any substrate andmaintain its functionality. As a result, our fabrication
methods require less processes.

The fabricated CBRAM has a top-to-down Ag/HfO2/Pt sandwiched
structure (see inset of Fig. 2a). The transistor structure is shown in the
inset of Fig. 2b. The 2DmaterialMoS2 layer has been selected as channel
material due to its moderate bandgap and high On/Off current ratio.
The source, drain, and gate electrodes are made of Pt. Fabrication
details can be found in Methods, and the schematic of the manu-
facturing process is in Supplementary Fig. 4. The current versus voltage
(I–V) curve of the memristor is depicted in Fig. 2a, showing an On/Off
resistance ratio >105, which is sufficient for circuit operation. Specific
experimental data can be found in Supplementary Fig. 5, and device-to-
device variation analysis in Supplementary Fig. 6. The corresponding
simulation curve is calculated by our theoretical model29, which can be
used in the following verification. Detailed model results are in Sup-
plementary Fig. 7. Figure 2b shows the gate voltage (VG) versus drain-to-
source current (IDS) curve for a constant drain-to-source voltage (VDS) of
1 V, displaying a >105 On/Off current ratio. The experimental data have
been modeled using the α-power model30 (see Methods). Additional
experimental results can be found in Supplementary Fig. 8. The high
On/Off current ratio prevents crosstalk betweendifferentCA,whichwill
be discussed thoroughly in the following section.

Figure 2c and d display memristor-based NAND and AND logic
gates, respectively. These serve as the basic components of circuits
implementing the RLOS. In these circuits, the resistance of the mem-
ristor represents the input and output signals, with A and B as input
signals and Y’ and Y as output signals. In the NAND logic gate, Y ’=AB
and Y ’=ABX canbe realized, where X is the initial state of Y ' . Similarly,
in theAND logicgate, bothY =AB andY =ABX canbe realized,whereX
is the initial state of Y . To perform NAND and AND logic operations,
trigger pulse signalsVdd andVR are applied to the corresponding nodes
to stimulate resistance state interaction between devices. Figure 2e, f
show that the heatmap of the states of the input devices before
operations and output devices after operations are read out as resis-
tance values.

Note that the distribution of transistors and memristors in the
logic gates differs from previous studies31, 32. The circuit comparison
can be found in Supplementary Fig. 9. We have designed each logic
operation using a small transistor–memristor circuit with broken
symmetry (the original design has no transistors), which is crucial for
preventing crosstalk in further RLOS implementations. Although the
set of transistors affects the voltage division of the memristor in the
circuit, the voltage reaching thememristor is still sufficient to turn it on,
meaning that the Y memristor can operate normally. Moreover, the
selector of Rc in Fig. 2c, d is sensitive to the variability of thememristor
and the transistor. By employingKirchhoff’s current law andOhm’s law,
the divider voltage between devices can be calculated. The resistance
of Rc in our simulation is 1.05 × 108Ω (Following our calculations, we
have established that Rc possesses a selectable range, specifically
spanning from 6.04 × 107Ω to 1.5 × 108Ω). When the high-resistance
state of the memristor is not high enough, we cannot even obtain a
proper Rc to ensure the circuit’s functionality. Coupledwith the limited
conditions according to the logic rules, the value of Rc can be deter-
mined. The determined selection method can be found in Supple-
mentary Fig. 10 and Supplementary Note 2. Figure 2g, h shows the
divided voltage on the Y and Y’ memristor under 100 times spice
simulation, respectively. It can be seen that our circuit exhibits good
robustness, ensuring correct operation. The deviation of divided vol-
tage on A and Bmemristors can be found in Supplementary Fig. 11a–d.
The absolute values of divided voltage on A and B memristors are all
less than 1 V, meaning the operation on the circuit cannot change the
resistance states ofmemristors A andB. Supplementary Figs. 11e and 11f
show the simulation results of the corresponding circuit. The “0” signal
in the red dotted box has a significant difference in amplitude. Previous
literature shows that the current of the “0” signals have almost the same
amplitude. The reason for the difference in amplitude of the “0” states
is the circuit asymmetry introducedby the transistors. The resistanceof
transistors is about 106 Ω, while the low resistance of memristors is
about 300Ω. The voltage division of memristor A and the transistor is
equivalent to that of memristor B, but the transistor has a larger
resistance. Therefore, the current flowing through memristor A will be
significantly smaller than the current flowing through memristor B.

