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Alternative promoters in CpG depleted
regions are prevalently associated with
epigenetic misregulation of liver cancer
transcriptomes

Chirag Nepal 1,2 & Jesper B. Andersen 1

Transcriptional regulation is commonly governed by alternative promoters.
However, the regulatory architecture in alternative and reference promoters,
and how they differ, remains elusive. In 100 CAGE-seq libraries from hepato-
cellular carcinoma patients, here we annotate 4083 alternative promoters in
2926 multi-promoter genes, which are largely undetected in normal livers.
These genes are enriched in oncogenic processes and predominantly show
association with overall survival. Alternative promoters are narrow nucleo-
some depleted regions, CpG island depleted, and enriched for tissue-specific
transcription factors. Globally tumors lose DNA methylation. We show hier-
archical retention of intragenic DNAmethylationwith CG-poor regions rapidly
losing methylation, while CG-rich regions retain it, a process mediated by
differential SETD2, H3K36me3, DNMT3B, and TET1 binding. This mechanism is
validated in SETD2 knockdown cells and SETD2-mutated patients. Selective
DNA methylation loss in CG-poor regions makes the chromatin accessible for
alternative transcription. We show alternative promoters can control tumor
transcriptomes and their regulatory architecture.

Hepatocellular carcinoma (HCC) accounts for about 90% of primary
liver cancers and is the third leading cause of cancer-related death1.
Genome-wide profiling of HCC patients has helped to build a mole-
cular map of mutations, dysregulated genes, and DNA methylomes2–5.
Additional efforts to map histone modifications6, chromatin
accessibility7, transposon activation8, and RNA N6-methyladenosine
(m6A)methylation9 areongoing and important steps to understanding
mechanisms of gene regulation in cancer. Promoters are gateways to
start transcription and regulate gene expression in a temporal and
spatial manner, but little is known about promoter regulation in can-
cer. Therefore, we aimed to understand how the regulatory archi-
tecture of promoter usage impacts gene regulation using HCC as
a model.

Transcription is facilitated by a reference promoter, which is the
region proximal to the transcription start site (TSS), integrating cis-
regulatory elements to ensure precise gene regulation10. Cap Analysis
of Gene Expression Sequencing (CAGE-seq) determines the 5’-ends of
TSSs at single nucleotide resolution11,12 and quantifies gene expression
similar to RNA-seq13. CAGE-seq also detects differently regulated
transcription initiation events within the same core promoter14,15, and
thus, it can accurately detect alternative promoters. In addition to
reference promoters, many genes utilize alternative promoters for
specific processes, such as cell fate transitions in yeast16 and mam-
malian cells17, in vertebrate embryogenesis12,18, and may have impor-
tant roles incancer19.Widespreadactivationof alternative promoters is
known in different contexts; however, it is unclear whether their (epi-)
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genetic states are different compared to the reference promoter and if
alternative promoters are under a different regulatory architecture.
Alternative promoters have dynamic intragenic DNA methylation
across human tissues20, and loss of DNA methyltransferase 3B
(DNMT3B) in mouse embryonic stem (ES) cells was shown to result in
spurious initiation of alternative promoters21. Therefore, precise reg-
ulation of alternative promoters is important to ensure correct gene
expression. Transcription of alternative promoters is widespread in
cancer19. Our understanding of the mechanism(s) of activation and
alternative promoters’ impact on gene expression is unknown.

In this study, we analyze 100 CAGE-seq libraries from HCC
patients and annotate 4083 (including 1031 novel) alternative pro-
moters, representing 2926 multi-promoter (MP) genes, which are
supported by histonemodifications, Assay for Transposase-Accessible
Chromatin sequencing (ATAC-seq), RNA Pol2 ChiP, and DNA methy-
lation across patient cohorts and HepG2 cells. Transcription of alter-
native promoters is dominant outside CpG islands (CGIs), enriched for
genes important in hepatocarcinogenesis, and their activation fre-
quently results in the downregulation of the reference promoter. We
show that CG-poor regions preferentially lose DNA methylation in
tumor tissues, followed by the accessibility of the chromatin and Pol2
binding, resulting in alternative transcription from CG-poor regions.
Collectively, our study elucidates the mechanism of activation and
preferential underlying DNA sequence for alternative promoter acti-
vation in cancer.

