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The PECAn image and statistical analysis
pipeline identifies Minute cell competition
genes and features

Michael E. Baumgartner1,3,6 , Paul F. Langton 1,6, Remi Logeay1,
Alex Mastrogiannopoulos 1, Anna Nilsson-Takeuchi1,4, Iwo Kucinski 2,5,
Jules Lavalou 1 & Eugenia Piddini 1

Investigating organ biology often requires methodologies to induce geneti-
cally distinct clones within a living tissue. However, the 3D nature of clones
makes sample image analysis challenging and slow, limiting the amount of
information that can be extracted manually. Here we develop PECAn, a pipe-
line for image processing and statistical data analysis of complex multi-
genotype 3D images. PECAn includes data handling,machine-learning-enabled
segmentation, multivariant statistical analysis, and graph generation. This
enables researchers to perform rigorous analyses rapidly and at scale, without
requiring programming skills. We demonstrate the power of this pipeline by
applying it to the study of Minute cell competition. We find an unappreciated
sexual dimorphism inMinute cell growth in competingwingdiscs and identify,
by statistical regression analysis, tissue parameters that model and correlate
with competitive death. Furthermore, using PECAn, we identify several genes
with a role in cell competition by conducting an RNAi-based screen.

With the advent of safe, non-invasive tools for generating andmarking
genetically distinct subpopulations of cells within intact organisms,
clonal analysis has become a common tool for the study of hetero-
geneous cell populations and mosaic tissues (Reviewed in1). These
tools come inmany formsbut achieve a common goal: a subset of cells
within a tissue acquire a genetic alteration absent in the surrounding
tissue, creating genetically distinct territories of cells.

While this technique presents unique avenues for investigating
tissue biology, extracting information from mosaic tissues by micro-
scopic analyses is often a bottleneck. The resulting images, typically
acquired by 3D confocalmicroscopy, are information rich and provide
insights on phenotypes, such as signal intensity of reporters, clone
numbers, clone size, shape and apoptosis. Extracting this information,
however, is time consuming and complicated. In recent years, a

number of powerful image analysis tools have been developed,
including image analysis environments enabling construction of cus-
tom algorithms, such as CellProfiler2, and more targeted software,
such as tools for analysis ofmorphogenesis and cell shape in situ3–5 and
machine-learning enabled segmentation of twin-spot clones6. How-
ever, there are no image analysis tools designed to analyse complex,
multi-genotype 3D image stacks and tomeasure, in thewhole image or
in specifically marked subregions, diverse parameters such as levels of
apoptosis, fluorescence and speckle intensity, cell number and den-
sity. Analysis of such confocal images is therefore typically performed
in a manual or semi-automated fashion. Performing such analysis by
hand is time-consuming, inconsistent, and error prone, with large
datasets often requiring days of work. This bottleneck therefore
impairs both the speed, quality, and scope of data generation.
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An example of this challenge is demonstrated by imaging
experiments used for the study of Minute cell competition in Droso-
phila imaginal wing discs – a process whereby cells carrying hetero-
zygous mutations in ribosomal protein genes (Rp/+), known as
Minutes, are eliminated frommosaic tissueswhenproximal towildtype
cells7 (Supplementary Fig. 1). Minute cells are therefore said to act as
‘losers’ relative to wildtype ‘winners.’ Such experiments require careful
localization of dying cells and categorization by genotype. In the field
of cell competition, in particular, there is a pressing need for auto-
mated image and single cell analytic techniques8.

In this work, we present a comprehensive, high-throughput image
and data processing pipeline for automating analysis of mosaic experi-
ments: the Pipeline for Enhanced Clonal Analysis (PECAn). This software
readily performs myriad clonal analyses, including identifying the
number, size, position, and fluorescence properties of single cells and
cell territories by region and genotype in 3D space. In addition, PECAn
features an incorporated statistical analysis and graph generation
application, allowing users to visualize and evaluate their results in an
automated fashion and at scale. This software is built to be flexible, user
friendly, and accessible to biologists with no computational or image
analysis background, as all inputs are made using graphical user inter-
faces and requirenopriorprogrammingknowledge. In this study theuse
of PECAn applied to the study ofMinute cell competition allowed us to:
identify an unappreciated sexual dimorphism in growth patterns in
competing discs, characterize rigorously Rp/+ cell death properties in
competing and non-competing tissues, identify by logistic regression
analysis parameters that accurately model and correlate with competi-
tive cell death, and carry out a highly sensitive targeted RNAi-based
genetic screen for modulators of Minute cell competition. These appli-
cations demonstrate that PECAn reduces operator induced variability
and improves speed, consistency, and sensitivity relative to existing
techniques, while allowing for many useful experimental analyses.

Results
PECAn design strategy
The PECAn image analysis pipeline consists of two complementary
components: (1) a FIJI/imageJ9 plugin for analysing images andextracting
measurements and (2) an R-Shiny-based web application for processing
data, running statistical tests, and generating graphs and plots (Fig. 1a).
In order tomake this software as accessible to biologists as possible, this
design prioritizes ease-of-use, requires no prior computational or pro-
gramming knowledge, and runs entirely on free, publicly available
software platforms that are familiar to biologists. All user inputs and
processed outputs are made via graphical user interfaces (GUIs) with
step-by-step instructions. This programme is also optimized for high-
throughput batch processing and is capable of analysing large datasets
of hundreds of samples. In order to maximize customizability, the
pipeline incorporates WEKA machine-learning based image analysis10.
WEKA provides, in FIJI, a GUI-enabled means of training an algorithm
using supervised machine-learning, which can classify pixels according
to user-defined categories. PECAn links this function directly to image
segmentation and measurements. Therefore, images that can be classi-
fied by WEKA can be readily incorporated into the pipeline without
writinganyadditional code.Thepipeline furthermore incorporates tools
to allow users to incorporate their own code as modules, therefore
custom scripts or additional machine learning segmentation tools can
be readily incorporated into the pipeline by anyone with experience in
coding using FIJI-compatible languages such as Python and Java. An
example analysis output, exhibiting various functionalities in a three-
dimensional sample, is included in Supplemental Video 1.

Marker-based segmentation
The first step in mosaic analysis is to segment cell populations by
visiblemarkers. Identification and separation of regions on the basis of
fluorescent signal is carried out through the ImageJ/FIJI plugin, which

includes built-in algorithms suitable for two-genotype classification in
mosaic tissues. However, no single algorithm can properly segment all
differentmeans bywhichmosaic patches can bemarked. This pipeline
therefore integrates WEKA machine-learning enabled segmentation.
Thus, PECAn can process any image of mosaic tissue, which can be
segmented either by the built-in algorithm, via WEKA, or by custom
user-made code. The pipeline can also process images with a large
number of distinctly marked genotypes, making it suitable for asses-
sing multi-genotype mosaic tissues generated with complex multi-
colour genetic tools. To enable automated analysis of cell interactions,
each marked domain is then further subdivided into a border region
and a centre region (Fig 1a).

Segmentation of fluorescently labelled tissue subdomains
The PECAn FIJI plugin allows for analysis of individual fluorescently
labelled patches of tissue (Fig. 1b). To do so, the algorithm identifies
each disjoint region identified via the marker-based segmentation as
distinct ROIs in all Z-planes. The algorithm then compares the ROIs in
three dimensions for contiguity while also accounting for instances
where patches split apart or merge together across Z-planes. This
allows the algorithm to accurately count the size and number of each
individual patch,while also assessing them for additional fluorescence-
based parameters, such as levels of foci coverage/density and regional
fluorescence intensity.

Single cell segmentation
Segmentation of individual cells operates in a similar fashion. Disjoint
regions corresponding to individual cells are segmented either via
built-in algorithms or via aWEKA classifier. Each ROI is then compared
to ROIs on adjacent Z-planes. Individual ROIs are linked across
Z-planes using centroid-based tracking. Individual cells can then be
analysed by various metrics, including their position within the tissue,
fluorescence intensity, distance to patch border, viability and
population-level parameters of the entire tissue (Fig. 1c).

