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Genetics implicates overactive osteogenesis
in the development of diffuse idiopathic
skeletal hyperostosis

Anurag Sethi 1 , J. Graham Ruby1, Matthew A. Veras 1, Natalie Telis1 &
Eugene Melamud 1

Diffuse idiopathic skeletal hyperostosis (DISH) is a condition where adjacent
vertebrae become fused through formation of osteophytes. The genetic and
epidemiological etiology of this condition is not well understood. Here, we
implemented a machine learning algorithm to assess the prevalence and
severity of the pathology in ~40,000 lateral DXA scans in the UK Biobank
Imaging cohort. We find that DISH is highly prevalent, above the age of 45,
~20% of men and ~8% of women having multiple osteophytes. Surprisingly, we
find strong phenotypic and genetic association of DISH with increased bone
mineral density and content throughout the entire skeletal system. Genetic
association analysis identified ten loci associatedwithDISH, includingmultiple
genes involved in bone remodeling (RUNX2, IL11, GDF5, CCDC91, NOG, and
ROR2). Overall, this study describes genetics of DISH and implicates the role of
overactive osteogenesis as a key driver of the pathology.

Musculoskeletal conditions are the largest contributor to years lived
with disability worldwide, often due to reduced mobility with age.
Within musculoskeletal conditions, DISH is the second most common
form of arthritis after osteoarthritis occurring in ~23% ofmen and ~13%
of women over age 501. It is characterized as a non-inflammatory
spondyloarthropathy manifesting in ectopic calcification of spinal
tissues. Unlikemany types of arthritis, DISH occurs more often in men
than women, affecting about 1.5× the number of men than women2.
Yet, despite its high prevalence, health professionals are often unfa-
miliar with DISH, and it is underdiagnosed and often misdiagnosed3.

The disease is considered to be idiopathic with unknown
etiology4. As DISH is often found to be comorbid with metabolic dis-
orders, it is possible that DISH is at least partly driven by a shared
biochemical pathway withmetabolic disorders such as hyperlipidemia
and hyperglycemia. Various forms of osteoarthritis are also found in
DISH patients, and it is possible that the disease is related to bone
restructuring and cartilage loss. Drawing an analogy to Ankylosing
Spondylitis (AS)—an inflammatory spine calcification condition, it is
possible that inflammation may play a role in DISH5. Currently, there
arenodisease-modifying treatments available topatients, and canonly
be treated through surgical resection of osteophytes.

In the clinic, DISH is most commonly observed as an incidental
finding in radiological scans in non-symptomatic individuals. The
radiological diagnosis relies heavily on the severity of ossification, and
a number of diagnostic criteria have been established to determine if
the severity is sufficiently high to constitute a unique diagnosis. The
most commonly used diagnostic criteria for DISH was first developed
by Resnick and Niwayama in 19766. It defines DISH as flowing calcifi-
cations and/or ossifications along the anterolateral aspect of four
contiguous vertebral segments, without loss of IVD height in the
absence of bony ankylosis of facet joints (to specifically differentiate
from ankylosing spondylitis). However, it is increasingly recognized
that the ossification observed in DISH progresses continuously but
slowly over time leading to the development of continuous quantita-
tive measures of DISH severity7,8.

Symptomatic DISH oftenmanifests in back pain and stiffness. The
pathology is diagnosed fairly late, at the point when physical impair-
ment is so severe as to limit the motion of the thoracic spine9,10. In
advanced cases, other presentations include thoracic spine pain, dys-
phagia, and compression of the spinal cord and nerve roots11,12. DISH is
also associated with an increased risk of spinal fractures13 and post-
surgical heterotopicossifications3. Furthermore, DISHpatients have an
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increased history of upper extremity pain, and more extremity and
spinal stiffness compared tohealthy control patients. Specifically, both
bending ability and grip strength are reduced in DISH patients com-
pared to other back pain patients10.

There have been no prior GWAS studies for DISH, and to what
extent genetics contributes to the development of DISH is not known. A
single nucleotide polymorphism in the COL6A1 gene has been corre-
lated to the presentation of DISH, although only in a Japanese sub-
population which also has a strong prevalence of the related spine cal-
cification disorder OPLL14, making it difficult to ascertain the relative
contribution of this polymorphism to each disorder. Epidemiologically,
it is commonly comorbid with numerous disorders including metabolic
syndrome, cardiovascular disease, diabetesmellitus, andhypertension15,
but to what extent the genetic risks are shared is also unknown.

The availability of large-scale DXA imaging in the UK Biobankwith
corresponding genetics and biochemistry data for all individuals pro-
vides a unique opportunity to uncover risk factors and genetic drivers
of the disease. As DISH is severely underdiagnosed, we first trained a
machine learningmodel to automatically detect osteophytes in lateral
DXA scans. We then scored the severity of pathology and carried out
both phenotypic and genetic characterization of pathology across
~40,000 participants. We show that pathology is severely under-
diagnosed and highly prevalent. We also find that increased bone
mineral density across the whole skeletal system was among the
strongest predictors of DISH and that several musculoskeletal traits
share a common genetic architecture with DISH. We further carry out
GWAS, fine map and functionally annotate potential loci involved in
the formation of DISH. Overall, our analysis puts forward a hypothesis
that overactive osteogenesis plays a key role during the development
of DISH. We further support this hypothesis using Mendelian Rando-
mization (MR) technique to test for a causal association between gene
expression and the development of DISH (outcome).

Results
Predicting prevalence and severity of DISH using machine
learning
In our analysis we quantify the extent of osteophyte bridge formation
across all visible vertebrae in the ~40,000UKBiobank lateral-viewDXA
scans using a continuous measure of DISH severity (flow score)
developedbyKuperus et al.7. The baseline characteristics of the cohort
are listed in Table 1. DISH flow scores are useful for detecting DISH at
the early stages of development aswell as for early diagnosis of DISH16.
To detect osteophyte formation in large imaging datasets, we auto-
mated themanual annotation of the DISH flow score by developing an
object-detection and multi-category classification machine learning
(ML) pipeline.

In the first step, the ML model detects the anterior side of
each intervertebral disc space. The fourteen highest-confidence
regions between C1 and L4 were used to define sub-images that were
individually fed to an image-classification ML model, with categories
corresponding to flow scores of zero (absence) to three (completely
fused), see Fig. 1A. The scores corresponding to those categories
were summed across all the vertebrae in each spine to produce an
aggregate score per participant—the DISH Flow score. Representative
images with corresponding ML scores are shown in Supplemen-
tary Fig. 4.

To create an independent validation dataset to evaluate the per-
formance of the ML model, three annotators manually inspected 300
DXA scans at each intervertebral disc region and carried out aggregate
flow score calculation. There was strong inter-curator agreement
(Correlation > 0.8). The machine learning pipeline performed well
(Fig. 1B), matching the accuracy of human annotators (Correlation >
0.8, p value = 8.5e−42, Supplementary Fig. 3). A detailed description of
ML Methods can be found in the Supplementary Note 1 and code
repository github.com/calico/DISH.