Cellular automata imbedded memristor-based in-memory
computing scheme
After analyzing the characteristic of devices and basic logic operation,
we verify the circuit of RLOS. In this section, 1D CA with only two
possible states per cell (S= f0,1g) has been discussed. Thus, the evo-
lution of the cell state could bedescribed as transition rule f : 0,1f gn !
f0,1g such that

siðt + 1Þ= f 1D si�r tð Þ, . . . , si tð Þ, . . . , si+ r tð Þ
� � ð1Þ

where r (positive integer) is a parameter that represents 1D CA
neighborhood, entailing to treat the neighborhood size as n =2r + 1.
The cell state is updated according to the CA transition rule. The 1D
ECA have been defined with r = 1, which results in a total of 256 rules.
Among them, rule 0 and rule 255 change the state of all cells to 0 or 1,
respectively. In terms of the device, this means that the devices are
either all in a high-resistance state or all in a low-resistance state, which
is easily achievable. Therefore, we will only discuss hardware
realization for rules 1–254. Figure 3a shows the optical microscope
image of the RLOS circuit. The corresponding circuit is depicted in
Fig. 3b. The portion of the circuit enclosed by the green dashed square
can be approximately considered as one basic cell within the CA. The
transistor serves to calculate each cell separately, enabling parallel
operations. As a demonstration, the rule 110 CA is presented, which is
equivalent to the general Turing machine33. The schematic of the
CA transition rule andmemristor evolutiondiagramfor rule 110CA can
be found in Supplementary Fig. 12a.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 3

Example with rule 110, it can be written as:

sh t + 1ð Þ= 1
2
sgn 1� sh�1 tð Þ

� �
*sh+ 1 tð Þ+ 1� sh tð Þ� �

sh+ 1 tð Þ+ sh tð Þ 1� sh+ 1 tð Þ
� �� 0:5

� �
+0:5

ð2Þ
Where sgn(x) is signum function.

In fact, the CA transition rule can be treated as the Boolean
function, which can be rewritten as Eq. (3) by using the
Quine–McCluskey method34.

sh t + 1ð Þ= sh+ 1ðtÞsh+ 1 tð Þ+ sh tð Þsh+ 1 tð Þ+ sh tð Þsh+ 1ðtÞ ð3Þ

Fig. 2 | In-memory computing properties of the memristor and 2D transistor
hybrid circuit. a The experimental and simulated I–V curve of thememristor. The
inset image is a schematic of the structure for the memristor. b The experimental
and simulated I–V curve of the transistor. The inset image is a schematic of the
structure for transistor. cBasic circuit of NAND and dAND logic operations.Where
Vdd = 2 V,VR = 1 V and thepulsewidth is 40ms. eMeasured truth table ofNANDand

f AND logic operations. The states of the input A and B (output Y, output Y’) before
(after) logic operation is read out as resistance shown by heatmaps. LRS and HRS
are defined as logical “0” and logical “1”, respectively. g The deviation of voltage
divided on the Y’ memristor under the applied Vdd and VR with 100 times simula-
tion in NAND circuit. h The deviation of voltage divided on the Ymemristor under
the applied Vdd and VR with 100 times simulation in AND circuit.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 4

Fig. 3 | IllustrationofRLOS-based 1DCAanddemoof the ECA. aThemicroscope
image of 1D CA circuit. b The circuit of 1D CA. The sub-circuits in green box
represents one basic cell. The resistance in memristor CAx represents the value of
the CA. The resistance in memristor CAx’ represents the inverse value of the CA.

The memristor CAxS is the auxiliary memristor whose initial state should be high-
resistance state. c The logic operation of ECA rule 110. d The time sequence of the
applied trigger signals to achieve the logic operation of ECA rule 110. eMemristors
evolution diagram for entire rule of 1D ECA.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 5