Foci segmentation
To enable the segmentation of reporters and stainings that present as
distinct foci, such as antibody stainings for cleaved caspases and
TUNEL assays and other assays for cell death, we developed and
embedded in PECAn an algorithm for foci segmentation, which uses
alternating pixel intensity and size-basedfilters (Supplementary Fig. 2).
Alternatively, this can be substituted with a WEKA classifier or custom
code for foci detection. It is then possible to calculate foci enrichment
within given regions of the image, such as Regions of Interest (ROI)
identified viamarker-basedpatch segmentation (Supplemental Video 1
and Supplementary Fig. 2). From this, the algorithm determines the
area and percentage of overlap – e.g. the fraction of an ROI that is
positive for the cell death reporter (Supplementary Fig. 2).

Counting the number and/or density of discrete foci in 3D, e.g. to
get an estimate of the number of dying cells, presents additional
challenges, as foci must be accounted for in three dimensions to pre-
vent multiple counting of the same foci, and the algorithm must be
able to distinguish between tightly packed foci. PECAn accomplishes
this through a watershed-based approach using the MorphoLibJ
toolkit11, combined with 3D centroid-based tracking, allowing for pre-
cise counts and localization of foci. Individual foci can then be ana-
lysed by various parameters, such as their position within the tissue
and proximity to various landmarks (Fig. 1c). This metric can further-
more be cross-referenced against individual cell counting algorithm to
allow the software to determine an accurate count of cells positive for
a given foci staining in each region of the 3D tissue.

Fluorescence and speckle measurements
In addition, we incorporated fluorescence intensity and speckle ana-
lysis functionalities into this pipeline. When combined with the other

Article https://doi.org/10.1038/s41467-023-38287-x

Nature Communications |         (2023) 14:2686 2



segmentation modalities present in the software, this allows for mea-
surements of fluorescence intensity and speckle density, number, size
and other parameters within different ROIs.

Altogether, this image analysis pipeline is compatiblewith a broad
range of immunofluorescence and reporter signals, which can be
analysed automatically to extract regional properties of the reporters
relative to the mosaic composition of the sample. By combining these

various modalities, PECAn can rigorously and automatically quantify
numerous biologically relevant phenotypes (Fig. 1d).

R-Shiny-based web application
To facilitate and improve the next step in data analysis, i.e. statistical
testing, and plot generation, we developed a companion application in
R statistical software to handle the data generated from the FIJI/ImageJ
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plugin. While R is a powerful statistical software with excellent gra-
phical packages, it is not user-friendly to someone without prior pro-
gramming experience. We therefore incorporated a R analysis script
into a Shiny web app, thus combining the statistical power of R with a
user-friendly web-based GUI (Fig. 2). This application automatically
processes data generatedby the FIJI/ImageJ pluginbut can also analyse
generic datasets, saved as CSV files.

Once the data generated from the FIJI/imageJ plugin is uploaded
and the user specifies the genotypes, experimental groupings, and the
desired analyses, the app automatically runs appropriate statistical
tests and generates output plots using a GUI accessible on any con-
ventional web browser. The user can assess the dataset in two general
ways: (1) classical uni- and bi-variate analysis or (2) multiple regression
(Fig. 2). For uni- and bi-variate analysis, the user specifies which variety
of graph to generate, which variable(s) to analyse, which statistical test
to run (such as a t-test, ANOVA, or correlation coefficient), which effect
size metric to run, and if/how to adjust p-values for multiple compar-
isons. The resulting graphs are customizable and can be exported as
publicationquality images using the ggplot2 package in R. Formultiple
regression analysis, the user selects between various techniques, such
as logistic, linear, and Poisson regression, and specifies which variables
to act as dependent and predictor variables. Upon running the analy-
sis, the app automatically runs appropriate assumptions tests, pro-
duces effects plots, and generates a suite of diagnostic plots and
metrics to enable the user to evaluate the quality of their analysis
(Fig. 2). The app furthermore provides tools for performing data
transformations. Should the user desire to run any statistical tests not
supported by the app, the processed data can be exported and
incorporated into any conventional statistical analysis software.

To ensure that the multiple regression functionalities were func-
tioning properly, we ran publicly available tutorial datasets for multi-
ple logistic regression, Poisson regression, negative binomial
regression, and linear regression through the analysis app. These
analyses generated the expected results (Supplementary Data 1),
indicating that the statistical packages hadbeenproperly incorporated
into the application.

PECAn Fiji validation
Next, we tested PECAn discovery power, by challenging it with 3D
multi-channel confocal images of Drosophila imaginal wing discs
undergoing Minute cell competition. In Minute cell competition cells
heterozygous mutant for one of several ribosome protein (Rp) genes
behaves as ‘losers’ and are eliminated by wild-type cells (Supplemen-
tary Fig. 1, ref. 7). Competitive elimination results from a combination
of cell intrinsic differences in tissue growth (Minute cells grow more
slowly and die more frequently than wild-type cells12–14) and non-cell
autonomous effects (Minute cells undergo competitively induced
apoptosis when they border wild-type cells14–16). Minute cell competi-
tion is typically studied by creating mosaic wing discs containing wild-
type and Rp+/− patches of tissue, making it an ideal system to test

PECAn’s functionalities. Indeed, it is with this biological problem in
mind that PECAn was initially created. To induce Minute cell compe-
tition, we utilized a Drosophila stock carrying an insertion that
expresses an excisable copy of the ribosome gene RpS3 (under control
of an actin promoter) in an RpS3+/− mutant background (RpS3[Plac92],
act> RpS3>Gal4)14. Excisionof the transgenegeneratesRpS3+/− cells in a
genetic background wherein RpS3 expression is rescued by the act >
RpS3 construct at levels sufficient to induce cell competition; hencewe
refer to this stock as Minute in Wildtype-like Organism (MiWO) (Sup-
plementary Fig. 3a and 3c and ref. 14). Indeed the MiWO construct
partially rescues the Minute phenotype: when comparing time to
pupariation in larvae that were wildtype, RpS3+/−, MiWO, or MiWO
harbouring RpS3+/− patches (Supplementary Figure 3c), the MiWO
construct yielded a substantial but not complete rescue of the devel-
opmental delay seen in RpS3+/− larvae. Interestingly, patch induction
had no detectable impact on time to pupariation in MiWO larvae.

Tomeasure the levels of competitively induced cell death, border
death vs death in the centre of the patch is used as a metric ofMinute
competition, and differences in border death between samples are
used to assess the relative strength of competitive interactions on cell
death14–17. As cell competition also results from different growth rates
between winners and losers, another primary metric for assessing
competition is the size of winner/loser cell patches15. These measure-
ments have therefore been automated and incorporated into the
PECAn pipeline.