A number of related skeletal disorders are also known to form
osteophytes and fusions between vertebrae (such as Ankylosing
spondylitis and Spondylosis). These conditions are specifically differ-
entiated from DISH based on the criteria that osteophytes in DISH are
not accompanied by a reduction of intervertebral disc spacing and a
threshold of three complete osteophyte fusion events of three adja-
cent vertebrae6. DISH flow scores are a more continuous measure of

Table 1 | Baseline characteristics of imaging subcohort

UK biobank
cohort baseline
visit (2008–2010)

Imaging sub-
cohort baseline
visit (2008–2010)

Imaging sub-
cohort first
imaging
visit (2014+)

n 502,604 40,346 40,346

Age (years) 56.3 (8.1) 55.0 (7.5) 63.7 (7.6)

% Females 54.40% 51.70% 51.70%

BMI 27.43 (4.80) 26.54 (4.40) 26.61 (4.80)

Smoker (current) 10.50% 6.36% 3.55%

Smoker
(previous)

34.50% 32.96% 33.84%

Comorbidities

% Hypertension 7.88% 6.44% 16.83%

% T1D 0.42% 0.26% 0.38%

% T2D 1.83% 1.57% 3.86%

% CKD 0.13% 0.71% 1.96%

% Dorsalgia 15.56% 10.31% 15.01%

% Scoliosis 0.81% 0.32% 0.49%

% Ankylosing
Spondylitis

0.41% 0.21% 0.32%

% Kyphosis 0.19% 0.02% 0.05%

% Spondylosis 0.07% 0.03% 0.04%

% Knee
Osteoarthritis

8.72% 1.38% 3.96%

% Hip
Osteoarthritis

5.07% 0.20% 0.62%

% DISH EHR 0.0085% 0.0024% 0.0024%

Biomarkers

Glucose
(mmol/L)

5.12 (1.24) 4.99 (1.24)

HbA1c
(mmol/mol)

35.2 (6.78) 35.0 (6.78)

Trig (mmol/L) 1.75 (1.45) 1.65 (1.03)

LDL (mmol/L) 3.56 (0.87) 3.58 (0.87)

HDL (mmol/L) 1.45 (0.38) 1.47 (0.38)

Cholesterol
(mmol/L)

5.69 (1.14) 5.72 (1.14)

Serum Phos-
phate (mmol/L)

1.16 (0.16) 1.16 (0.16)

Serum Calcium
(mmol/L)

2.38 (0.09) 2.38 (0.09)

Serum Creati-
nine (umol/L)

72.31 (18.55) 72.34(18.55)

Cystatin C
(mg/L)

0.91 (0.18) 0.87 (0.12)

VitD3 (nmol/L) 48.61 (21.11) 49.73 (21.11)

Baseline characteristics of the UK Biobank cohort and the imaging subcohort. The following
second level ICD10 codes from the electronic health records of all participants were used to
identify the number of participants with different comorbidities prior to the appropriate visit to
the center: I10 - Hypertension, E10 - Type 1 Diabetes (T1D), E11 - Type 2 Diabetes (T2D), N18 -
Chronic Kidney Disease (CKD), M54 - Dorsalgia, M41 - Scoliosis, M45 - Ankylosing Spondylitis,
M40 - Kyphosis, M47 - Spondylosis, M17 - osteoarthritis of knee, and M16 - osteoarthritis of hip.
BMI body mass index, HbA1c - glycated hemoglobin, Trig triglycerides, LDL low density lipo-
protein, HDL high density lipoprotein. The imaging cohort revisited the centers for imaging ~8
years after the baseline visit for all UK Biobank cohort participants.
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DISH severity and do not place such restrictions on the scoring
scheme. Consequently, we assessed how our ML-generated DISH flow
scores correspond to the DISH diagnostic events as judged by two
independent expert radiologists.

To carry out this analysis, we randomly selected 20 representative
images from different ML score bins representing varying levels of
DISH severity. Experts were blinded to the ML scores, and were asked
to evaluate the presence/absence of DISH based on Resnick criteria. If
loss of vertebral spacing was observed, radiologists were asked to
further evaluate if osteophyte formation might be due to related
musculoskeletal disorders (Supplementary Data 1). The results of the
evaluation are shown in Fig. 1C. There is a strong sigmoid curve
representing the relationship between ML scores and DISH diagnoses
by experts. Approximately 50% of individuals with a score of ~12 would
qualify as having DISH by Resnick criteria, and more than 90% would
qualify above a score of 20.

DISH is severely underdiagnosed pathology
Based on these results, we applied anML scoring algorithm to ~40,000
DXA scans in theUKBiobank acquired at the first imaging visit (2014+),
and were able to estimate the prevalence of pathology in the cohort
(Fig. 2A). We estimate that ~12% of the population between the ages of
45–85 has multiple fusion events (flow score above 1 std. dev ~8,
Supplementary Fig. 5A). There is a strong nonlinear age and sex-
dependent increase in the pathology (Supplementary Fig. 5B). Above
the ageof 45, ~20%ofmenhadscores >8, and ~8%ofwomenhadscores
>8. A full breakdown of age by sex prevalence can be found in Sup-
plementary Data 2.

Based on these statistics we estimate that ~65,000 participants
(~18,000 women,~47,000 men) in UK Biobank have a moderate form
of DISH, and ~34,900 participants (~9100women, ~24,800men)would
meet Resnick criteria (see Methods). Yet, DISH remains significantly

underdiagnosed, with only 43 EHR diagnostic records in the whole UK
Biobank (ICD10 M4810-M4820, Supplementary Data 3). None of the
participants in the imaging cohort were diagnosed with DISH.

Severity of DISH is associated with pain and osteoarthritis
incidence
DISH patients are thought to suffer from joint pain, reduced flexibility,
and reduced lung function17 which are also commonly experienced by
the elderly with other forms of arthritis. Given that DISH is severely
underdiagnosed, it is important to evaluate the association of DISH
with these symptoms and other comorbidities to clarify which symp-
toms are reflective of radiologically-defined DISH.

We used data from pain questionnaires and diagnosed pre-
existing conditions during the imaging visit to assess the contribution
of DISH to thesepathologies (Supplementary Fig. 8).We find that DISH
is a strong predictor of pain—people with higher DISH flow scores are
more likely to experience neck pain (OR = 1.1 p value < 0.00114), and
have increased regular usage of non-steroidal anti-inflammatory drugs
(NSAIDs) (OR = 1.05, p value < 0.00156). However, since the use of pain
medications can be attributed to multiple underlying conditions,
whether this is specifically due to DISH or other comorbidities that
coexist with DISH is hard to determine.