Results
Widespread transcription of alternative promoters in HCC
To determine the extent of alternative promoter usage in humanHCC,
we analyzed CAGE-seq data from 50 tumors and 50 matched tumor-
adjacent normal liver tissues8 (Supplementary Table 1). We identified
the 5′-end of CAGE TSSs (CTSSs) and quantified expression levels in
tags per million (TPM). Proximal CTSSs within 20 nucleotides on the
same strand were clustered to define transcript clusters (TCs) (Fig.1a
and Supplementary Fig. 1a).We retained TCs expressed above 1 TPM in
at least 15 samples and a minimum of 3 TPM in at least one sample,
which resulted in 42,804 high-confidence consensus TCs expressed
across the patient cohort (Fig. 1a and Supplementary Table 2). A
majority of TCs (90%)were supported by FANTOM5CAGEpeaks17 and/
or open chromatin regions from ENCODE22 and TCGA7 (Fig. 1b). Based
on GENCODE transcript models, we identified promoters for 15419
expressed genes and alternative TSSs for 3052 annotated alternative
transcripts. A significant fraction (10,492; 24.5%) of CAGE TCs were in
intragenic regions (Fig. 1c), indicating these TCs are putative alter-
native promoters. We filtered intragenic CAGE TCs that represent
drosha processing of pre-miRNAs23, snoRNAs 5′-ends capping17, exons
post-transcriptional processing11,12, enhancer RNAs24, and those lacking
a transcription initiator15 (Fig. 1c). The remaining TCs within 300 bases
were clustered, resulting in 1031 novel alternative TSSs (Supplemen-
tary Table 3). A majority of the novel TSSs were supported by spliced
transcripts (see methods) from RNA-seq25,26 and expressed sequence
tag27 (Fig. 1d; Supplementary Fig. 1b). In total, we identified 4083
alternative TSSs in HCC (represented by 3052 annotated TSSs and 1031
novel TSSs) (Fig. 1c).

Based on the number of promoters, we classified the 15,419
expressedgenes into either single-promoter (SP) (12,493; 80.3%) orMP
(2926; 19.7%) genes (Fig. 1e, Supplementary Table 3 and Supplemen-
tary Table 4). Promoters with the highestmean expression level across
the cohort were assigned as the reference (major) promoters, whereas
the remaining were assigned as alternative (minor) promoters (Fig. 1e,
see methods). Novel alternative TSSs preferentially occur in genes
without active alternative promoters (Fig. 1f), while others occurred in
existing MP genes, resulting in genes having multiple alternative pro-
moters (Supplementary Fig. 1c). Overall, 65% of alternative promoters
are located downstream of the reference promoter (Fig. 1g), and 35%

are upstream, emphasizing that purely assigning the most upstream
TSS as the reference promoter is suboptimal. Two-thirds of the alter-
native promoters were shown to utilize a different N terminus or were
located downstream of the N terminus of the protein (Supplementary
Fig. 1d; Supplementary Table 3), as exemplified for CDKN2A and ERBB2
(Supplementary Fig. 1e, f). MP genes were associated with diverse
functions enriched in metabolic processes, signaling pathways, apop-
tosis, regulation of cell migration, and programmed cell death (Sup-
plementary Fig. 1g and Supplementary Table 5). In contrast, SP genes
were over-represented in translation, DNA repair, gene expression,
and mRNA splicing. Notably, hepatocytic markers28, HCC signature
genes29, and cancer-associatedgene families (oncogenes, transcription
factors, and protein kinases) fromGSEA30 were overrepresented inMP
genes (Fig. 1g). Clinically, overall survival (OS) is significantly over-
represented (p = 3.2E−78; Fisher’s exact test) by MP genes (Fig. 1h and
Supplementary Table 3). This includes both genes with known or
unknown roles in HCC and genes not previously described to rely on
promoter switching, such as SULF2 (Supplementary Fig. 1h). Patients’
outcome relative toMPgeneswas significantly associated (P = 5.2E−24;
Fisher’s exact test) with the expression of alternative promoters
(Fig. 1i). Alternative promoters associated with survival had shorter OS
time (P = 2.8E−8; Fisher’s exact test) (Supplementary Fig. 1i). Moreover,
MP genes were enriched for sorafenib resistance-genes31 (Supple-
mentary Fig. 1j). The observed enrichment at the cohort level was
recapitulated for 55% of individual samples. Collectively, these data
support that alternative promoters and their usage are important in
hepatocarcinogenesis and for patient outcomes.