Before using PECAn to study cell competition, we sought to vali-
date it by challenging it in three separate ways: (1) using semi-synthetic
images, (2) comparing with human analysis, and (3) testing its sensi-
tivity at identifying known strong and mild modulators of Minute cell
competition. Semi-synthetic images provide a means of testing a large
programme for errors in the code and data output. In short, images
with known properties are fed into the pipeline, and the outputs are
compared against the known input values (Fig. 3a). The pipeline yiel-
ded results consistent with the input values across all parameters
tested (Fig. 3b), indicating that the software successfully computes the
right operations when producing the desired measurements. To
compare the pipeline’s performance against human analysis, an image
dataset was both analysed by hand and run independently through
PECAn. The results generated by themacro were consistent with those
generated by users: both the density of apoptosis in the patch border
region (Fig. 3c, d, Supplementary Fig. 3b) and the counts of individual
cells (Fig. 3e, f) were not significantly different, showing that the
pipeline performs comparably to manual quantification. The pipeline
was then tested for its ability to identify known modulators of Minute
cell competition. We expressed RNAi lines against established sup-
pressors of cell competition, specifically Dronc and Xrp1, in loser cells
using the MiWO system. Dronc-RNAi has previously been shown to
yield a mild rescue, as it only rescues Rp/+ cells from cell competition-
induced apoptosis15, whereas mutation in Xrp1 yields a strong rescue,
as it inhibits both competitive death and the slowgrowthphenotype of

Fig. 1 | PECAn is a versatile tool for the analysis of complex 3D images.
a Structure of PECAn image analysis software. Images are initially analyzed in FIJI/
ImageJ. In order to preserve three-dimensional information, each Z-plane (1) of
each image is analysed sequentially and compared to adjacent Z-planes. The
channels of the image—for instance foci/cell death staining (2a), cell patches (2b),
and nuclear mask (2c) are split apart and processed independently either by the
built-in algorithms or by a WEKA classifier. For instance, the foci/cell death mask
(3a) can be used to perform three dimensional segmentation of individual foci and
can then be cross referenced against the cell patch ROIs (3b) to yield a density of
foci in different regions within the image (4a) and the level of cell death in indivi-
dual cell patches (4b). Furthermore, cell patch and nuclear stain channels can be
used together to identify individual cells in three dimensions (3c). The data are
exported as CSV files (5) which can then be uploaded into the R Shiny companion
app for statistical analysis and graph generation (6). b PECAn is able to analyse

samples derived from diverse tissues and model organisms. PECAn identifies dis-
tinct subpopulations of MDCK cells by combining a nuclear GFP marker with
seeded-region growing techniques (left). PECAn analyses two distinct genotypes in
three dimensions in an adult Drosophila intestine sample (center left). PECAn can
segment and analyze individual cell patches in three dimensions in a Drosophila
imaginal disc (center right). PECAn identifies density of TUNEL-positive foci in
embryonic mouse hearts carrying differently labelled cell patches (right). c PECAn
can identify individual cells (left) and individual foci (right) in three dimensions and
analyse their position within the tissue, proximity to cell patch borders (yellow
lines), or distance to the patch centroid (white lines). Individual cells/foci are colour
coded; a red borderdenotes a cell in theborder regionof a patch, and a blueborder
denotes a cell in the centre region of a patch. Scale bars correspond to 50 µM.
d Examples of some of the key parameters for which PECAn can assess.

Article https://doi.org/10.1038/s41467-023-38287-x

Nature Communications |         (2023) 14:2686 4



Minute cells18–20. Samples of MiWO wing discs expressing Dronc-RNAi
or Xrp1-RNAi were fed into the pipeline and assessed for density of
apoptosis at the Rp+/−/wild-type border and for size of the area covered
by Rp+/− cells. The pipeline successfully detected both known mod-
ulators and distinguished these from controls. Importantly, PECAn
distinguished between the rescue modalities of these two genetic
manipulations, scoring a rescue in both Rp+/−coverage of the pouch
and competitive death for Xrp1-RNAi and a rescue in death but not in
pouch coverage for Dronc-RNAi. Thus, PECAn not only allows for fast
and sensitive detection of phenotypes but can also automatically
provide insight into the biological parameters responsible for the
rescue of Minute cell competition (Fig. 3g–i).

PECAn reveals sexual dimorphism in growth of minute cells
Having successfully validated PECAn, we then sought to utilize this
toolset to investigate at impressive scale and sensitivity some of the
parameters of Minute cell competition. Sexually dimorphic

phenotypes are common in Drosophila cell biology21,22, and recent
work has identified a sexual dimorphism in a Drosophila Myc super-
competition model, wherein female wing discs exhibit an apparent
increased susceptibility to loser cell elimination23, but this has notbeen
investigated for Minute cell competition. This would be an important
confounding factor when assessing Minute cell competition pheno-
types, if not properly controlled. To ask whether Minute cell compe-
tition displays sexual dimorphism, we dissected separately male and
female larvae from (1) a cross of wildtype males bred with MiWO
females, and (2) a cross of wildtype females bred with MiWO males
(Fig. 4a–c). All images were subsequently analysed with PECAn. No
differences were observed between female larvae, regardless of par-
ental genotype. Surprisingly, however, we observed a strong sexual
dimorphism: RpS3+/− cells covered a smaller proportion of the tissue in
males relative to females (Fig. 4a, b). Interestingly, this effect was
confined to pouch coverage, as we did not observe differences in the
frequency of cell competition-induced apoptosis between males and
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which (if any) p-correction formultiple comparisons toperform(5b).Upon running
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females (Fig. 4a, c), indicating that this reflects a difference in the
growth rates of Minute cells in mosaic tissues. As the hs-FLP construct
used in this experiment to induce RpS3+/− cells is carried on the X
chromosome, we repeated this assay using a hs-FLP construct carried
on an autosome to rule out the possibility of a sex chromosome-driven
difference in flippase expression. With the autosomal hs-FLP, we again
observed a striking difference between males and females (Supple-
mentary Figure 4a, b). To rule out the possibility that this dimorphism
is due to a bias inRpS3+/− cell induction inherent in theMiWOconstruct

itself, we assessed the same RpS3 flp-out construct in a non-Minute
background (RpS3+/+, act >RpS3>Gal4). We observed no difference in
RpS3+/− pouch coverage between males and females (Fig. 4d, e). To
confirm that this phenotype is not specific to the MiWO system, we
generated wing discs containing wildtype winners and RpS3+/− losers
using the traditional FRT mitotic recombination technique, and again
we observed that RpS3+/− pouch coverage was smaller in males than
females (Fig. 4f, g). This dimorphism was still observed when MiWO
patches were generated in larvae that were heterozygous mutant for
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Xrp1 (Supplementary Fig. 4c, d) or when loser cells expressed Xrp1-
RNAi (Supplementary Fig. 4e, f), conditions that are known to rescue
cell competition18,19,24. There is, however, a reduction in the effect size
for the observed dimorphism in Xrp1+/− conditions (δ = −0.908 for
RpS3+/−, Xrp1+/+ vs δ = −0.533 for RpS3+/−, Xrp1+/−). Thus, while this data
suggest thatRpS3+/− clonal sexual dimorphismdoes not require Xrp1, it
is possible that Xrp1 may contribute to, but not fully determine, this
dimorphism. To assess whether this dimorphism is generalizable to
Minute mutations other than RpS3, we repeated this assay using a
mutation in a different Rp gene, RpL27A, known to yield a Minute
phenotype25. In order to confirm that the RpL27A allele used exhibited
loser-associated stress pathway activation, we confirmed increased
eIF2α phosphorylation (Supplementary Fig. 5a) and increased Xrp1
expression, using the Xrp1-LacZ reporter (Supplementary Fig. 5b) in
RpL27A+/− cells. We furthermore assessed for proteotoxic stress by
staining for ref(2)P (p62), an autophagy adaptor protein, which we
have previously shown to be enriched in cells carrying RpS3+/− and
Mahj−/− loser inducing mutations14. Consistent with this, we observed
an increase in p62 signal intensity in RpL27A+/− cells (Supplementary
Fig. 5c). This is different froma recent report thatRpL27Aheterozygote
losers failed to exhibit an accumulation of p62 aggregates26. Impor-
tantly, we also observed a reduction in the size of RpL27A+/− patches in
male wing discs compared to female wing discs (Fig. 4h, i). These data,
therefore, suggest that Minute cells are at a greater relative growth
disadvantage when competing with wildtype cells in male wing discs
relative to female. It is possible that these differences reflect cell
autonomous differences in growth rates between male and female
Minute cells, which manifest in clonal growth phenotypes in a com-
peting, mosaic context.