More broadly we find that DISH is comorbid with a broader set of
metabolic and musculoskeletal disorders. People with higher DISH
flow scores are more likely to be diagnosed with diabetes (OR ~ 1.3),
obesity (OR ~ 1.1), mononeuropathies of the upper limb (OR ~ 1.1), and
other forms of osteoarthritis (OR ~ 1.1) (Supplementary Fig. 9).
Accordingly, individuals with DISH are more likely to have elevated
levels of Urate, C-reactive protein, Hemoglobin A1C, and triglycerides
(Supplementary Fig. 10). It has been previously shown that DISH is
linked to metabolic disorders, but the mechanism of association
remains unknown18.
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Fig. 1 | Overview of the machine learning results and validation.
A Representative images of individual osteophyte flow scores and calculation of a
total DISH score across all vertebrae. B Comparison of machine learning derived
DISH scores with median scores from three annotators in the validation dataset
(n = 300 images). The centerline of the box represents the median ML DISH score

while thewhiskers indicate the 25th and75thpercentile of theMLDISHscorewithin
that category. Individual comparison between annotators and ML scores can be
found in Supplementary Fig. 3.C Comparison ofML scores with assessment by two
expert radiologists based on Resnick diagnostic criteria for DISH. Majority of
individuals above a score of 12 have DISH based on the Resnick criteria.
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Higher bone mineral content as a risk factor for DISH
To gain a better understanding of independent risk factors that are
predictive of DISH, we constructed a univariate (see Supplementary
Note 2) and multivariate linear models of the DISH flow score using
baseline characteristics of the imaging cohort. We initially used a
Bayesian least absolute shrinkage and selection operator (LASSO)
algorithm (see Methods) to identify a set of risk factors that predict
DISH conditional on each other. DISH flow score was predicted using
a combination of metabolic, inflammatory, and musculoskeletal risk
factors (Fig. 3A). Among the most prominent risk factors are age and
male sex, as well as a number of biomarkers of metabolomics dis-
orders such as systolic blood pressure (SBP), HbA1C, BMI, as well as
multiple bone traits such as trunk BMC, L1-L4 BMC, and head BMC.

Independent associations ofDISHwith age andmetabolic disorders
have been previously reported10,19, but we were surprised to find that

DISH is associatedwith an increase in BMC. The effect of increased BMC
on DISH is similar to the effect of age on DISH (βBMC ~ 0.1 vs βAge ~ 0.12).
We repeated the correlation analysis for bonemeasurements across the
entire skeletal system (Supplementary Figs. 6 and 7) and found strong
associations of DXA-based BMD and BMC measures with skeletal sites
throughout the body.

Nevertheless, to investigate further if BMD association might
be due to unaccounted osteophyte contribution, we checked to
see if BMD association persists in sites that do not form osteophytes
such as the head and femur shaft. As can be seen in Fig. 3, the
association with BMD remains robust even in sites that do not form
osteophytes. Overall, this observation strongly suggests that
the shared etiology of BMD and DISH pathology is unlikely to
be an artifact of measurements but rather a biologically driven
phenomenon. To get a better understanding of whether these
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Fig. 2 | DISH Prevalence. A The distribution of DISH scores in the UK Biobank
Imaging cohort (~40K participants) stratified by age and gender. Men are more
likely to present with multiple osteophytes than women. There is a strong age
dependent increase in DISH scores. B Association of DISH with self reported pain
questionnaires in multivariate adjusted (age, sex, age*sex, age^2, township depri-
vation index, smoking, ethnicity) logistic model. DISH is linked to increased use of
pain medications and Neck and shoulder pain. The number of participants who
replied to these questions in the questionnaire during the imaging visit varied

widely from 2360 for stomach pains to 41,233 participants for taking pain medi-
cation and the logistic regression is performed with information from all partici-
pants who answered the questionnaire. C Association of DISH with pre-existing
comorbidities in EHR records in multivariate logistic model (same adjustments as
above). DISH is significantly linked tometabolic diseases, renal disorders and other
forms of arthritis (n = 41,233). The blue dots represent the mean effect size, the
error bars represent 95% confidence intervals.
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phenotypic correlations can be explained by shared genetics we
performed genome-wide association analysis (GWAS), genetic cor-
relation, and Mendelian randomization analysis described in the
next section.

Genome-wide associations point to overactive osteogenesis as a
key risk factor for the development of DISH
To identify common genetic variants that contribute to the risk of
developing DISH, we performed a GWAS of the DISH flow scores using

A. Physiological Predictors of DISH (Multivariate)
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Fig. 3 | DISH Bone Density Associations. A Multivariate LASSO regression iden-
tifies independent physiological predictors of DISH (n = 41,233). Only features
where 95% credible intervals do not overlap zero effect size are shown. Among the
strongest risk factors are age, sex, and various BMC measures. The blue dots
represent themean effect size, the error bars represent 95% confidence intervals in
the regression model. B Increased bone mineral density (BMD) across the entire

skeletal system is associated with increased DISH score. Plot shows age and sex
adjusted spline fits (GAM model) across multiple distal sites. Association of DISH
with BMD in the Head, Femur Shaft, and Femur Ward’s skeletal sites (areas not
known to form osteophytes) suggest that BMD is an independent risk factor for
osteophyte formation. The shaded regions represent the 95%confidence interval of
the spline fit.
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a linear mixed effect model implemented in the BOLT-LMM package.
GWASwas limited to European ancestry and adjusted for age, age2, sex,
and age × sex, as well as ancestral relatedness following best practices
as described by authors20. The plot of significant associations is shown
in Fig. 4A. Estimated SNP-based heritability is 21.6% (s.e. 1.8%). We
considered a possibility that sex-specific differences in DISH could be
falsely inducing genetic associations21, and carried sex-stratified ana-
lysis of both GWAS and genetic correlations (Supplementary Data 4
and Supplementary Fig. 12). Despite the reduction in power, we
observed consistency of genetic associations in both sexes. To estab-
lish the shared genetics between DISH and BMD/BMC, we also com-
puted GWAS for 66 bone traits quantified using DXA scans (see
Methods). The heritability of bone traits ranged from 0.2 to 0.4
(Supplementary Data 5) which is comparable to heritability of DISH
and its comorbidities (Supplementary Data 6).

As both DISH and bone traits showmoderate heritability, we then
considered the question to what extent these traits are genetically
correlated. Using LD score regression (Bulik-Sullivan, Loh, Finucane et
al., 2015), we found that DISH was strongly genetically correlated with
numerous BMDmeasures, including spine BMD (LD-score correlation
0.286), and spine BMC (LD Score correlation 0.378).Most importantly,
DISH was also significantly genetically correlated with BMD measure-
ments in distal parts of the skeleton including ribs BMD (~0.17), skull
BMD(~0.14), and arms BMD (~0.10) (Fig. 4B). The strong genetic cor-
relation betweenBMDandDISH supports a hypothesis that these traits
share genetic architecture.

To get a better understanding ofmolecular mechanisms that may
underlie genetic associations, we carried out GWAS-based gene set
enrichment using three different algorithms LDSC22, GARFIELD23, and
DEPICT24. Here we did not find significant enrichment of muscu-
loskeletal phenotypes largely due to the underrepresentation of
musculoskeletal expression and chromatin mark data in public data-
sets used by these tools. We carried outmanual annotation of genes in
proximity to GWAS signals using published literature. Summary of our

findings is reported below and Table 2, and PheWAS Supplementary
Figs. 14 and 15.

Fine mapping and colocalization of GWAS hits
To gain a better understanding of the commonmolecularmechanisms
that underlie the genetic risk of DISH and related musculoskeletal
phenotypes, we carried out fine mapping and colocalization analysis.