Impact of alternative promoters on gene expression
We sought to understand how alternative promoters control gene
expression. We first analyzed the expression of HCC promoters across
eight independent normal livers8,17 and observed some alternative
promoters were undetected in the normal liver but already expressed
in the matched tumor-adjacent liver (cirrhotic liver parenchyma)
(Fig. 2a, Supplementary Fig. 2a and Supplementary Table 4). At the
expression threshold of a minimum of 3 TPM in at least 1 normal liver
sample, approximately 50% of the alternative promoters were unex-
pressed in the normal liver compared to 15% of reference promoters
(Fig. 2b). We lowered the expression threshold and observed a higher
fraction of alternative promoterswere undetected in the normal livers.
MP genes with alternative promoters expressed in normal livers were
enriched for metabolic-related pathways, reflecting tissue-intrinsic
biology. On the contrary, tumor-specific alternative promoter genes
were enriched in oncogenic pathways such as WNT/beta-catenin sig-
naling, E2F, and Myc targets (Fig. 2c and Supplementary Table 6).

We next binned reference promoters based on decreasing
expression levels and observed that alternative promoters were
expressed at similar levels across corresponding bins (Supplementary
Fig. 2b). To understand the expression dynamics of alternative pro-
moters, we computed their extent of expression variability across the
patient cohort. The reference promoters (irrespective of SP or MP
genes) were constitutively expressed in all samples, while alternative
promoters were expressed either constitutively or only in a subset of
patients (Fig. 2d). Notably, alternative promoters unexpressed in
normal livers were generally expressed in a subset of tumor tissues
(Supplementary Fig. 2c). Although the mean expression levels of
alternative promoters were lower than the matched reference pro-
moters (Fig. 2e), some alternative promoters have a higher expression
at the individual patient level, as highlighted in CTNNBL1 (Supple-
mentary Fig. 2a). In total, 1489 (36.4%) alternative promoters’ expres-
sion was higher than reference promoters in one or more tumor-
adjacent samples, which further increased to 1716 (42%) alternative
promoters among tumors (Supplementary Fig. 2d). This reflects a high
variability in the expression level of alternative promoters across the
cohort (Supplementary Fig. 2e).
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We used DESeq232 and identified 5223 promoters and 4480 genes
significantly and differentially expressed (P-adjusted <0.05 and fold-
change log2(absolute(0.5)) between tumor and tumor-adjacent tissues
(Fig. 2f, g and Supplementary Table 7). Differentially expressed pro-
moters overlapped in 99% with the differentially expressed genes
(Supplementary Fig. 2f). The fold-change among differentially
expressed promoters was higher in alternative promoters (Supple-
mentary Fig. 2g), which were distributed predominantly among the
higher expression tier (Supplementary Fig. 2h). Detection of a lower
number of differentially expressed genes suggests that reference and
alternative promoters might have an inverse expression pattern. As
such, we observed a general trend of downregulation among reference
promoters (Fig. 2h), whereas the alternative promoters were