Quantitative analysis of the parameters of Minute competitive
apoptosis using PECAn
Next, we exploited the sensitivity and high-throughput analysis cap-
abilities afforded by PECAn to study the properties of cell competition-
induced cell death inMinute cells. It is well established that competing
Minute cells proximal to wild-type winners exhibit higher levels of cell
death relative to distant competing Minute cells14–16,27. It is also well
established that non-mosaicMinute cells exhibit elevated levels of cell-
autonomous apoptosis12–14,28. However, how these levels of apoptosis –
intrinsic vs competition-induced – compare has never been measured
precisely. We therefore generated wing discs with a mosaic anterior
compartment and an entirely Minute posterior compartment. As
Minute cell competition does not occur across compartment
boundaries29, this allowed us to compare competitive and non-
competitive cell death within a single tissue (Fig. 5). We then ana-
lyzed these samples in PECAn, utilizing its ability to assess multiple
ROIs within a single image (Fig. 5b). Levels of death were greater in
non-competing RpS3+/− cells relative to competing wildtype winners,
confirming the previously reported observation that Minute cells

exhibit elevated levels of cell-autonomous apoptosis (Supplementary
Fig. 6a)14. The density of apoptotic cells was higher at the competing
Minute patch border relative to the internal reference death level
observed in non-competing posterior compartment, indicating that
competitive cell death represents anelevationover thenon-competing
condition (Fig. 6c). Furthermore,weobservednodifference in levels of
apoptosis between the non-competing posterior compartment and
the patch centre in the competing anterior compartment, indicating
that centre cells exhibit approximately baseline levels of RpS3+/− cell
death (Supplementary Fig. 6b).

We then sought to use PECAn to rigorously identify the para-
meters of cell death within wing discs undergoing Minute cell com-
petition. We compiled a large dataset of competing wing discs
prepared using consistent conditions, but dissected, processed, and
imaged in separate batches (67 wing discs and 192,207 RpS3+/− cells in
competing conditions from six separate dissections). To control for
the observed sexual dimorphism, only female larvae were dissected.
Individual cells within all wing discs were assessed for their cell death
(using PECAn single cell and foci segmentation) and spatial properties,
and the resulting dataset was subjected to a multiple logistic
regression-based analysis, using the PECAn statistical analysis app,
with the dependent variable being whether or not a given cell is viable
or apoptotic (Fig. 6a–f, Supplementary Data 2).

This analysis provides evidence for several interesting interac-
tions within competing wing discs. We found that the probability of
Minute cell death varies with the size of the wing pouch region (Fig. 6a,
Supplementary Data 2). This could suggest that competitive death is
more pronounced in slightly older discs. We also found that the rate of
loser cell death declines as the number of RpS3+/− cells increases
(Fig. 6b, Supplementary Data 2). As this analysis accounts for physical
distance of RpS3+/− cells to the winner, this reduction in death is not
exclusively due to a relative decrease in the exposure of loser cells to
winners and could suggest that the strength of cell competition is
sensitive to cell community effects influenced by the relative abun-
dance of winners and losers, as has been reported for Rab5 and lgl-
rasV12 cell competition30,31. Alternatively, the anticorrelation of loser
cell death and loser cell abundance could simply reflect an underlying
variability in the intensity of cell competition across wing discs,
whereby weaker cell competition would both result in bigger RpS3+/−

patches and in less competitive death.
Loser cell apoptosis also positively correlates with levels of

apoptosis seen in winner cells (Fig. 6c, Supplementary Data 2), indi-
cating that loser cells are more likely to undergo apoptosis in wing
discs with higher overall levels of cell death. The probability of loser
cell death further depends on a cell’s position within the tissue, with
basal locations associated with a higher probability of apoptosis
(Fig. 6d, Supplementary Data 2). This result is consistent with estab-
lisheddynamics of cell death inwingdiscs generally andduringMinute
cell competition, specifically16,32,33. The probability of observing

Fig. 3 | Validation of the PECAn pipeline. a Schematic of semi-synthetic image
validation strategy. Z-planes with knownparameterswere randomly combined into
Z-stacks. Known imageswere analysed using themacro and results were compared
against known values. bMacro results divided by known values (n = 5 independent
samples), with mean and 95% CI shown. No statistical test performed. All values
approximate expected values, with deviations attributable to rounding errors.
c Representative image of a competing wing disc stained with anti-cleaved Dcp-1.
RpS3+/−patches aremarkedbyGFP (green), andnuclei byDAPI staining (blue) (Left).
The anti-cleaved Dcp-1 staining is shown (red) and the dotted line represents the
outline of the loser patches (Right). d Comparison of the density of apoptotic
events in the patch border as determined by hand againstmacro outputs. e Sample
output of individual cell counts performed by PECAn in competing wing disc.
Individual cells are marked with a uniquely colour-coded stamp. f Comparison of
quantifications generated manually against those generated by the macro.
g Representative images of wing discs harbouring competing RpS3+/− cells (green)

immuno-stained for cleaved-Dcp-1 (red). From left to right, the genotypes are: no
transgene other than GFP, expression of an empty UAS promoter, expression of an
RNAi against Dronc, and expression of an RNAi against Xrp1. h Automated quanti-
fication of density of cleaved-Dcp-1-positive cells in the patch border region.
Measure of center and error bars are shown as mean and 95% CI. Statistics reflect
two-sided Wilcoxon–Mann–Whitney U-test without adjustment for multiple com-
parisons with Cliff’s δ effect size. Number of independent biological samples are:
replicate 1: ncontrol = 6, nUAS = 6, nDronc = 4, nXrp1 = 6; replicate 2: ncontrol = 12,
nDronc = 15. i Automated quantification of the percentage of the wing disc pouch
occupied by RpS3+/− cellswithmean and 95%CI shown. Statistics reflect two-sided t-
test without adjustment for multiple comparisons with un-pooled Cohen’s d effect
size. Number of independent biological samples samples per replicate are: replicate
1: ncontrol = 5, nUAS = 6, nDronc = 4, nXrp1 = 6; replicate 2: ncontrol = 12, nDronc = 15. Scale
bars correspond to 50 µm. Source data are provided as a Source Data file.
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apoptosis also declines the further a loser cell is from the centre of the
pouch (Fig. 6e, Supplementary Data 2).

Lastly, this analysis also identifies that loser cell death corre-
lates strongly with physical proximity to winner cells. As multiple
logistic regression analysis accounts for possible confounding fac-
tors in the dataset (e.g. patch size, shape, position, volume etc), it is
significant that this analysis, while considering the relative

contributions of these factors, finds the probability of loser cell
death increases exponentially the closer a cell is to wildtype
neighbours (Fig. 6f, Supplementary Data 2). This relationship is
consistent with previous analyses, which found that rates of loser
cell death were highest within one-to-two cell diameters of the
patch border15,16. It is also consistent with our data in Fig. 5. Alto-
gether, these results confirm that the border death seen in
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competing wing discs is a fundamental feature of Minute cell
competition.

PECAn statistical regression analysis faithfully models and pre-
dicts competitive cell death
While this logistic regression model of loser cell apoptosis provides
results consistent with the experimental literature, the model has a
weak point which must be addressed: a Nagelkerke pseudo-R2 value
of 0.257. In the context of this particular model, the pseudo-R2 can
be thought of as a measure of how much better the model is at
predicting which cells are apoptosing than a null model. Thismodel,
therefore, is poor at determining which cells will be apoptotic.
There are two possible explanations for this observation: either
there is a key predictor variable missing from this model, or the
dependent variable has a high level of stochasticity. As the prob-
ability that a given cell will be apoptotic is low (1.4% of cells in the
dataset are apoptotic), it seems likely that there is a strong element
of stochasticity to exactly which cells are apoptotic at a given
moment in time and that the model would struggle to accurately
predict a rare, stochastic event. If the latter hypothesis is correct
then the model should accurately predict the frequency of apop-
totic cells at the level of the entire wing disc, as a population analysis
would dilute the impact of stochasticity.