First, we find independent signals associatedwith DISH across the
whole genome and then identify potential causal variants within each
associated locus using a fine-mapping approach (See Methods). Here
we found 19 independent risk signals containing 340 potential causal
variants (posterior inclusion probability > 1%) within the ten loci below
the genome-wide significance threshold of 5 × 10−8 (Fig. 5). Three of
these ten loci (RUNX2, CCDC91,HAO1/TMX4/PLCB1, Table 2) have been
previously associated with the related ossification pathology of the
posterior longitudinal ligament (OPLL)25. OPLL is more prevalent in
Eastern populations and often comorbid with DISH leading to the
hypothesis that DISH and OPLL share a common genetic etiology26.
One of the SNPs was localized to the coding region of IL11, a gene
previously implicated in the development of osteoarthritis. We
also observed that a number of non-coding lead SNPs were found
in the proximity of RUNX2, GDF5, CHRDL2, ROR2, PIK3R1, and NOG -
genes previously associated with height, bone homeostasis, and
osteoarthritis27–30 (Table 2). Together, our genetic results implicate a
number of genes associated with musculoskeletal traits to also be
associated with DISH.

Second, we performed colocalization analysis with UK Biobank
phenotypes andGTEx tissue eQTL to identify traits that likely share the
same underlying causal variants. A summary of colocalization results is
shown in Fig. 5. In GTEx analysis, 7 of the 19 lead SNPs colocalize with
an expression of (RUNX2/SUPT3H, POLD3/CHRDL2, IL11, UQCC1/GDF5,
PIK3R1), suggesting that expression of these genesmight influence the
development ofDISH. A critical limitation of GTEx eQTL colocalization
analysis for musculoskeletal traits is that GTEx does not contain eQTL
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Table 2 | DISH GWAS associations

Implicated loci Prior GWAS associations

RUNX2/SUPT3H SUPT3H gene overlaps with the master transcription factor involved in osteogenesis RUNX2. Associated with OPLL, eBMD, height, hip OA, hip
replacement, intertrochanteric-shaft area, serum urate, eGFR, male pattern baldness, and BMI.

CCDC91 CCDC91 is a known targetof the transcription factorRUNX235. AssociatedwithOPLL, height, eBMD, lumbar spinebonearea, neckbonearea, lung
function, COPD, bone morphology, fat free mass measures, BMD, and breast cancer.

UQCC1/GDF5 GDF5 is a bone morphogenetic protein involved in joint and bone repair and development (Storm and Kingsley 1999). Associated with height,
cholesterol, triglycerides, eGFR, eBMD, spine and trochanter area, fat free mass, osteoarthritis, knee replacement, coronary artery disease,
stroke volume, arthropathies, brain region volumes, SBP, prostate cancer, and hand grip strength.

ANKFN1/NOG Noggin is a glycoprotein that binds and antagonizes BMPs29. Associated with fat free mass measures, eBMD, bone deformities, lung function,
chronotype, and eGFR.

POLD3/CHRDL2 CHRDL2 inhibits BMP signaling and bone formation (Nakayama et al. 2004). Associated with height, bone area, diastolic blood pressure, hand
grip strength, eGFR, knee replacement, knee OA, and fat free mass measures.

IL11 IL11 has a dual role in osteogenesis. It is involved in determining survival of pre-osteoclast cells and is a part of mechanical sensing of bone
formation. (Hill et al. 1998). Associated with height, hip replacement, hand grip strength, HbA1c, cholesterol, lung function, osteoarthritis, and
fat free mass.

HAO1/TMX4/PLCB1 Associated with OPLL, Hand OA, Lumbar Spine Area, Heel BMD, and eGFR.

ROR2 Ror2 tyrosine kinase receptor homodimerizes and promotes osteoblast differentiation and bone formation64. Associated with calcium, chron-
otype, height, systolic blood pressure, and facial morphology.

SLC30A8 SLC30A8 is largely an endocrine pancreas-restricted zinc transporter previously linked to T2D65. Associated with T2D, HbA1c, glucose, BMI,
proinsulin, triglycerides, late diabetic kidney disease, and macroalbuminuria.

PIK3R1 PIK3R1 is involved in osteoblast differentiation through the phosphoinositide signaling cascade (McGonnell et al. 2012). Associated with height,
triglycerides, HDL cholesterol, eGFR, BMI, fat free mass measures, lung function, and CVD.

The list of associations for each loci based on the EBI GWAS catalog66, the GWAS atlas67, and the musculoskeletal knowledge portal68.
eBMD estimated BMD, OA osteoarthritis, T2D Type 2 Diabetes, eGFR estimated glomerular filtration rate, COPD Chronic Obstructive Pulmonary Disease, BMI body mass index, SBP systolic blood
pressure.

Fig. 5 | Genetic Colocalization Analysis. The colocalization of genetic signals of
DISH with different related traits as well as gene expression of neighboring genes
fromGTEx in any tissue. A colocalized signal for a particular trait is represented by a
circle on the corresponding locus. The size of the circle represents the strength of
the colocalization signal. PP4 is the posterior probability that both traits are caused
by the same variant within this locus,while PP3 represents the posterior probability

that both traits are caused by different variants within the same locus. The color of
the circle represents whether the risk allele changes DISH as well as the corre-
sponding trait in the same direction (correlated/blue) or opposite directions (anti-
correlated/red). L1-L4—lumbar vertebral spine, BMA—DXA based bone mineral
area, BMC—DXA based bone mineral content, FEV1—lung Forced Expiratory
Volume in one second. ALPL—Alkaline phosphatase.
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for bone measurements, and observed signals must be originating
from other tissues. In the UK Biobank colocalization analysis, we
observed the colocalization of multiple DISH fine mapped SNPs with
the genetics of bone traits and osteoarthritis. The overall direction of
genetic colocalization andphenotypic correlations areconsistent,with
exception of IL11 and POLD3/CHRL2 variants, where colocalization is
anti-correlated with osteoarthritis, while phenotypically we see a
positive correlation between DISH and OA. Below we describe colo-
calization results for each locus in more detail.

The first locus on chromosome 6 had eight independent signals.
Five of these signals colocalize with the histone modification enzyme
SUPT3H and one of the variants overlaps with themaster transcription
factor involved in osteogenesis RUNX2 (Fig. 5). SUPT3H is ubiquitously
expressed in multiple tissues while RUNX2 is upregulated during pro-
cesses such as osteogenesis31. Given shared regulatory mechanisms
between SUPT3H and RUNX232, it is hard to determine which of these
two genes are casual for DISH.

All eight independent signals also colocalize with genetic signals
for bone mineral content (BMC) and bone area for different parts of
the body (Fig. 5). In addition, two of the signals also colocalize with
genetic signals associated with increased levels of alkaline phospha-
tase, a known biomarker of bone health. This locus is also associated
with musculoskeletal traits such as estimated BMD, height, hip
osteoarthritis, hip replacement, and bone area as discussed in Table 2.
Overall, the signal at this locus provides evidence for genetic associa-
tion between increased BMC and DISH.