significantly (P =0.00012; Fisher’s exact test) upregulated (Supple-
mentary Fig. 2i). Alternative upstream promoters33 and downstream
intragenic promoters34 can attenuate host gene expression. Thus we
asked whether genes downregulated in HCC are enriched among MP
genes. Themajority of differentially downregulated promoters areMP
genes, while SP genes were upregulated (Fig. 2i), which held true
across different functional classifications of genes except for KEGG
signaling pathways (Supplementary Fig. 2j). Consistent with this
observation, we showed that the reference promoters were down-
regulated when one or more alternative promoters are located
upstream (Fig. 2j, k), which may interfere with the elongating poly-
merase leading to transcript downregulation. Collectively, this high-
lights that the transcription of many alternative promoters in tumors
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Fig. 1 | Annotationof alternative promoters in hepatocellular carcinoma (HCC)
patients. a A schematic workflow to describe the mapping of CAGE-seq reads to
define consensus transcript clusters (TCs) across the cohort. b Barplot shows the
overlapofHCCTCswith the annotated FANTOM5CAGEpeaks and open chromatin
peaks from ENCODE and TCGA. c A schematic workflow to annotate intragenic
CAGE TCs as high-confidence alternative promoters. The workflow includes mul-
tiple filtering steps to exclude TCs that lack promoter features. dDistance between
5′ ends of novel TSSs and 5′ ends of RNA-seq and EST transcripts. e Classification of
expressed genes into single promoter (SP) and multi-promoter (MP) genes based

on the number of promoters. The promoter with the highest expression level
(represented by arrow height) is assigned as the reference promoter. f Venn dia-
gram shows the intersection of novel alternative promoters with knownMP genes.
g Enrichment of signature genes inMP genes compared to SP genes. P values were
computed using a two-tailed Fisher’s exact test. h Distribution of survival-
associated geneswith SP andMP genes. TheMP geneswere significantly associated
(P = 1.06E−247; Fisher’s exact test) with survival outcome. i The scatter plot shows
the association of overall survival for reference and alternative promoters. P values
were computed using the chi-squared test.
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affects key cancer-related pathways and leads to the downregulation
of the reference promoter.

Alternative promoters have distinct underlying DNA sequences
and promoter architecture
Two-thirds of human genes have CGIs within their promoters35, as
exemplified for GNAS (Fig. 3a), ERBB2, and COMT (Supplementary
Fig. 3a, b). In addition, thousands of genes have CGIs in their gene
bodies (intragenic CGIs) that can act as novel alternative promoters
during development36. We sought to understand whether intragenic
CGIs (CG-rich regions) act as tumor-specific alternative promoter

regions in HCC. Compared to 80% of reference promoters, only 48.6%
(1987 out of 4083) of alternative promoters overlapped with CGIs
(Fig. 3b), which is consistent with the depletion of CGIs among anno-
tated alternative promoters37–39. A significant fraction of these alter-
native promoter CGIs (1170 out of 1987) was also sharedwith reference
promoters (Fig. 3a, b). While CGIs are depleted among annotated
alternative promoters37–39, CGIs were significantly further depleted
(P = 1.9E−61; Fisher’s exact test) among novel alternative promoters
(Fig. 3c). AlternativepromotersoverlappingCGIshad a lower observed
to expected (O/E) ratio of CG dinucleotides (Supplementary Fig. 3c)
and shorter CGIs lengths (Supplementary Fig. 3d). Notably, even
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among the nonCGI alternative promoters, the O/E CG ratio was sig-
nificantly (P = 9.1E−21; t-test) lower in novel alternative promoters
(Fig. 3d), which may emphasize a preferential activation of alternative
promoters from CG-poor regions.