We therefore conducted a logistic regression analysis on the
number of cells that are undergoing apoptosis versus the number that
are non-apoptotic at competing Minute patch borders (Supplemen-
tary Data 3). The set of predictor variables used for this analysis was
updated as shown in SupplementaryData 3, as some of the parameters
used in the prior model were unsuited to this analysis. As this analysis
was less computationally expensive, we could use anexpandeddataset
corresponding to 183 wing discs from 17 separate dissections. The
resulting analysis predicts the number of apoptotic and non-apoptotic
loser cells at RpS3+/− patch borders in eachwing disc with a Nagelkerke
pseudo-R2 value of 0.9988 – indicative of an excellent fit between
model and data. These results together indicate that, while rates of
loser cell apoptosis increase according to several predictor variables,
precisely which cells will undergo apoptosis is a stochastic process.
The goodness-of-fit between this model and the data further indicates
that this set of predictor variables provides a robust and comprehen-
sive assessment of the parameters dictating levels of loser cell death at
competing borders.

With this second analysis, we were furthermore able to evaluate
how consistent metrics of cell competition are across experimental
replicates, using both classical univariate and multiple logistic

regression-based techniques (Fig. 6g, h, Supplementary Data 3).
Replicates showed a degree of variability in the proportion of the
pouch covered by RpS3+/− in these datasets (Fig. 6g). This is to be
expected, as loser patches in this system are induced in a semi-
stochastic fashion by heat-shock induction. These replicates, however,
exhibited a high level of consistency at the level of border cell death,
with only two of seventeen datasets – 3/9/19 and 9/8/20 - showing
significant deviation from the base-mean, as determined via a
Mann–Whitney U-test with an FDR p-adjustment and Cliff’s δ effect
size comparison (Fig. 6h). These data indicate that competitive loser
cell death in Minute cell competition is a robust metric of cell com-
petition that is refractory to noise across replicates.

A PECAn-enabled RNAi screen identifies genes influencing min-
ute cell competition
Having validated the accuracy and sensitivity of the PECAn pipeline in
detecting and measuring Minute cell competition and having thor-
oughly tested MiWO as a tool for single cross induction of competing
Minute cells expressing UAS-driven genes of interest, we sought to use
them combined as a screening platform to identify genes involved in
Minute cell competition.

We have previously shown that, even in the absence of cell
competition, RpS3+/− cells and cells mutant inMahj−/− (a functionally
unrelated loser mutation) express a common signature of differ-
entially expressed genes, relative to wild-type cells17. Many of these
genes are predicted targets of CncC, the fly ortholog of the tran-
scription factor Nrf2, which we have shown to be sufficient to
induce the loser status17. This suggests that Nrf2 target genes
expressed in RpS3+/− and Mahj−/− cells may modulate cell competi-
tion. Thus, we carried out RNA-seq of Nrf2 overexpressing wing disc
cells and identified a list of putative Nrf2 targets (Supplementary
Data 4). We then focused on the intersection of genes that are dif-
ferentially expressed in all three loser inducing conditions (RpS3+/−,
Mahjong−/− and Nrf2 overexpression) and specifically at those genes
that are upregulated, as Nrf2 is a transcriptional activator (Fig. 7a).
This identified a list of 121 genes upregulated in all prospective loser
conditions (Fig. 7a and Supplementary Data 5). We then ordered all
available RNAi fly lines against those genes from VDRC’s KK library
(91 lines, corresponding to 87 genes) and used them to carry out a
targeted RNAi screen to assess the impact of silencing those genes
on Minute cell competition. Upon completion of the screen, we
quantified all datasets created using PECAn. Each batch carried its
own reference Minute cell competition control in which MiWO tool
was crossed to the recommended control by VDRC corresponding

Fig. 4 | CompetingRpS3+/− losers exhibit a further growth disadvantage inmale
wing discs. a Representative images of wing discs containing RpS3+/− losers (green)
generated using the MiWO system competing against wildtype winners (unla-
belled) and immuno-stained for cleaved-Dcp-1 (red). Wing discs were derived from
female (top left) or male (top right) larvae (who inherited the rescuing construct
from their mothers) or from two separate dissections of female larvae who inher-
ited the rescuing construct from their fathers (bottom left and bottom right).
b Quantification of RpS3+/− pouch coverage in wing discs as in (a), with mean and
95% CI shown. Statistics reflect two-sided t-tests without adjustment for multiple
comparisons with un-pooled Cohen’s d effect size. Biologically independent sam-
ples per replicate are as follows: replicate 1: nFemales, MiWO Mat. = 16, nMales, MiWO

Mat. = 6, nFemales, WT Mat. (1) = 16, nFemales, WT Mat. (2) = 12; replicate 2: nFemales, MiWO

Mat.= 14, nMales, MiWO Mat.= 10, nFemales, WT Mat.= 8; replicate 3: nFemales = 18, nMales = 15.
c Quantification of the percentage of cells undergoing apoptosis at the RpS3+/−

patch border in wing discs as in (a), with mean and 95% CI shown. Statistics reflect
two-sided Wilcoxon–Mann–Whitney U-test without adjustment for multiple com-
parisons. Biologically independent samples per replicate are as follows: replicate 1:
nFemales, MiWO Mat. = 16, nMales, MiWO Mat. = 6, nFemales, WT Mat. (1) = 16, nFemales, WT Mat.

(2) = 12; replicate 2: nFemales, MiWO Mat. = 14, nMales, MiWO Mat. = 10, nFemales, WT Mat.= 8;
replicate 3: nFemales = 18, nMales = 15. d Representative images of wing discs from
female (left) or male (right) larvae containing RpS3+/+ cells (green) in a background

of unlabelled RpS3+/+ cells carrying a third copy of the RpS3 gene (act >RpS3>Gal4)
and stained for DAPI (blue). eQuantification ofRpS3+/+ cell coverage inwing discs as
in (d), with mean and 95% CI shown. Statistics reflect two-sided t-test with un-
pooled Hedges g effect size. Biologically independent samples per replicate are as
follows: replicate 1: nFemales = 13, nmales = 10; replicate 2: nFemales = 19, nmales = 19.
f Representative images of wing discs from female (left) or male (right) larvae
containingRpS3+/− losers (green) andwildtypewinners (unlabelled) stained forDAPI
(blue). gQuantification of RpS3+/− pouch coverage in wing discs as in (f), with mean
and 95%CI shown. Statistics reflect two-sided t-test with un-pooled Hedges g effect
size. Biologically independent samples per replicate are as follows: replicate 1:
nFemales = 15, nmales = 16; replicate 2: nFemales = 16, nmales = 15; replicate 3: nFemales = 19,
nmales = 18; replicate 4: nFemales = 23, nmales = 20. h Representative images of wing
discs from female (left) or male (right) larvae containing RpL27A+/− losers (green)
competing against wildtype winners (unlabelled) and stained for DAPI (blue).
iQuantificationof loser patch coverage inwingdiscs as in (h),withmeanand95%CI
shown. Statistics reflect two-sided t-test with un-pooled Hedges g effect size. Bio-
logically independent samples per replicate are as follows: replicate 1: nFemales = 30,
nmales = 30; replicate 2: nFemales = 21, nmales = 21; replicate 3: nFemales = 25, nmales = 31.
Scale bars correspond to 50 µm. Source data are provided as a Source Data file. ♀
symbol denotes females, ♂ denotes males, ♀/♂ denotes males who inherited the
MiWO construct from their mothers.
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to the RNAi lines tested (see Methods). As a quality control step, all
reference controls were pairwise compared to all other control
groups for both RpS3+/− pouch coverage and cell death metrics via
two-tailed Wilcoxon–Mann–Whitney U-test. Those control groups
which were scored as significantly different relative to the majority
of other control groups were considered outliers, and these con-
trols were discarded along with their corresponding batch. From
the resulting 80 experiments (Supplementary Data 6), we identified
15 gene hits, which showed a statistically significant effect on RpS3+/−