The second locus on chromosome 20 colocalizes with genetic
signals affecting the expression of two genes (UQCC1 & GDF5) and a
pseudogene (RPL36P4). GDF5 is a pleiotropic bone morphogenetic
protein involved in joint and bone repair and development28. Alleles
that reduce GDF5 expression were implicated in several processes
(Table 2) including the development of osteoarthritis33,34. Our coloca-
lization analysis shows an association between DISH with knee
osteoarthritis aswell as other bone-related traits. However, the genetic
effects of DISH are anti-correlated to the genetic effects of osteoar-
thritis, showing that there is a delicate balance between overactive and
reduced osteogenic activities resulting in partitioning risk between
bone-related diseases.

The third locus on chromosome 12 colocalizes with genetic sig-
nals affecting the expressionofCCDC91 inmultiple tissues.CCDC91 is a
known target of the transcription factor RUNX235 and variants affect-
ing the expression of CCDC91 have been implicated inmusculoskeletal
traits such as height, estimated BMD, spine bone area, neck bone area,
OPLL36, osteoporosis37, and osteoarthritis38. Upregulation of CCDC91 is
thought to play a role in the progression of OPLL by inducing ossifi-
cation under mechanical stress39.

The fourth locus on chromosome 19 occurs within the coding
region of IL11 and this signal colocalizes with several bone-related
traits and is a known risk factor for developing osteoarthritis (Fig. 5).
IL11 has a dual role in osteogenesis. It is involved in determining sur-
vival of pre-osteoclast cells and is a part of the mechanical sensing of
bone formation40,41. The rs4252548 SNP associatedwith DISH results in
a missense coding variant R112H that reduces the thermostability of
IL11 and is implicated in several musculoskeletal traits such as height
and osteoarthritis42. We hypothesize that the consequence of the
mutation is to increase osteogenesis through an unknownmechanism
that eventually leads to the development of DISH.

The fifth locus on chromosome 11 is close to DNA polymerase 3
(POLD3) and Chordin-like protein 2 (CHRDL2). CHRDL2 is expressed in
chondrocytes within joint cartilage and connective tissues and is
associated with multiple musculoskeletal traits such as height, bone
area, and osteoarthritis (Table 2). CHRDL2 is overexpressed in
osteoarthritic joint cartilage where it is thought to play a protective
role in the development of osteoarthritis43,44. The mechanism of this
locus’s action on DISH is unknown, but CHRDL2 binds directly to bone

morphogenetic proteins (BMPs) to prevent BMP signaling and bone
formation44. Consistent with its function in bone homeostasis, the
genetic signal for DISH at this locus colocalizes with spine bone traits.

The sixth locus associated with DISH is located on chromosome 5
close to phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene.
PIK3R1 is involved in osteoblast differentiation through the phos-
phoinositide signaling cascade43. The role in DISH is likely to be
through increased osteogenic potential. Consistent with this hypoth-
esis, PIK3R1 is also associated with othermusculoskeletal traits such as
height (Table 2). Our analysis also shows that genetic signals for DISH
and hand grip strength colocalize at this locus (Fig. 5).

The remaining four loci did not colocalize with any musculoske-
letal traits or eQTL loci from GTEx. Overall, the colocalization analysis
reveals that the causal variants associated with DISH are also asso-
ciated with multiple musculoskeletal traits and osteoarthritis.

Mendelian randomization supports a causal role of GWAS hits
Genetic associations of loci with DISH phenotype are not sufficient to
establish the causal role of genes in developing DISH. It is possible that
unaccounted confounding signals are driving the association between
genotype and phenotype. To get a better estimate of the potential
causal involvement of a given loci with DISH, it is possible to use the
instrumental variable Mendelian Randomization model to carry out a
form of mediation analysis, where genetic variants (instrumental
variables) linked to gene expression (mediator) are tested for asso-
ciation with outcome (DISH). If a genetically linked variation in gene
expression is associated with the outcome, it is possible to conclude
that the gene is causally linked to the outcome (under some assump-
tions see Methods).

This methodology is only possible if eQTL for genes can be
established. In our analysis, we carried out a two-sample Mendelian
Randomization (MR) analysis using eQTL data from GTEx v7 across 44
tissues. One of the limitations of the analysis is that bone phenotypes
are poorly measured in public databases, and generally bone and
intervertebral expression data are not available. Thus we have to rely
on eQTLs from other tissues. When multiple independent eQTLs were
observed for the samegene in a single tissuewithinGTEx,we evaluated
the causal effect of a gene on DISH using inverse variance weighted
(IVW) analysis. For the genes with single independent eQTL in a tissue
we used the Wald ratio test. A summary of our findings for all genes
analyzed, with exception of PIK3R1, which didn’t have eQTL data, can
be found in Table 3.

We find that most GWAS had evidence of causal involvement in
the development of DISH. In the IVW analysis, expression of CCDC91
(most significant in the heart atrial appendage tissue) and UQCC1
(most significant in transformed fibroblast cells) were significantly
associated with increased DISH. In the Wald ratio test analysis,
expression of RUNX2 (substantia niagra of the brain), IL11 (lung), GDF5
(basal ganglia of the brain), and NOG (gastroesophageal junction) play

Table 3 | Mendelian randomization analysis
(Variants→ eQTL→DISH)

Gene Method beta P value

RUNX2 Wald Ratio 0.054 5.90E−04

IL11 Wald Ratio 0.18 4.33E−09

GDF5 Wald Ratio 0.059 1.15E−07

NOG Wald Ratio 0.053 2.01E−03

ROR2 Wald Ratio 0.029 0.012

CHRDL2 Wald Ratio 0.073 0.006

CCDC91 IVW 0.14 5.54E−11

UQCC1 IVW −0.07 4.72E−10

The P value is calculatedusing the two-tailed t-test and is uncorrected formultiple comparisons.
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a causal role in DISH with the effect sizes shown in Table 3. We also
performed a sensitivity analysis for IVWMR, and did not find evidence
of horizontal pleiotropy for either CCDC91 (p value = 0.4) or UQCC1 (p
value = 0.6). Overall, MR analysis supports the hypothesis that
expression difference in six genes (out of eight tested GWAS hits
analyzed) is causally linked to the development of DISH.

Discussion
Despite the high prevalence of DISH in the elderly population, it
remains a poorly characterized and underdiagnosed disease. As a
consequence, the genetic and environmental risk factors that lead to
the development of this pathology are not well known, and the long-
term consequences of DISH pathology on health outcomes have not
been systematically analyzed. There have been a number of smaller
studies that looked at the prevalence of DISH2,45,46, but to our knowl-
edge, this is the most comprehensive analysis of the genetic and epi-
demiological characterization of DISH in the general population.

Using amachine learning approachwepredictedDISH flow scores
for ~ 40,000 participants in UK Biobank. The algorithm automatically
detects pairs of vertebral bodies and quantitates the severity of
osteophyte formation between them. In our evaluation, the algorithm
performedwell,matching human annotatorswith correlation >0.8.We
further showed that the DISH flow score predicted by the algorithm is
capable of capturing established Resnick DISH diagnostic criteria
annotated by expert radiologists.