The above equation represents the corresponding operation in
our RLOS. sh tð Þ represents the resistance state of the memristor at
position h after t steps. Unlike traditional in-memory logic operations,
the CA transition rule requires that all cells execute the above logic
operations simultaneously. This is another reason why we should
design RLOS to adapt to CA. Figure 3c is the table of logic operations
for ECA rule 110, which can be derived from Eq. (3). Equation (3) can be
converted to Eq. (4):

shðt + 1Þ= sh+ 1ðtÞsh + 1ðtÞ � shðtÞsh+ 1ðtÞ � shðtÞsh+ 1ðtÞ ð4Þ

For the basic logic circuit (Fig. 2c, d), which can only implement
ANDandNAND logic,we have to convert the Boolean function to adapt
to the corresponding format like Eq. (4). In circuit of RLOS (Fig. 3b), the

resistance state of memristor number CAx
’ corresponds to the sx tð Þ in

the Eq. (4). The resistance state ofmemristor number CAx corresponds
to the sh tð Þ in the Eq. (4). The resistance state of memristor number

CAxS can be finally change to sx t + 1ð Þ after the one step calculation. But
initially, we use X to represent the resistance state of memristor

number CAxS. We need three operation steps to convert X to sx t + 1ð Þ.

In the first operation step, we implement the operation:

X ð1Þ = sh tð Þsh+ 1ðtÞ. In the second operation step, we implement the

operation: X ð2Þ = sh tð Þsh+ 1 tð ÞX ð1Þ. In the third operation step, we

implement the operation: X ð3Þ = sh+ 1ðtÞsh + 1 tð ÞX ð2Þ. Obviously, we can

get the formula: X ð3Þ = sx t + 1ð Þ, which means that we divided the
complex logic operation like Eq. (4) to three basic logic operations.
The three basic logic operations can be implemented as described in
Fig. 2c, d. The corresponding voltage signals can also be set in time
sequence. However, we just analyze one logic operation. In CA tran-
sition rules, every cell should follow the transition rule. Therefore, the
logic operation should beperiodically executed, which canbe found in
operation steps 1–9 inFig. 3c.Operation step 10 resets thefirst-line and
second-linememristors. Operation steps 11 and 12 store the computed
results in the first two lines memristors (first line: inverse value of CA,
second line: value of CA). Operation step 13 resets the third-line
memristor. This is awhole operation process of one period forCA. The
memristor operation corresponding to eachoperation step is shown in
detail in Supplementary Fig. 13.

The corresponding input voltage signal is shown in Fig. 3d.
Figure 3e displays the memristor state evolution under different
transition rules. A detailed illustration of the heatmap can be found in
Supplementary Fig. 14. For three-cell CA (r = 1), a total of 254 ECA logic
formulas will be discussed. The corresponding logic expressions can
be found in Supplementary Data 1. These logic expressions can gen-
erate the respective input voltage signals. Supplementary Fig. 12b
depicts the resistance state of each memristor at each operation step,
which verifies the correctness of the RLOS. The complete set of 254
ECA corresponding memristor state evolution diagrams can be found
in Supplementary Figs. 15 and 16. Therefore, we have verified the
entire rules of 1D ECA.

Majority classification algorithm
The aforementioned ECA are of the ‘r = 1’ type 1D CA. In fact, the RLOS
can realize ‘r = 1,2,3’ type 1D CA with the same circuit. Mitchell et al.
proposed that 1D CA with three neighborhoods (r =3,n= 7) can
complete the majority classification task35. The specific description of
the task is that there is a 0/1 sequence, in which 0 is the
output if the number of 0 is dominant, and 1 is the output otherwise.
Figure 4a shows the schematic of the majority classification task.
The CA transition rules proposed by Mitchell et al. can complete
the majority classification task. The rule selected by us is
0504058705000f77037755837bffb77f (hexadecimal)35. For CA, the
random 0/1 sequence of the majority classification task can be

regarded as the initial input value of the cell, and then the transi-
tion rules of the CA can be continuously run, and eventually, all states
of the cell become 0 or 1, which is the classification result. Figure 4b
shows the majority classification algorithm based on CA with 96 ones
and 104 zeros as initial input. Clearly, the CA should transition to a
0 state in the end. This majority classification CA has been selected to
execute via RLOS. Its transition rule can be converted to the corre-
sponding Boolean function as A’B’EF’G+A’BCD’E +A’D’EG+BCDF +
AC’DF + AC’EF + AB’CD’G + B’CDE’F’G’ + CDEF + ABC’E’G + ABC’EG’ +
ABC’D+AC’DG+ABCD’E’G’ +CD’EG +ABDE +BCDG+ABF. The logic
formula can be converted to 18 separate logic operations, as shown in
Supplementary Table 2. The running period of this transition rule is 7,
so the number of operations corresponding to one step is 131. Then,
similar to the previous section, it can be converted to an operation list
and generate the input signals. Figure 4c displays a diagram of the
evolution of the memristor for the 70-input majority classification
algorithm. To show themajority classification algorithmsmore clearly,
we choose a 14-input data for classification (01001110100100). The
final operation can prove the authenticity of the simulation. All states
have been converted to the “0” state, as there are eight “0” states and
six “1” states in the initial states. The complete state mapping of the
memristor can be found in Supplementary Fig. 17, which verifies the
correctness of our RLOS design.