pouch coverage and/or RpS3+/− border death, as determined via a
Mann–Whitney U-test with an FDR p-adjustment (Fig. 7b). Impor-
tantly, due to the use of automated image analyses afforded by
PECAn, to the best of our knowledge, this is the first cell competi-
tion screen reported to use competitive death, in addition to patch
size, as a screening parameter. This allowed us to identify RNAi

conditions that affect competitive death without necessarily
affecting patch size (Fig. 7b), as is the case for the RNAi of the
initiator Caspase, Dronc (Fig. 3h, i). One of the 15 hits was Xrp1,
which has been previously implicated in Minute cell competition18,19

and therefore acted as positive control. To further confirm the
validity of the screen, we chose a subset of five of the hits (four that
worsened cell competition metrics and one that rescued) to test
reproducibility of the screen results: Glutamate-cysteine ligase-cat-
alytic subunit (Gclc), Glutamate dehydrogenase (Gdh), Abrupt (ab),
Vajk2, and Zormin. For all of these genes, replication of these
experiments confirmed the results from the screen (Fig. 7c),
therefore confirming these RNAi lines as robust hits for modulators
of Minute cell competition, the characterisation of which will be
described elsewhere. Thus, the use of PECAn and of this screening
methodology has yielded several promising cell competition leads.
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Fig. 5 | RpS3+/− cells exhibit higher levels of cell death during cell competition
than in a non-mosaic context. a Wing discs carrying a mosaic anterior compart-
ment (identified by the anterior fate marker, Ci, shown in white) containing com-
peting RpS3+/− (red) and wildtype (unlabelled) cells and a posterior compartment
(negative for Ci) that is entirely RpS3+/−

. These samples were assessed for cell death
via a staining for cleaved-Dcp-1 (green) and analyzed using PECAn. b PECAn output
images identifying Minute cells in the anterior (orange) and posterior (cyan) com-
partments (left), the regions of the image positive for the Dcp-1 staining (middle)
and the counts of individual Dcp-1-positive cells (right). c Output graphs and

statistical tests generated by PECAn showing the density of Dcp-1-positive cells in
the non-competing posterior compartment as compared to the RpS3+/− patch
border in the anterior compartment for three separate experimental replicates,
wherein each dot corresponds to an individual wing disc. Box and whisker plot
denotes minimum, first quartile, median, third quartile, and maximum. Statistics
reflect 2-sided Wilcoxon signed rank test with Cliff’s δ effect size metric. Biologi-
cally independent samples per replicate are as follows: replicate 1: n = 7; replicate 2:
n = 9; replicate 3: n = 11. The scale bars correspond to 50 µm. Source data are pro-
vided as a Source Data file. Ci Cubitus interruptus, RFP = red fluorescent protein.
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Fig. 6 | Multiple logistic regression of competing wing discs reveals tissue
parameters influencing loser cell death. a–f Predicted effects plots of logistic
regression analysis of individual cells in competing wing discs shown in Supple-
mentary Data 2. In these, the probability of cell death is plotted against the pouch
volume (a), the total number of RpS3+/− loser cells in the sample (b), the number of
Dcp-1-positive wildtype winner cells in the sample (c), the Z-level of the cell (d), the
distance of the cell from the centre of the pouch (e), and the distance of the cell
from the loser patch perimeter (f). The plots in (a–f) show the expected probability
of apoptosis upon changing a given predictor variable – the distance of the cell
from the patch perimeter, whilst all other predictors are set to their mean value.
Pale blue region denotes the 95% confidence interval, and black tick marks on the
x-axis denote observed values in the dataset. The red dashed line in (f) is at 8 µm,
which corresponds roughly to 2 cell diameters from the patch border anddenoting
the patch border/patch centre cut-off used in other analyses in this study.
g, h Comparison of replicates/experiments used in the logistic regression analysis
shown in Supplementary Data 3. g The percent loser patch coverage of the wing

disc pouch region for each wing disc is shown on the y-axis, while the x-axis shows
the replicate/experiment to which they belong, labelled by the date. p-values and
g-values reflect two-sided student’s t-tests with FDR correction andHedges’ g effect
size metrics relative to the basemean. Measure of center and error bars are shown
as mean and 95% CI, respectively. Biologically independent samples are, in order
from left to right, n = 8, 10, 10, 13, 10, 8, 7, 9, 15, 15, 9, 12, 16, 16, 12, 8, 5. h The
percentage of Dcp-1-positive loser cells is shown for each replicate/experiment.
Statistics reflect either a two-sidedMann–WhitneyU-testwith FDRcorrection along
with Cliff’s δ effect size metric, relative to the basemean (no border) or the logistic
regression analysis along with odds ratio effect size metrics (OR) shown in Sup-
plementary Data 2 (red border). Measure of center and error bars are shown as
mean and 95%CI, respectively. Biologically independent samples are, in order from
left to right, n = 8, 10, 10, 13, 10, 8, 7, 9, 15, 15, 9, 12, 16, 16, 12, 8, 5. Datasets that were
outliers by Mann–Whitney U-test are shown in blue, and red asterisks reflect
datasets that had significant p-values by logistic regression but did not meet the
effect size cut-off. Source data are provided as a Source Data file. OR odds ratio.
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Discussion
Clonal analysis techniques in situ provide unique and powerful meth-
ods for probing the behaviour of and interactions between hetero-
geneous cell populations. The challenges of extracting meaningful

data from these samples, however, limits the speed, consistency,
sensitivity, throughput andqualitywithwhich researchers can conduct
these experiments, leading to under-analysed datasets, operator
dependent variability/reproducibility issues, and low statistical power.
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Fig. 7 | A PECAn-poweredRNAi-based screen identifies a list of cell competition
genes. a Schematic showing how target genes were identified. Initial hits were
identified as those which were upregulated relative to the wildtype in wing discs
heterozygous mutant for one of either of two loss-of-function alleles for RpS3 and
in homozygousMahjongmutant wing discs. These initial hits were then refined by
comparing them against genes upregulated in a third prospective loser condition,
wingdiscsmildlyoverexpressingNrf2. Of these 121genes,weobtained91RNAi lines
from the VDRC KK collection targeting 87 genes. b List of gene hits identified as
candidate modulators of cell competition in the screen. MiWO wing discs expres-
sing an RNAi were compared against control MiWO discs for both percent pouch
coverage and percent cell death coverage at RpS3+/− patch borders. Hits were
identified as thosewhichyielded a statistically significant effect, asdetermined via a
Wilcoxon–Mann–Whitney U-test with FDR p-adjustment, on either parameter.

c Post-screen validation of a subset of gene hits, showing replication of screen
results for RNAi’s targeting ab, Gclc, Gdh, or Vajk2, which exacerbate RpS3+/− cell
competition and Zormin, which alleviates RpS3+/− cell competition. Statistics for the
percent patchcoverage reflect two-sided student’s t-testwith anun-pooledHedges’
g effect size metric, and statistics for the percent caspase coverage of the border
reflect two-sidedWilcoxon–Mann–WhitneyU-testswith aCliff’sδ effect sizemetric.
Box and whisker plot denotes minimum, first quartile, median, third quartile, and
maximum, whereas red diamond and whiskers denote mean and 95% CI. Biologi-
cally independent samples per condition are as follows: Abrupt: ncontrol = 15,
nRNAi = 15; GCLC: ncontrol = 11, nRNAi = 12; Gdh: ncontrol = 8, nRNAi = 5; Vajk2: ncontrol = 9,
nRNAi = 7; Zormin: ncontrol = 14, nRNAi = 10 (replicate 1), ncontrol = 10, nRNAi = 10 (repli-
cate 2). Source data are provided as a Source Data file.
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To address this, we have created a complete high-throughput image
and data analysis pipeline for the 3D analyses of mosaic samples. This
pathway is approachable and user-friendly even to biologists without
programming or image analysis expertise. The underlying code is
written in the powerful yet approachable Jython/Python and R lan-
guages, and researchers with programming experience will be able to
readily incorporate other tools and algorithms into the pipeline. The
software furthermore generates clear visual outputs of all measure-
ments performed, allowing users to readily tailor the analyses to their
samples.