Wefind that theprevalenceofDISH is strongly associatedwith age
and male gender, with approximately one in eight individuals having
multiple osteophyte bridges. Despite the high prevalence, DISH is
severely underdiagnosed, with only 43 recorded diagnoses in the UK
Biobank EHR. Based on the results of machine learning, we estimate
that around ~34,900 UKBB participants would meet the radiological
Resnick criteria for DISH diagnosis.

The presence of spine osteophytes is significantly associated with
neck and shoulder pain and the use of non-steroidal anti-inflammatory

drugs (NSAIDs). However, as DISH is also associatedwith the incidence
of osteoarthritis, and it is not clear if NSAID usage is due to comor-
bidities or DISH itself. For example, the formation of osteophytes in
the spinemight be correlatedwith the formation of osteophytes in the
hips as observed in hip OA, thus increasing the usage of NSAID pain
medications47. While further research is needed to provide a definitive
answer, association with pain in the neck and shoulders in comparison
to lower back pain, suggests that DISHmay be contributing to the pain
symptoms.

Most notably we observed a strong association of DISH with bone
mineral content and bone mineral density across the entire skeletal
system. We carried out multivariate analysis after identifying a set of
variables that jointly predict DISH and found that association remains
significant with an effect size similar to age, indicating that high BMC/
BMC is an independent risk factor for DISH. This observation raises a
possibility that processes that drive the formation of higher bone
density, might also be driving the formation of DISH. We considered
the possibility that BMD/BMC association might be a confounded
presence of osteophytes in the regions of the skeleton that are known
to form osteophytes. To investigate this further, we examined if
association persists in regions of the skeleton that are not known to
form osteophytes (skull, femur shaft), and found that association
persists in these regions.

To gain further insight intomolecular processes that might play a
role in the development of DISH we carried out genetic association
analyses, genetic correlations, fine-mapping, and colocalization. To
our knowledge, this is the first time genetics of DISH has been char-
acterized. GWAS implicated ten novel loci, including osteogenesis
master regulator RUNX2, BMP signaling (CHRDL2, NOG, GDF5), PI3K
pathways (PIK3R1), and Wnt-signaling (ROR2), and IL11 (Fig. 6). The
majority of genes involved in these pathways have been experimen-
tally shown to play a role in bone-homeostasis, supporting the
hypothesis that DISH is driven by overactive osteogenesis. Using
Mendelian Randomization, we further asked if a transcriptional

Fig. 6 | Overview of genetic and environmental risk factors associated with
development of DISH. In addition to male sex and age, pre-existing conditions
such T2D, obesity, and osteoarthritis are risk factors associated with DISH. Genetic
analysis (GWAS, colocalization, and Mendelian randomization) points to genes
involved in overactive osteogenesis as drivers of the pathology (highlighted in
orange). The increase in osteogenesis, and consequence in increases in BMD and

BMC measures is observed throughout the entire body. Molecular mechanisms
likely involve gain of function in multiple signaling pathways such Wnt signaling,
IL11 signaling, and BMP-signaling. Conversely, loss of inhibitory BMP proteins such
asNoggin andCRDL2 likely increases BMP-signaling. In prognostic outcomes, DISH
is associated with increased risk of metabolic and sleep disorder diagnoses.
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expression of implicated genes couldbe causal to DISH formation, and
found strong support for this hypothesis for 6 out 8 genes with eQTLs
in GTEx data.

In an analysis of related conditions, we also see a significant
overlap in GWAS loci (RUNX2, CCDC91, and HAO1/TMX4/PLCB1) with
OPLL - a related spine ossification pathology more commonly
observed inAsianpopulations36. RUNX2haploinsufficiency is sufficient
to rescue OPLL in a mouse model providing further evidence that
RUNX2may also play a role in the development of DISH48. The overlap
of the genetic risk factors for DISH and OPLL indicates that the two
pathologies at least in part share a common genetic etiology. Of note,
we did not see an overlap with genetic risk factors of Ankylosing
Spondylitis, an inflammatory condition that also results in vertebral
fusions, indicating that the two pathologies have distinct genetic
etiology.

Overall through a combination of phenotypic and genetic asso-
ciations, our study points to global overactive osteogenesis as a key
mechanism for the formation of DISH. The hypothesis is supported by
four lines of evidence.

First, as noted above, we see strong evidence for an association
between DISH and BMD/BMC across the entire skeletal system,
including sites that are not known to form osteophytes such as the
femur shaft and head. The association is robust andwas reproduced in
sex-stratified analysis across all sites (Supplementary Fig. 12). This
implies that the association of BMD/BMCwith DISH is independent of
osteophyte formation.

Second, we considered the possibility that the phenotypic asso-
ciationmight be spurious asmost automatedBMD/BMCalgorithmsdo
not identify osteophytes and include osteophyte area in the calcula-
tion. Previous estimates suggest that the presence of osteophytes
could inflate BMD in vertebral bodies by 10-12% on average49. The
contribution of osteophytes to BMD/BMC in other skeletal regions of
the body can not be completely ruled out but should be proportional
to the total area of the osteophyte to the total bone area.We think that
the large correlation of DISH with BMD/BMC cannot be completely
explained by osteophyte formation in these sites (Fig. 3).

Third, we observe significant genetic correlations between DISH
and BMD/BMC across the entire skeletal system, but not with the bone
mineral area (BMA). In the spine regions, the genetic association with
DISHwas significant for BMD/BMC(p value = 5.27e−8), but notwith the
bone area (p value = 0.22). The contribution of osteophytes to the total
bone area and BMC is relatively small, indicating that DISH must be
occurring through a significant increase in bone content without
appreciable changes to bone area. As an additional line of evidence, we
asked if the genetic correlation between DISH and Spine BMD/BMC
persists if we stratified cohorts into two groups with and without
observed DISH. Genetic correlation between these traits remained
significant in both groups with approximately the same correlation
(rg = 0.27 and rg =0.25 respectively). The only plausible explanation
for the genetic correlation is that traits share a common genetic
architecture beyond observed osteophyte formation.

Fourth, genetic colocalization andMRshow that several key genes
involved in osteogenesis such as RUNX2 play a significant role in the
development of DISH, with 9 out of 10 loci having been previously
implicated in several musculoskeletal traits and core processes within
bone homeostasis (Figs. 4, 5, Supplementary Figs. 14, 15, and Data 2
and 3).

Limitations
The UK Biobank population mostly comprises Europeans, which may
impact our genetic associations as well as MR results. The UK Biobank
was mostly formed by volunteers and is known to have a healthy
volunteer bias which might also impact the results of our analyses.
Although we adjusted for age and sex (as well as their interaction),
some residual participation bias might impact our results. However,

this selection bias is unlikely to lead to large correlations between
different bone traits and DISH.

We have tried to assess whether osteogenesis pathways are
implicated in DISH using gene and tissue enrichment tools. However,
due to the poor representation of bone cell types in public datasets,
none of these methods showed osteogenesis as a significantly enri-
ched pathway for either the Spine bone mineral traits or DISH (at
cohort size of ~33,000).