CA, as a commonly used model, has many implementations. The
most common implementation is coded by a personal computer. Due
to the unique rules of CA and the Von Neumann architecture of
computers, using personal computers to implement CA is extremely
inefficient, and its computational complexity is O(n). A comparison of
running time with a 3-cell CA as the baseline is displayed in Supple-
mentary Fig. 18a, which demonstrates that our RLOS design has O(1)
computational complexity. Another common CA implementation is
programmed by FPGA. However, realizing CA based on FPGA has a
shortcoming: different transition rules have different corresponding
circuits. Supplementary Fig. 1a shows the flowchart of FPGA imple-
mentations. Encoder parts can be represented by different circuits
under different CA transition rules. The encoder for running the CA-
basedmajority classification algorithm can be presented as a circuit in
Supplementary Fig. 19. It is easy to observe that RLOS has lower
hardware costs (up to 79 times) thanFPGA implementations, which are
also depicted in Supplementary Fig. 18b.

Edge detection algorithm
To further explore RLOS, 2D CA have been introduced and discussed.
Figure 5a presents the circuit of RLOS for implementing 2D CA. The
basic components are displayed in the gray box. As mentioned in the
previous section, the selector of Rc is sensitive. The boxes are inter-
connected by transistors to prevent crosstalk during various CA
operations. In 2D CA, the next state of each cell is determined by the
states of its eight neighboring cells and its own state. Consequently,
each component interconnects with eight other components.

The edge detection algorithm was chosen to verify the RLOS-
based 2D CA. Edge detection is an image processing technique used to
find the boundaries of objects within images. In 2D CA, the transi-
tion rule can be defined as follows: In the 9 neighboring cells, (1) if the
number of “1” state cells is equal to 6, 7, or 8, then the new state of
the central cell will be black; (2) in any other case, the new state of the
central cell will be white36. Similar to the previous section, this transi-
tion rule can be converted to Boolean logic, which can then generate
the corresponding operation and input signal. The specific description
of the transition rule can be found in Supplementary Note 3. The
classic image in Fig. 5b has been selected as the input state. The
selected image is from USC-SIPI dataset. The image has 256 × 256
pixels, meaning 65,536 input values. Figure 5c displays the state of the
memristors under various operations. The memristor states under
operation numbers 100, 200, 300, 400, 500, and 756 are depicted.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 6

Operation number 756 is the largest possible number based on the
case of the edge detection rule. It can be observed that the number of
low-resistance statememristors has gradually increased from0 to 2917
(operating from high-resistance state to low-resistance state). After
756 operations, the outline of the image has been detected, which
verifies the validity of RLOS in2DCA. Figure 5d compares thehardware
cost of the RLOS under different tasks. RLOS utilizes the in-memory
computing characteristic ofmemristors, enabling significant hardware
cost savings. It is worth noting that FPGA implementations may still
have room for optimization with lower hardware costs. However, due
to the different computingmechanisms, FPGA implementation cannot
achieve lower hardware costs than our RLOS. Furthermore, the CMOS
custom solution results in a specific circuit configuration, which can-
not flexibly convert the different transition rules of the CA. Therefore,
rule 90 and rule 150 have been selected for comparison37. The hard-
ware cost of RLOS is more than two times lower than that of CMOS
custom solutions. These comparisons confirm RLOS’s low hardware
cost characteristics.