As such, we hypothesized that to adapt to the evolving cancer
transcriptome, alternative promoters might be distinctly regulated,
and this regulation might be mediated via a difference in their pro-
moter architecture, chromatin accessibility, transcription factor
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association, and RNA Pol2 dynamics. CAGE TCs overlapping reference
promoters have significantly broader widths (Fig. 3e, f), which are
termed broad promoters11, and characterized by multiple initiation
sites with a TC (Supplementary Fig. 3e). Contrary, CAGE TCs over-
lapping alternative promoters have narrow widths (Fig. 3e, f), which
are termed sharp promoters11 and have one dominant TSS (Supple-
mentary Fig. 3f). Both promoters have a well-defined transcription
initiation motif, while the TATA box was positionally constrained
upstream of sharp promoters (Fig. 3g), as previously observed11,12. The
measure of chromatin accessibility of HCC promoters across TCGA
ATAC-seq peaks7 revealed that most of the reference and alternative
CGI promoters were uniformly accessible across cancers (Fig. 3h).
While chromatin accessibility of nonCGI promoters varied across
tumor types (Fig. 3h), reflecting CG-poor alternative promoters have
tissue-specific accessibility and expression. The frequency of ENCODE
transcription factor ChIP-seq peaks was significantly higher (P = 0.026;
t-test) in reference promoters compared to its alternative promoters
(Supplementary Fig. 3g). De novo analysis of transcription factors
revealed that reference and alternative nonCGI promoters were enri-
ched for liver-specific transcription factors (Supplementary Table 8)
such as hepatocyte nuclear factor 1A (HNF1A) and HNF4A (Fig. 3i;
Supplementary Fig. 3h), which is consistent with previously observed
tissue-specific transcription factor enrichment among nonCGI
promoters40. Notably, the transcription factor NFATC2 was enriched
only on nonCGI alternative promoters. Recently, hepatic NFAT sig-
naling was reported to regulate inflammatory cytokine expression in
cholestasis41. Lastly, RNA polymerase II (Pol2) was enriched at similar
levels in both SP and MP genes while initiating Pol2 modified by
phosphorylation of serine 5 (Pol2-Ser5) and elongating Pol2 modified
by phosphorylation of serine 2 (Pol2-Ser2) on its carboxy-terminal
domain (CTD) were higher among MP genes (Fig. 2j). These data were
validated by GRO-seq (Supplementary Fig. 3i, j). Thus, alternative
promoters have distinct regulatory architecture characterized by low
CG content, sharp promoter shape, and enriched for liver tissue-
specific transcription factors.

Alternative promoters have distinct chromatin architecture
A majority of MP genes have both CG-rich and CG-poor promoters.
Thus, we askedwhether the distinct chromatin architecture associated
with the CG content in promoters42,43 can coexist within a gene. We
aligned H3K4me1, H3K4me3, H3K27ac, and H3K27me3 modifications
along dominant TSSs that were grouped based on their overlap with
CGIs. Reference and alternative CGI promoters have divergent
H3K4me3 and H3K27ac marks around the nucleosome-depleted
region (NDR) at TSSs both in HCC patients6 (Fig. 4a) and HepG2 cells
(Fig. 4b). Divergent H3K4me1 peaks were located further away from
TSSs (Fig. 4a, b), which flanked CGIs and H3K4me3 boundaries44–46

(Fig. 4c). On the other hand, reference and alternative nonCGI pro-
moters had low levels of H3K4me3 asymmetrically deposited down-
stream of TSSs, while H3K4me1 marks were non-divergent and
enriched only at TSSs. H3K4me3marks are influenced by CG density47.
Thus H3K4me3 peaks are broader in CG-rich promoters (Supplemen-
tary Fig. 4a). As the width of H3K4me3 peaks becomes narrow in CG-
poor promoters, the distance between divergent H3K4me1 peaks
becomes shorter and appears continuous. Compared to nonCGI
reference promoters, nonCGI alternative promoters have low levels of
H3K4me3 (Fig. 4a) and lower CG density (Supplementary Fig. 4b). The
observed histone modifications at nonCGI alternative promoters
resemble epigenetic features of enhancers, as previously observed48.
While both reference and alternative promoters overlap with
ChromHMMHepG2 enhancers (Supplementary Fig. 4c), we sought to
understand whether the low CG density of alternative promoters can
explain the observed histone modification as enhancers. To this end,
we classified ChromHMM HepG2 enhancers (excluding promoter
regions) into 791 CGI enhancers and 20,891 nonCGI enhancers (see

“Methods”). Enhancers overlapping CGIs had similar patterns of
H3K4me3 and H3K4me1 to that of CG-rich promoters (Fig. 4d). Simi-
larly, nonCGI enhancers had low levels of H3K4me3 and high levels of
H3K4me1 peaks (Fig. 4d) like that of nonCGI promoters. This rein-
forces the premise that H3K4me3 is linked to CG density47, and
depletion of H3K4me3 on nonCGI promoters and enhancers is due to
low CG density.