Overall, we have carried out the largest analysis of DISH to-date
and show that prevalence of DISH is substantially underappreciated in
the general population. We have confirmed many of the previous
epidemiological associations with pain and other comorbidities, and
characterize the genetics of this previously considered idiopathic
condition. Through genetic analysis, we put forward a hypothesis that
overactive osteogenesis is playing a key role in the development of
pathology. If this hypothesis holds, it would suggest that interventions
that restore bone formation imbalance may offer a plausible path to
treating this condition.

Methods
Imaging data
In 2006 through 2010, 503,000 adults (aged 40–70 years) were
recruited from the general population in the United Kingdom into a
prospective cohort study50. The UK Biobank aims to scan 100,000 of
these participants by the end of 2023 with various imaging
modalities51; the current analysis includes 41,233 participants for
whom lumbar spine DXA imaging scans (Lunar iDXA densitometer; GE
Healthcare, Chicago, Illinois) were collected for body composition and
bone mineral density assessments (April 2014–September 2019). At
the imaging assessment visit, information was collected on a range of
demographic and lifestyle factors, including ethnicity, education,
occupation, alcohol consumption, smoking status, socioeconomic
status, and physical activity. Various measurements were also taken,
including height, weight, waist and hip circumferences, and blood
pressure. All study participants provided informed consent and the
North West Multi-centre Research Ethics Committee approved
the study. Further details about the procedural characteristics of the
imaging data have been published online (available at http://biobank.
ctsu.ox.ac.uk/crystal/crystal/docs/DXA_explan_doc.pdf).

Machine learning
The pipeline described here scores the extent of hyperostosis in the
intervertebral disks that can be observed in a lateral dual-energy X-ray
absorptiometry (DXA) scan image of a human torso. As described by
Kuperus et al. (2018), such hyperostosis can create bridges between
vertebrae that limit flexibility and ultimately contribute to diffuse
idiopathic skeletal hyperostosis (DISH).

The analysis occurs in three steps: (1) identification of anterior
intervertebral junctions; (2) scoring the hyperostosis of each inter-
vertebral junction; and (3) summing the bridge scores across the spine
(Fig. 1A). Details on each of those steps are given in the Supplementary
Note 1 and Supplementary Fig. 2 Source code and additional doc-
umentation are available from github.com/calico/DISH.

The first step in the analysis of DISH was the identification of the
anterior portions of the intervertebral gaps along the entire spine.
These are the loci where DISH-relevant bridges can form that are
visible in lateral DXA images.Anobject-detectionmodelwas applied to
this task. It was trained by transfer learning from the MobileNet
ssd_mobilnet_v1 model52. A set of 160 images was annotated, which
included 2271 boxes drawn around vertebral junctions. The annotated
images were separated into training and test sets of 100 and 60 ima-
ges, respectively. The performance of the object detector was eval-
uated in the 60-image test set using intersection-over-union (IoU) for
the 14 top-scoring predicted boxes vs all of the annotated boxes,
allowing each predicted box’s intersection to only be counted for its
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most-overlapping annotated counterpart. The average IoU across the
60 test images was 68.9% (SD 5.9%).

For each intervertebral junction, a numeric score was to be
assigned according to the criteria described in Fig. 2 of Kuperus et al. 7.
Four categories were established corresponding to the severity of
hyperostosis from no visible osteophytes (category 0) to complete
fusion (category 4). The image classification model was trained to
classify the severity of hyperostosis across 9702 bridge images (693
DXA images) and tested on randomly selected 2800 bridge images
(200 DXA scans). The training was performed using transfer learning
from the efficientnet/b1 model. Cohen’s kappa value for the final
model was 0.405.

The final output value of the model evaluates overall DISH-like
hyperostosis across the spine. Final evaluation was performed using a
hold-out set of 200 DXA images that were scored by three indepen-
dent raters. Raters used the same bridge-score scheme described
above. For each DXA image, those numeric scores were summed to
produce the final DISH score. The evaluation was performed using the
mean rater score for each DXA image. Results for the comparison
between manual annotators and the ML pipeline are shown in Sup-
plementary Fig. 3.

Prevalence of DISH in the UKBB
The prevalence of DISH in the imaging cohort was estimated using the
distribution of scores in different bins and the probability of being
diagnosed with DISH by expert radiologists within each bin (Fig. 1C).
The prevalence of DISH in the UKBB was naively estimated by scaling
up the participants within the imaging cohort to the whole UKBB. We
performed these calculations in a sex-stratifiedmanner to estimate the
number of male and female participants in UKBB that would be diag-
nosed with DISH according to the Resnick criteria.

Genetics
We used the UK Biobank imputed genotypes (https://biobank.ndph.
ox.ac.uk/showcase/showcase/docs/impute_ukb_v1.pdf), after exclud-
ing SNPs with minor allele frequency <1% and poor imputation quality
(info value < 0.9). We removed participants who were not of European
descent, exhibited sex chromosome aneuploidy, heterozygosity out-
liers, or genotype call rate outliers. Additionally, we removed variants
with genotype missingness > 10% or that deviated meaningfully from
Hardy-Weinberg equilibrium in a European ancestry cohort (HWE p
value < 1e−10). In total, we considered 9,633,695 SNPs and 33,413 indi-
viduals for genetic analysis.

To conduct the genetic association study, we used BOLT-LMM20

using a mixed effects model with genetic relatedness derived from
genotyped SNPs as a randomeffect to control for population structure
while also adjusting for genotype SNPchip (Illumina vsAffimetrix), sex,
age, age2, age × sex, and recruitment center asfixedeffect covariates as
recommended in the BOLT-LMM53. The GWAS was performed against
standardized DISH scores per participant. We verified that the test
statistics showed no inflation compared to the expectation using the
genomic control lambda coefficient (1.10) and the intercept (1.004, s.d.
0.009) of linkage disequilibrium (LD) score regression (LDSC)54.

Volunteer-based biobanks like UKBB have sex-differential parti-
cipation bias21. As a result, adding sex as a covariate in the GWASmight
lead to collider bias that leads to significant results in GWAS on some
autosomal variants that differ in frequency between the two sexes due
to sex-differential participation bias. To address this issue, we have
implemented a sensitivity analysis to assess the impact of sex-biased
participation on our DISH and BMD GWAS. We have applied the same
BOLT-LMM procedure as before but performed sex-stratified asso-
ciation tests using the UK Biobank data (Supplementary Data 4 and
Supplementary Fig. 12).Overall, this analysis shows that adding sex as a
covariate in the GWAS hasminimal effects on our genetic associations
with DISH and BMD.

Genetic correlation and heritability
We estimated the heritability and genetic correlation between traits
using LD score correlation (28). We accessed the repository at https://
github.com/bulik/ldsc/ (version aa33296) and estimated genetic cor-
relation and heritability using the default parameters and the –rg
command and –h2 command respectively (example: ldsc.py --rg
trait1.sumstats.gz,trait2.sumstats.gz --ref-ld-chr eur_w_ld_chr/ --w-ld-
chr eur_w_ld_chr/ --out). We pre-harmonized the polarization of alleles
to match the reference file w_hm3.snplist.