Reservoir computing system based on cellular automata
The proliferation of the Internet of Things has given rise to a new
paradigm, edge computing (EC), which incorporates data processing at
the edge of the network38. EC moves a portion of the storage and
computes resources out of the data center and closer to the source of
the data itself, reducing transfer latency and data movement. Machine
learning (ML) is themost commonalgorithm that needs tobedeployed
on edge nodes. However, edge nodes typically have limited processing
capabilities in terms of area and power. Therefore, it is crucial to
develop new methodologies for implementing energy-efficient hard-
ware. ML algorithms deployed on edge nodes can be realized based on
CA10,39–41. Reservoir Computing is a ML alternative characterized by

simplicity and a computationally inexpensive learning process, making
it suitable for edge applications (Fig. 6a). In addition, a reservoir
computing system based on cellular automata (ReCA) has been
recently proposed10. The implementation of ReCA based on RLOS can
significantly reduce hardware costs and data movement.

Figure 6b shows a schematic of the dynamic behavior of the ReCA
classifier. ECA transition rules have been used to iterate the data, and
Softmax regression has been employed to predict the final results. Our
RLOSprimarily realizes the ECA iteration process. The specific iterative
process can be found in Fig. 6c. The training images are 2D grayscale
images from the MNIST database, and each pixel of the images is
characterized by an 8-bit signal value. Therefore, one input can be
divided into 8 binary layers. We then iterate rows and columns inde-
pendently using ECA transition rules with fixed boundary conditions
and combine the resulting vectors using a bitwise XOR operation. This
process can be implemented by our RLOS. The corresponding circuits
are shown in Fig. 6d. We use a 3D memristive array to implement the
process. Due to the in-memory logic characteristics, this design has
lower data movement (Supplementary Fig. 20). The subcircuit units of
each layer can be found in Fig. 6e. The first and second layers are
similar to the ECA circuits in Fig. 3. Specific complete circuits of the
first and second layers can be found in Supplementary Figs. 21 and 22,
respectively.

The circuit of the first layer executes the row direction ECA itera-
tion, and the circuit of the second layer executes the column direction
ECA iteration. The bitwise XOR operation can be realized by the
z-direction circuits. The circuit in the z-direction can be found in Fig. 6f,
and the corresponding operation can be found in Fig. 6g. The circuits in
the first and second layers have enough transistors, so the current
crosstalk in z-direction circuits canbe negligible. The resistance value of
the memristors in the fifth layer represents the final result after

Fig. 4 | RLOS Implementation of majority classification. a The schematic of majority classification algorithm by CA. b The CA evolution diagram of majority
classification. c The resistance state of memristor evolution in the designed circuit when running the majority classification algorithm.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 7

Fig. 5 | 2D CA implementation based on RLOS. a The circuit of 2D CA. The gray
box presents our basic unit of RLOS. The dash line presents the transistor.
b Original 256× 256 image (house) is from USC-SIPI image database. The origin
image is RGB format. We use Matlab to convert it to black and white image. The
baseline for black and white processing (commend: im2bw) is 0.54. c Simulated
resistance state of memristor evolution when running the edge detection
algorithm. (1) At the end of 100 operations, the ratio of the number of low-

resistance states to the number of high-resistance states of the memristor (L/H) is
489/65047. (2) At the end of 200 operations, L/H is 957/64579. (3) At the end of
300 operations, L/H is 1198/64338. (4) At the end of 400 operations, L/H is 1555/
63981. (5) At the end of 500 operations, L/H is 1923/63613. (6) At the end of 756
operations, L/H is 2917/62619.dThe hardware cost comparison betweenRLOS and
previous work.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 8

Fig. 6 | RLOS implementation of a reservoir computing systembased onReCA.
a Schematic of reservoir computing scheme. b Scheme of the proposed CA-based
classifier applied to a MNIST sample. c The schematic of CA operation in ReCA.
d The schematic of the circuits for CA operation in ReCA. e The schematic of units

in (d). fBasic circuit of the required gate.gCascadingmethod of the required gate.
h Performance of the ReCA based on RLOS using ten iterations of different ECA
transition rules.

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 9

calculation.Ourdesign can significantly reducehardware costs anddata
movement in this process. Figure 6h displays the recognition accuracy
under different ECA transition rules. The recognition accuracies of the
selected transition rule training results are all over 96%. Our scheme
proposes a new hardware implementation that obtains lower hardware
costs and lower data movement, which also showcases the potential of
hardware implementation of edge computing based on RLOS.