The identification of a previously undescribed sexual dimorphism
inminute cell growth in competingwingdiscs also highlights theutility
of a high-throughput analysis approach. As the field generally has not
accounted for gender before, this one factor might contribute to
contrasting data seen in prior cell competition findings, and it may
hamper sensitivity and discovery power. This is particularly relevant in
screens for cell competition genes, where clone size is normally the
parameter of choice34–36, given that more labour-intensive analyses,
such as for competitive death, cannot be carried out at scale, in the
absence of an automated analysis tool like the one here presented. It
remains unknown what mechanism accounts for this dimorphism: for
instance, this difference in growth rates need not result from an
explicit winner/loser interaction and could be due to differences in
circulating levels of ligands. For instance, this difference could result
from a sexual dimorphism in circulating levels of Unpaired ligands in
Drosophila22, signalling molecules which have been implicated in reg-
ulating both loser and winner cell growth and proliferation during
competition17,37. It is not known whether the sexual dimorphism we
describe reflects an effect on cell competition or whether it is due to
autonomous differences in growth rates of Minute cells in males and
females, which reveal themselves in a mosaic context. Irrespective of
this, we suggest that studies of cell competition should account for
gender in experiments evaluating for growth and clone coverage.

It is furthermore interesting thatweobserve an enrichment of p62
foci in RpL27A+/− loser cells, which contradicts a prior report26. This
discrepancy may be due to the nature of the mutations used, as we
used an allele (RpL27A1) different from the one (Df(2 L)M24F11) used in
the previous study. As proteotoxic stress has been observed in RpS3,
RpS23, RpS26, and Mahj mutants, a genetically unrelated though phe-
notypically similar mutation resulting in cell competition13,14, our data
showing that it is also found in RpL27A cells argue that proteotoxic
stress is not exclusively a phenotype of small ribosomal subunit
mutations.

A further advantage of this pipeline is that, with its built-in cell
segmentation tools, it enables direct counts of apoptosing and non-
apoptosing cells. Such an approach enables the use of more powerful
and informative statistical techniques and analyses, such as those
presented in this manuscript. These analyses have enabled us to
investigate the parameters of competitive cell death with a high level
of quantitative rigour.

The RNAi screen presented in this manuscript serves as a
demonstration of the power of PECAn as a quantitatively rigorous and
sensitive screeningplatform. It alsoprovides a list of geneswhichmerit
further investigation, and which will likely lead to important advances
in the mechanistic understanding of Minute cell competition. Impor-
tantly, some of the targets identified influence loser cell death without
any corresponding effect on the size of loser patches. As prior cell
competition screens have scored for conspicuous visible changes in
clone size, these targets would likely not have been detected using
prior screening methodologies.

Though the majority of these genes have not been previously
implicated in Minute cell competition, many are involved in pathways
which have previously linked to this process. For instance, Pisd38 and
Gdh39 are genes with metabolic roles, and metabolic changes and
signals have been shown to be essential in forms of cell competition

and supercompetition40,41. Xpc42 and Ude43 are involved in the DNA
damage response, a process which has repeatedly been linked to cell
competition17,44,45. The tools, analyses and gene datasets presented in
this manuscript therefore will boost progress in our understanding of
cell competition.

Methods
Ethical statement
We have complied with all ethical regulations for Drosophila melano-
gaster animal studies research, which are exempt from the Animals
(Scientific Procedures) Act.

Software development
The Pipeline for Enhanced Clonal Analysis (PECAn) software was
designed in the script editor of ImageJ299 FIJI version 1.53d9. All code
was written in the Jython 2.7.2 programming language. In addition to
base FIJI packages, the Bio-Voxxel, MorphoLibJ11, and the IJ-plugins
toolkit were used. The R shiny analysis application was made in
RStudio using R3.6.3 and shiny 1.5.0. The analysis app uses the fol-
lowing external libraries: PerformanceAnalytics, ggplot2, boot,
MASS, car, RColorBrewer, ggpubr, markdown, ggsignif, rhandson-
table, msm, dplyr, magrittr, ICSNP, mvnormtest, psych, corrplot,
rcompanion, stringr, effsize, sandwich, ggthemes, shinyBS, reshape2,
and effects. A list of statistical tests along with their associated R
function is provided in Table 1. The software, source code, sample
images, and instructional videos are provided in the supplementary
electronic materials.

Table 1 | Statistical packages incorporated into PECAn
analysis tool

Test Function Package

Wilcoxon Signed Rank compare_means ggpubr v0.4.0

Wilcoxon Rank Sum compare_means ggpubr v0.4.0

Student’s t-test compare_means ggpubr v0.4.0

Paited t-test compare_means ggpubr v0.4.0

Kruskal-Wallis compare_means ggpubr v0.4.0

ANOVA compare_means ggpubr v0.4.0

Shapiro-Wilks shapiro.test stats v3.6.2

Fligner-Killeen fligner.test stats v3.6.2

Fisher’s exact fisher.test stats v3.6.2

Cliff’s delta fliff.delta effsize v0.8.1

Cohen’s d cohen.d effsize v0.8.1

Hedge’s cohen d effsize v0.8.1

Spearman’s rho cor.test stats v3.6.2

Pearson’s r cor.test stats v3.6.2

Kendall’s Tau cor.test stats v3.6.2

P-adjustments p.adjust stats v3.6.2

Correlation matrix chart.Correlation PerformanceAnalytics v2.0.4

Multiple linear regression Lm stats v3.6.2

Logistic regression Glm stats v3.6.2

Poisson regression Glm stats v3.6.2

Negative binomial
regression

glm.nb MASS

Variance inflation factors Vif car v3.0-10

Durbin-Watson Test durbinWatsonTest car v3.0-10

Non-constant variance
of error

ncvTest car v3.0-10

Nagelkerke pseudo-R2 Nagelkerke rcompanion v2.3.26

Cox and Snell pseudo-R2 Nagelkerke rcompanion v2.3.26

McFadden pseudo-R2 Nagelkerke rcompanion v2.3.26
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Fly husbandry and RpS3+/− cell induction
All flies were reared on wheat-based food prepared according to the
following recipe: 7.5 g/L agar powder, 50g/L baker’s yeast, 55 g/L glu-
cose, 35 g/L wheat flour, 2.5% nipagin, 0.4% propionic acid and 1.0%
penicillin/streptomycin, and all experimental crosses were kept in an
incubator at 25 °C. The parent cross was allowed to lay eggs for 24 h,
and all dissections were performed on larvae at the wandering third
instar stage, 6 days after the start of egg laying. RpS3+/− cell induction
was accomplished using a heat-shock inducible FLP recombinase by
placing fly vials in a water bath set to 37 °C. Specific heat shock timings
and durations are listed in Supplementary Data 7. For RpS3+/− cells
expressing temperature-sensitive constructs, fly vials were transferred
to a water bath set to the specified temperature immediately following
heat shock and were then dissected as normal. All conditions com-
paredwithinanexperimentwereprocessed inparallel at the same time
(e.g. eggs collected in the same 24 h window, crosses heat shocked at
the same time and dissected at the same time). This includes com-
parisons betweenmale and females, which were always taken from the
same vial. Experimental genotypes, and RpS3+/− cell induction condi-
tions are listed in SupplementaryData 7. Additional stepswere taken to
ensure consistency during performance of the screen. First, to mini-
mise temperature fluctuations all experimental crosses were kept in a
waterbath set to 25 °C. Furthermore, to control for genetic back-
ground and batch to batch variability, every batch had, as internal cell
competition reference, a control cross where a relevant landing site
control fly line from the KKRNAi collection,matched to the RNAi lines,
was used. The control lines usedwere either the VDRC attP control line
(cat#60100), when the RNAi line tested had an insertion only in the
host strain attP site at the cytological location 30B, or the VDRC 40D-
UAS control line (cat#60101), when the RNAi line testedwas inserted in
both host strain attP sites, at the cytological locations 30B and 40D.