To understand why alternative transcription does not occur
from intragenic CGIs, we analyzed H3K4me3, H3K4me1, and
H3K27ac modifications and observed no enrichment (Fig. 4c), thus
explaining the absence of transcription. Notably, divergent H3K27ac
peaks were enriched on both CG-rich and CG-poor promoters, while
they lacked H3K27me3 as expected in active genes (Fig. 4a, b).
Furthermore, CGI promoters were enriched for H2A.Z, have a well-
defined NDR, and (phased +1) downstream the nucleosome, whereas
nonCGI promotes have undefined NDR (Supplementary Fig. 4d). In
case of alternative CGI promoters, the gene body histone
(H3K79me2, H3K36me3, and H4K20me1) marks presented NDR,
while histones were continuous in nonCGI alternative promoters
(Supplementary Fig. 4e). In conclusion, reference and alternative
promoters have distinct chromatin architecture that is influenced by
genomic CG density, thus revealing that two distinct chromatin
architectures coexist in MP genes.

Dynamic DNA (de)methylation landscapes around alternative
promoters
The CpGs in CG-poor regions are generally methylated, while CpGs
within CGIs remain unmethylated in normal cells49 and aberrantly
hypermethylated in cancer2,50. We sought to understand whether DNA
methylation facilitates the transcription of alternative promoters in
CG-poor regions. Promoters overlapping CGIs have low methylation
levels at TSSs compared to nonCGI promoters (Fig. 5a). DNA methy-
lation at TSSs decreased based on increasing CG density in CGI and
nonCGI promoters (Supplementary Fig. 5a), which was more evident
among nonCGI promoters. These findingswere further validated using
reduced representation bisulfite sequencing (RRBS) of HepG2 cells
(Supplementary Fig. 5b). H2A.Z marks are mutually antagonistic with
DNA methylation51, which, together with an observed H2A.Z enrich-
ment on CGI promoters (Fig. 4d) provides an explanation for the
depletion of methylation on CGI promoters. We next analyzed CG
probes (±500 bases around TSSs) and identified hundreds of differ-
entially hypo- and hypermethylated promoters (Fig. 5a, b), which sig-
nificantly overlapped with the differentially expressed promoters
(Supplementary Fig. 5c). Aberrant hypermethylation of CGI promoters
was not globally observed among expressed genes, while it was pre-
valent among CGI promoters of unexpressed genes (Fig. 5b) as
recently observed in colorectal cancer52. Regions with higher CpG
density weremore hypermethylated, while CpGs in nonCGI promoters
were more hypomethylated (Supplementary Fig. 5c). This demon-
strates that DNAmethylation levels are influencedby the genomicCpG
density at both expressed and unexpressed genes.