Discussion
In summary, we have proposed an RLOS to realize CA. A memristor
array is used to store and compute the values of cellular automata. Our
design demonstrates extremely low hardware costs. The data fed into
ourmodel have been validated by experiments. The entire rule of ECA,
themajority classification algorithm, and the edgedetection algorithm
have been verified. The hardware cost has been compared to the
conventional FPGA approach, showing a reduction of up to 79 times.
Finally, we have proposed reservoir computing based on RLOS. This
work introduces a design to realize CA,which can greatly contribute to
the development of hardware equipment for edge computing.

Methods
Device fabrication
The designed 2T −3R structure was fabricated as follows: First, metal-
organic chemical vapor deposited (MOCVD) MoS2 on sapphire sub-
strate was transferred and pattered on the 300nm SiO2/p+ Si sub-
strate. CVD monolayer MoS2 film was grown on Si/SiO2 substrate,
bought from Shenzhen SixCarbon Technology Co., Ltd. Then, after
electron-beam lithography (EBL) and electron-beamevaporation (EVP)
Ti/Pt with 2 nm/35 nm thickness was selected as the contact metal for
MoS2 transistor and bottom electrode for memristor. After that, the
10 nm-thickHfO2 layerwasdepositedby atomic layerdepositionwith a
temperature of 200 °C, which acts as both the gate dielectric of MoS2
transistor and the resistive switching layer of memristor. Next, after
carrying EBL and EVP process for another two times, Ag with 40 nm as
top electrode of memristor and Pt with 40 nm as gate metal of MoS2
transistor were deposited.

Measurement set-up
The basic electrical behaviors of the memristor and transistor were
characterized at room temperature in a probe station connecting to a
semiconductor parameter analyzer (Agilent B1500).

The simulation of the devices was realized with a personal com-
puter (PC). AMatlabprogramhas beenwritten to simulate the devices.
AMonteCarlomodel hasbeen established todescribe thebehaviors of
the memristor. The rates of particles were selected as probability
weight to execute the Monte Carlo method. The rate function can be
written as: rx = νf � exp � E�αqΔV

kBT

� �
, where E is the activation energy,α is

a parameter related to qΔV , kB is Boltzmann constant, T is tempera-
ture. The corresponding parameters can be fitted from experiments.
The thorough memristor model could be found from our previous
work29. The simulation of the transistor model has used the func-
tion: IDS =KS

W
L VG � VT

� �α .

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

References
1. Fofonjka, A. &Milinkovitch,M. C. Reaction-diffusion in a growing 3D

domain of skin scales generates a discrete cellular automaton. Nat.
Commun. 12, 2433 (2021).

2. Hewitt, R., Kovalevsky, D. V., de Boer, C. & Hasselmann, K. Model-
ling actors’ influence on land use change: a dynamic systems
approach. In 20th AGILE Conference on Geographic Information
Science) (AGILE, 2017).

3. Kotyrba, M., Volna, E. & Bujok, P. Unconventional modelling of
complex system via cellular automata and differential evolution.
Swarm Evolut. Comput. 25, 52–62 (2015).

4. Tomassini, M. & Perrenoud, M. Cryptography with cellular auto-
mata. Appl. Soft Comput. 1, 151–160 (2001).

5. Rosin, P. L. Training cellular automata for image processing. IEEE
Trans. Image Process. 15, 2076–2087 (2006).

6. Ermentrout, G. B. & Edelstein-Keshet, L. Cellular automata approa-
ches to biological modeling. J. Theor. Biol. 160, 97–133 (1993).

7. Yazdipour, N., Davies, C. H. J. & Hodgson, P. D. Microstructural
modeling of dynamic recrystallization using irregular cellular
automata. Comput. Mater. Sci. 44, 566–576 (2008).

8. Khan, A. R., Choudhury, P. P., Dihidar, K., Mitra, S. & Sarkar, P. VLSI
architecture of a cellular automata machine. Comput. Math. Appl.
33, 79–94 (1997).

9. Mukhopadhyay, D., Joshi, P. & RoyChowdhury, D. An efficient
design of cellular automata based cryptographically robust one-
way function. In 20th International Conference on VLSI Design Held
Jointly with 6th International Conference on Embedded Systems
(VLSID’07), (Springer, Berlin, Heidelberg, 2007).

10. Morán, A., Frasser, C. F., Roca, M. & Rosselló, J. L. Energy-efficient
pattern recognition hardware with elementary cellular automata.
IEEE Trans. Comput. 69, 392–401 (2020).