Fine mapping
Identification of distinct association signals. We performed
approximate conditional analysis using GCTA54,55, considering all var-
iants that passed quality control measures and were within 500 kb of
the locus index variant. As a reference panel for LD calculations, we
used genotypes from 5000 UK Biobank participants that were ran-
domly selected after filtering for unrelated, European participants. We
excluded the major histocompatibility complex (MHC) region due to
the complexity of LD structure at this locus (GRCh37::6:28,477,797-
33,448,354; see https://www.ncbi.nlm.nih.gov/grc/human/regions/
MHC). For each locus, we considered variants with locus-wide evi-
dence of association (p valuejoint < 10−6) to be conditionally indepen-
dent while the genome-wide association threshold to define a locus
was set at p value < 5 × 10−8.

The genomic inflation factor (λGC) was 1.10 (LD score regression
intercept = 1.004), indicating that there was a low possibility of false
positive associations resulting from population stratification.

Construction of genetic credible sets. For each distinct signal, we
calculated credible sets with 95% probability of containing at least one
variant with a true effect size not equal to zero. We first computed
the natural log approximate Bayes factor56,Λj, for the j th variantwithin
the fine-mapping region:

Λj = ln

ffiffiffiffiffiffiffiffiffiffiffi

Vj

V j +ω

s
 !

ωβ2

2VjðVj +ωÞ
ð1Þ

where βj and Vj denote the estimated effect size and corresponding
variance. In loci with multiple distinct signals of association, results
are presented using both exact conditional analysis after adjusting for
all other index variants in the fine-mapping region and results from
the marginal analysis that does not adjust for other index variants
within the locus. In loci with a single association signal, results are
presented from an unconditional meta-analysis. The parameter ω
denotes the prior variance in allelic effects and is estimated as (0.15σ)2,
where σ is the standard deviation of the phenotype estimated using
the variance of coefficients (Var(βj)), minor allele frequency (fj), and
sample size (nj):

2njf jð1� f jÞ∼ σ2 1
VarðβjÞ

� 1 ð2Þ

Here, σ2 is the coefficient of the regression, estimating σ such
that σ =

ffiffiffiffiffiffi

σ2
p

.
We calculated the posterior probability, πj, that the j th variant is

driving the association, given l variants in the region, by:

πj =
ð1� γÞΛj

l
Pl

k =0sΛk

ð3Þ

where γ denotes the prior probability for no association at this locus
and k indexes the variants in the region (with k = 0 allowing for the
possibility of no association in the region). We set γ = 0.05 to control
for the expected false discovery rate of 5%, sinceweuseda thresholdof
p valuemarginal < 5 × 10−8 to identify loci for fine-mapping.
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The 95% credible set for each signal was then constructed by (i)
ranking all variants according to their Bayes factor and (ii) including
ranked variants until their cumulative posterior probability of driving
the association attained or exceeded 0.99.

Colocalization. We performed colocalization analysis using the coloc
method57 using default priors and all variants within 500kb of the index
variant. As performed by57, we considered two genetic signals to have
strong evidence of colocalization if PP3 + PP4≥0.99 and PP4/PP3 ≥ 5
and suggestive evidence of colocalization if PP3 + PP4 ≥0.8 and PP4/
PP3 ≥ 3. For gene expression colocalizations, we used summary statis-
tics from GTEx v758. For disease and quantitative trait colocalizations,
we used UK Biobank summary statistics of ICD10 codes, normalized
quantitative traits (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-
of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank).
For analysis we selected UK Biobank phenotypes where theminimum p
value within the ±500kb region around the locus tag SNPwas <5 × 10−8.

Mendelian randomization analysis. The observational studies that
are impaired by confounding or reverse causation, it is hard to assess
whether the risk factors are causal or correlated with DISH. Mendelian
randomization (MR) provides a way of using genetics to test for causal
driving factors for a phenotype of interest59. In MR, we use genetic
variants as a proxy for risk factors to minimize confounding and
reverse causation in observational data. Genetic variants are randomly
assigned when passed from parents to offspring and therefore mini-
mize the effect of confounders and avoid reverse causation. However,
little is known about the genetic component or the causal genes and
pathways driving DISH.

There are three important assumptions in MR analyses:
(1) the chosen genetic variants are associated with the exposure of

interest,
(2) they are not associated with any confounders, and
(3) they are not associated with the outcome via any pathway other

than through the exposure of interest (horizontal pleiotropy)60.

We performed two-sample Mendelian randomization analyses
using the Inverse Variance Weighted (IVW) or Wald ratio methods
included in the R package twoSampleMR. GTEx v7 summary statistics
were used for the effect of variants on gene expression of different
genes58. To identify independent SNP instruments for each exposure,
GWAS-significant SNPs (P < 5 × 10−8) for each risk factor were pruned
(r2 < 0.01; LD window of 250 kb). As a reference panel for LD calcula-
tions, we used genotypes from 5,000 UK Biobank participants that
were randomly selected after filtering for unrelated European partici-
pants. We then estimated the causal effect of the risk factor on the
disease trait according to the MR paradigm. The Wald ratio method
was used when only one independent variant was associated with
expression of the gene in GTEx while IVW was used to test for causal
effects in the presence of multiple independent eQTLs for a gene. We
applied Bonferroni correction for all the gene-based tests with an FDR
cutoff 0.1 to be considered significant. This study was not
preregistered.

As a sensitivity analysis, we also ran the MR analysis using MR-
Egger regression, weighted median-based, and weighted mode-based
tests and tested whether they predicted causal effects of similar
direction between exposure and outcome. The weighted median
(mode) estimator is themedian (mode) of a distribution in whichWald
ratio estimates have been ordered and represent percentiles of this
distribution61,62. The weighted median and mode estimates are less
sensitive to the effect of pleiotropic variants as this method assumes
that the estimates from pleiotropic variants would be outliers. On the
other hand, the MR-Egger approach performs a weighted linear
regression of the marginal effect of each SNP to the outcome on the
marginal effect of each SNP to the exposure. In this test, the analysis of

the regression intercept detects an overall directional pleiotropic
contribution of weak instrumental SNPs on the risk estimate63.

Ethics aspects
The UK Biobank project was approved by the National Research Ethics
ServiceCommitteeNorthWest-Haydock (REC reference: 11/NW/0382).
An electronic signed consent was obtained from the participants
(more informationonUKBiobank participant consent can be found at:
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Consent.pdf). UK
Biobank data were accessed under the approval of UK Biobank within
project 18448. The studywas conducted following the principles of the
declaration of Helsinki and all participants gave prior written informed
consent. All data used in this study were anonymized before its use.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank database is available on request and with permission from
UK Biobank (https://www.ukbiobank.ac.uk/). Summary statistics are
available from the GWAS catalog under accession number
GCST90134532.

Code availability
Our open source code is freely available at https://github.com/calico/
DISH. The version of the code used in this publication is also dis-
tributed at https://doi.org/10.5281/zenodo.7796082.
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