The following fly stocks were used: RpS3Plac92 (cat#BL5627) and
RpL27A1 (cat#BL5697), (Bloomington Drosophila Stock Centre), UAS-
Xrp1-RNAi (cat#107860), attP control line (cat#60100), 40D-UAS con-
trol line (cat#60101), and UAS-Dronc-RNAi (cat# 100424) were
obtained from the Vienna Drosophila Resource Centre. yw, UAS-myr-
RFP, and hs-FLP;;FRT82B were provided by Daniel St. Johnston, hh-
Gal4/TM6bwas providedby Jean-Paul Vincent.w + /w-; tub >CD2>Gal4,
UAS-CD8-GFP; tub-Gal80ts was provided by Bruce Edgar, and the
tub»>>Gal4 driver was generated by flipping out this stock. UAS-Nrf2
was described in46. hs-FLP, UAS-CD8-GFP;; RpS3[Plac92], act >
RpS3>Gal4/TM6b was described in14. Xrp1-LacZ was provided by
Nicholas Baker18. All RNAi lines used in the screen are provided in
Supplementary Data 6.

RNA sequencing
RNA sequencing was performed as described in17. For the Nrf2 over-
expression condition, larvaewere of the following genotype:hs-FLP / +;
tub»>>Gal4, UAS-CD8-GFP / + ; UAS-nrf2 / tub-Gal80ts. For the control
condition, larvae were of the following genotype: hs-FLP / +; tub»>>-
Gal4, UAS-CD8-GFP / +; tub-Gal80ts/ +, Larvaewere reared asnormal but
were maintained in a water bath set to 28 °C. L3 wandering females
were selected.

Dissection, fixation, and immunofluorescence
All larvae were washed once and then dissected at room temperature
in phosphate-buffered saline (PBS). Hemi-larvae were then immedi-
ately transferred to pre-chilled PBS on ice and then fixed in 4% for-
maldehyde for 20min at room temperatureon a nutatingmixer. Hemi-
larvae were subsequently permeabilized for 20min in room tem-
perature 0.25% Triton X-100 in PBS (PBST) followed by a 30-min
blocking step in 4% foetal bovine serum in PBST. Rabbit anti-DCP-1
antibody (Cell Signalling, cat#9578 S) was diluted 1:2500 in blocking
buffer, and primary incubations occurred overnight at 4 °C on a
rocker. Larvaewere thenwashed three times for at least 10min in PBST

at room temperature. Secondary antibody and DAPI were diluted in
blocking buffer, and hemi-larvae were incubated in secondary anti-
body for a minimum of 45min at room temperature, followed by 3X
additional 10-min PBST washes and then mounted in VectaShield
mounting medium and sealed with a coverslip and nail varnish. Rabbit
anti-p-eIF2α (Cell Signalling, cat#3398 T) and mouse anti-beta galac-
tosidase (Promega, cat#Z3784), mouse anti-beta galactosidase (Pro-
mega, cat#Z3781), were used at a concentration of 1:500 using the
same protocol. Rat anti-Ci (DSHB #2A1) was used at a dilution of
1:1000, rabbit Rabbit anti-p62 (1:2,000) was provided by Tor Erik
Rusten47 and immunostaining was performed as in14. Secondary anti-
bodies used were donkey anti-rabbit IgG Alexa Fluor 555 (1:500,
ThermoScientific, cat#A31572), donkey anti-rabbit IgGAlexa Fluor 488
(1:500, Thermo Scientific, cat#A21206), goat anti-rat IgG 647 (1:500,
Thermo Scientific, A21247), goat anti-mouse IgG 555 (1:500, Thermo
Scientific, A21127).

Image acquisition
All slides were imaged on Leica SP-5 or SP-8 confocal microscopes
using a 40x, 1.3 numerical aperture PL apochromatic oil immersion
objective with Leica type F fluorescence immersion oil. LAS AF
2.7.3.9723 software was used for image acquisition. Wing discs were
imaged at 1.4x digital zoom over the entire pouch region, with Z-steps
corresponding to 1 µm, with the exception of the datasets in Fig. 4d–g
and Supplementary Fig. 4, wherein only single Z-planes were acquired,
as no evaluationof cell deathwas performed. All imageswere captured
as 8-bit images at either 512×x512 or 1024×x1024 resolution using LAS
X software.

Time to pupariation assay
Flies from experimental crosses were allowed to lay eggs on normal fly
food for 24 h. Tubes containing eggs were maintained in a 25 °C
incubator. Emerging pupae were scored over time. Each genotypic
condition was scored in 5-6 independent repeats. The number of
pupae was normalised to the total amount of pupae per vial and
plotted as the cumulative fraction of pupariating larvae per time. The
data points were fitted with a sigmoid function using a nonlinear least
squares method as in17.

Statistics and reproducibility
For univariate statistics, parametric assumptions were evaluated using
a Shapiro-Wilks normality test and a Fligner-Kileen homogeneity of
variance test. If parametric assumptions were satisfied, a two-tailed
student’s t-test was performed along with a Cohen’s d or Hedge’s g
effect size. If assumptions were violated, a two-tailed Mann–Whitney
U-test was performed along with a Cliff’s δ effect size. A pairwise two-
tailed Wilcoxon signed-rank test was performed on wing discs with a
competing anterior and non-competing posterior compartment, as
the datasets were paired, and assumptions were violated. Manual
quantifications used for validation of the pipeline were made in FIJI
1.53d and statistical tests were run in Graphpad Prism 9.5.1 using the
same workflow.

For the multiple logistic regression analysis shown in Fig. 6, the
dependent variable was, for each RpS3+/− cell in all wing discs, whether
or not the cell was undergoing apoptosis, as determined using com-
bined single cell and foci segmentation in PECAn. Multiple logistic
regressionswere then performed in PECAn considering a range of non-
multi-collinear terms (as determined by a variance inflation factor
below 5) within the PECAn data outputs, and we filtered between
alternate models by selecting for the lowest Akaike information cri-
terion. Data transformations were considered but were not seen to
noticeably improve themodel. To correct formultiple comparisons, p-
values were adjusted using the False Discovery Rate (FDR) technique.
The same optimization was performed for the logistic regression
analysis shown in Supplementary Data 3, however the dependent

Article https://doi.org/10.1038/s41467-023-38287-x

Nature Communications |         (2023) 14:2686 14



variable was instead the number of apoptotic vs. non-apoptotic cells in
the loser patch border for each wing disc. Source data for all quanti-
fications and replicates is provided in the Supplementary Source Data
File. For all experiments, no statistical method was used to pre-
determine sample size. No data were excluded from the analyses, and
researchers were not blinded to allocation during experiments and
outcome assessments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper and are available as a source
data file. The RNA-sequencing dataset generated in this study have
been deposited in the Gene Expression Omnibus repository with the
accession number of GSE181165, the SRA accession number is
SRP330534. Source data are provided with this paper.

Code availability
All code generated for this manuscript are publicly available and can
be downloaded at GitHub at the following link48 https://github.com/
mebaumgartner/Michaels_Magic_Macro. The statistical analysis web
app can be accessed at: https://michaelbaumgartner.shinyapps.io/
Macro_Analysis_App/. The FIJI plugin can also be installed using the
following update site: http://sites.imagej.net/PECAn/. Tutorial videos
are available on Youtube: https://www.youtube.com/playlist?list=
PLUx1yCRUR0JxCuzEyXeNh_YmceS7YfpCg.
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