11. Du, C. et al. Reservoir computing using dynamic memristors for
temporal information processing. Nat. Commun. 8, 2204 (2017).

12. Zhong, Y. et al. Dynamic memristor-based reservoir computing for
high-efficiency temporal signal processing. Nat. Commun. 12,
408 (2021).

13. Moon, J. et al. Temporal data classification and forecasting using a
memristor-based reservoir computing system. Nat. Electron. 2,
480–487 (2019).

14. Liu, Z. et al. Neural signal analysis with memristor arrays towards
high-efficiency brain–machine interfaces. Nat. Commun. 11,
4234 (2020).

15. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

16. Wen, S. et al. Memristor-based design of sparse compact con-
volutional neural network. IEEE Trans. Netw. Sci. Eng. 7,
1431–1440 (2020).

17. Jeong, H. &Shi, L.Memristor devices for neural networks. J. Phys. D:
Appl. Phys. 52, 023003 (2018).

18. Nguyen, H. A. D. et al. On the implementation of computation-in-
memory parallel adder. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 25, 2206–2219 (2017).

19. Song, Y. et al. Reconfigurable and efficient implementation of 16
boolean logics and full-adder functionswithmemristor crossbar for
beyond von Neumann in-memory computing. Adv. Sci. 9,
2200036 (2022).

20. Xu, N., Park, T., Yoon, K. J. & Hwang, C. S. In-memory stateful logic
computing using memristors: gate, calculation, and application.
Phys. Status Solidi (RRL) – Rapid Res. Lett. 15, 2100208 (2021).

21. Wei, F., Cui, X. & Cui, X. An improved iMemComp OR gate and its
applications in logic circuits. IEEE J. Electron Devices Soc. 8,
57–61 (2020).

22. Itoh, M. & Chua, L. O. MEMRISTOR CELLULAR AUTOMATA AND
MEMRISTORDISCRETE-TIME CELLULARNEURAL NETWORKS. Int. J.
Bifurc. Chaos 19, 3605–3656 (2009).

23. Hin-Leung, C. &Wise, K. D. Scaling limits in batch-fabricated silicon
pressure sensors. IEEE Trans. Electron Devices 34, 850–858 (1987).

24. Stathis, D., Vourkas, I. & Sirakoulis, G. C. Shortest path computing
using memristor-based circuits and cellular automata. In Cellular
Automata (eds Wąs, J., Sirakoulis, G. C. & Bandini, S.), pp 398–407
(Springer International Publishing, 2014).

25. Secco, J., Farina, M., Demarchi, D., Corinto, F. & Gilli, M. Memristor
cellular automata for image pattern recognition and clinical

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 10

applications. In 2016 IEEE International Symposium on Circuits and
Systems (ISCAS)) (IEEE, 2016).

26. Karamani, R., Ntinas, V., Vourkas, I. & Sirakoulis, G. C. 1-Dmemristor-
based cellular automaton for pseudo-random number generation.
In 2017 27th International Symposium on Power and Timing Model-
ing, Optimization and Simulation (PATMOS). (IEEE, 2017).

27. Karamani, R., Fyrigos, I., Ntinas, V., Vourkas, I. & Sirakoulis, G. C.
Gameof life inmemristor cellular automata grid. InCNNA2018; The
16th International Workshop on Cellular Nanoscale Networks and
their Applications) (CNNA, 2018).

28. Ntinas, V., Sirakoulis, G. C. & Rubio, A. Memristor-based probabil-
istic cellular automata. In 2021 IEEE International Midwest Sympo-
sium on Circuits and Systems (MWSCAS)) (IEEE, 2021).

29. Liu, Y., Yang, K., Wang, X., Tian, H. & Ren, T. Lower power, better
uniformity, and stability CBRAM enabled by graphene nanohole
interface engineering. IEEE Trans. Electron Devices 67,
984–988 (2020).

30. Kalra, S. & Bhattacharyya, A. B. Scalable α-power law based MOS-
FET model for characterization of ultra deep submicron digital
integrated circuit design. AEU Int. J. Electron. Commun. 83,
180–187 (2018).

31. Huang, P. et al. Reconfigurable nonvolatile logic operations in
resistance switching crossbar array for large-scale circuits. Adv.
Mater. 28, 9758–9764 (2016).

32. Shen, W. et al. A seamless, reconfigurable, and highly parallel in-
memory stochastic computing approach with resistive random
access memory array. IEEE Trans. Electron Devices 68,
103–108 (2021).

33. Neary, T. & Woods, D. P-completeness of cellular automaton rule
110. In Automata, Languages and Programming (eds Bugliesi, M.
et al.) pp 132–143, (Springer Berlin Heidelberg, 2006).

34. Petrík, M. Quine–McCluskey method for many-valued logical
functions. Soft Comput. 12, 393–402 (2008).

35. Mitchell, M., Crutchfield, J. P. & Das, R. Evolving cellular automata
with genetic algorithms: a review of recent work. In Proceedings of
the First International Conference on Evolutionary Computation and
Its Applications (EvCA’96). (Russian Academy of Sciences, 1996).

36. Itoh, M. & Chua, L. O. DIFFERENCE EQUATIONS FOR CELLULAR
AUTOMATA. Int. J. Bifurc. Chaos 19, 805–830 (2009).

37. Rajagopalan, S. et al. Diffused bit generator model for trng appli-
cation at CMOS45nm technology. In 2017 International Conference
on Microelectronic Devices, Circuits and Systems (ICMDCS),
(IEEE, 2017).

38. Satyanarayanan, M. How we created edge computing. Nat. Elec-
tron. 2, 42–42 (2019).

39. Nichele, S. & Molund, A. Deep learning with cellular automaton-
based reservoir computing. Complex Syst. 26, https://doi.org/10.
25088/ComplexSystems.26.4.319 (2017).

40. Tangsakul, S. & Wongthanavasu, S. Single image haze removal
using deep cellular automata learning. IEEE Access 8,
103181–103199 (2020).

41. Kleyko, D., Frady, E. P. & Sommer, F. T. Cellular automata can
reduce memory requirements of collective-state computing. IEEE
Trans. Neural Netw. Learn. Syst. 33, 2701–2713 (2022).

Acknowledgements
This workwas supported in part by STI 2030—Major Projects under Grant
2022ZD0209200, in part by National Natural Science Foundation of

China under Grant 62022047, Grant U20A20168 andGrant 51861145202,
in part by the National Key R&D Program under Grant 2016YFA0200400,
in part by FokYing-TongEducation FoundationunderGrant 171051, inpart
by Beijing Natural Science Foundation (M22020), in part by the Inde-
pendent Research Program of Tsinghua University under Grant
2022Z11QYJ044, in part by the Tsinghua-Toyota Joint Research Fund, in
part by the Daikin–Tsinghua Union Program, in part by State Key
Laboratory of New Ceramic and Fine Processing Tsinghua University (No.
KF202109), inpart supportedby JIAOT(KF202204); inpart by theOpening
Project of the Key Laboratory of Microelectronic Devices & Integrated
Technology, Institute ofMicroelectronics, Chinese Academy of Sciences,
in part by the Guoqiang Institute, Tsinghua University, and in part by the
Research Fund from Beijing Innovation Center for Future Chip.

Author contributions
H.T. and Yanming L. proposed the idea and the project. Yanming L.,
Yihao L., andH.S. performed the simulation. F.W. and Yanming L. did the
experiment. A.L. was involved in data post-processing and image pro-
cessing. F.W. and Yanming. L. performed the device fabrication and
characterization. H.T. and T.-L.R. supervised the project. All the authors
discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38299-7.

Correspondence and requests for materials should be addressed to He
Tian or Tian-Ling Ren.

Peer review information Nature Communications thanks Amirali Amir-
soleimani, Josep Rossello, and the other, anonymous, reviewer for their
contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-38299-7

Nature Communications | (2023) 14:2695 11

https://doi.org/10.25088/ComplexSystems.26.4.319
https://doi.org/10.25088/ComplexSystems.26.4.319
https://doi.org/10.1038/s41467-023-38299-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Cellular automata imbedded memristor-based recirculated logic in-memory computing
	Results
	Basic logic circuit
	Cellular automata imbedded memristor-based in-memory computing scheme
	Majority classification algorithm
	Edge detection algorithm
	Reservoir computing system based on cellular automata

	Discussion
	Methods
	Device fabrication
	Measurement set-up

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