To understand why transcription of alternative promoters was
depleted in intragenic CGIs (Fig. 3c and Fig. 4c), we sought to
understand how the CpG density influences intragenic DNA methy-
lation in tumors. Gene bodies have high levels of DNA
methylation20,53, which we observed across both MP and SP genes
(Fig. 5c).While gene bodymethylationwas globally decreased inHCC
tumors compared to the tumor-adjacent tissues (Fig. 5c), it wasmore
evident among downregulated promoters (Fig. 5d). Notably, genes
with intragenic CGIs had higher methylation levels in both tumors
and tumor-adjacent tissues (Supplementary Fig. 5f), reflecting that
the local CG density influences intragenic (de)methylation in tumors.
High methylation levels of intragenic CGIs are opposite to that of
promoter CGIs (Fig. 5e; Supplementary Fig. 5g). High levels of DNA
methylation on intragenic CGIs remained globally unchanged in HCC
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tumors (Fig. 5e) whileflanking regions haddecreasedmethylation. As
DNMT3B regulates intragenic DNAmethylation levels54, high levels of
DNA methylation levels are consistent with high levels of DNMT3B
binding on intragenic CGIs (Fig. 5f). Intragenic CGIs have low levels of
DNA demethylase (5hmC levels) activity (Fig. 5e) measured by TET-
assisted reduced RRBS (TAB-RRBS)6, which is consistent with low
levels of TET1 binding (Fig. 5g). Thus, the lackof active demethylation
on intragenic CGIsmay explain its sustained high level ofmethylation
to maintain the repressive state, resulting in lack of activation of
alternative promoters from intragenic CGIs (Fig. 4d). In contrast,
alternative promoters with CG-poor regions in tumor tissues are
sensitive to demethylation, which in turn may facilitate an open
chromatin structure and transcription initiation.

Deregulation of SETD2, H3K36me3, and DNA methylation
facilitates open chromatin
The methyltransferase SETD2 deposits H3K36me355 after Pol2
passage56, which in turn recruits DNMT3B21 to maintain a repressive
chromatin state57. Old yeast cells have decreased H3K36me3 levels
and increased intragenic transcripts58, while DNA methylation
decreases with age in humans59. DNAmethylation is globally reduced
within gene bodies (Fig. 5c); thus, we reasoned that impaired SETD2

might accelerate the loss of the repressive chromatin state, facilitat-
ing alternative transcription. Knockdown of SETD2 globally decreased
H3K36me3 signals from gene bodies (Fig. 6a) with relatively higher
retention in CG-rich regions (Fig. 6b). Compared to normal hepato-
cytes (HepaRG), HepG2 cells had lower H3K36me3 marks (Supple-
mentary Fig. 6a, “Methods”), suggesting a loss of H3K36me3 in tumor
cells. As H3K36me3 recruits DNMT3B21, the gene body coverage of
H3K36me3 (Supplementary Fig. 6b) coincides with the DNMT3B
coverage (Fig. 6c). Using CRISPR epitope tagging (through insertion)
of DNMT3B60 revealed DNMT3B signals decreased along the gene
body (Supplementary Fig. 5c), indicating a loss of the repressive
epigenetic marks along the gene body.

We reasoned that if SETD2 is mutated, this would lower
H3K36me3 levels and result in reduced DNMT3B binding, increasing
the loss ofDNAmethylation (hypomethylation) across gene bodies. To
this end, we compared the DNA methylation landscapes of SETD2
mutated HCC patients (n = 15) with SETD2 wild-type HCC patients
(n = 362). We observed that SETD2-mutant tumors were significantly
hypomethylated and that demethylated CpGs were enriched in gene
bodies overlapping CGIs (Fig. 6d, e and Supplementary Fig. 6d, e).
Since CG-rich regions are marked by higher levels of H3K36me3 (via
SETD2), SETD2 mutations largely cause hypomethylation in CG-rich
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Fig. 5 | CG density influences DNAmethylation landscapes. aMean methylation
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alternative promoters across the TCGAHCCcohort. Meanmethylation levels of the
TCGA HCC cohort are derived from 379 tumors and 51 tumor-adjacent tissues.
Promoters overlapping with CpG islands (CGI) were separated from non-
overlapping promoters. The scatter plots (bottom panel) show differentially
hypermethylated (brown) and hypomethylated (black) CpGs in 500 nucleotides
window around TSSs. P-values were determined by two-tailed unpaired t-tests
between HCC tumors and tumor-adjacent tissues. P values were adjusted for
multiple testing. b Mean methylation levels around TSSs of unexpressed genes
across the TCGA HCC cohort. The scatter plots (bottom panel) show differentially
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adjacent tissues along gene bodies of multi-promoter (left panel) and single-
promoter (right panel) genes. dMeanmethylation levels along gene bodies of up/
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Mean methylation levels of the GSE112221 cohort are derived from 4 tumors and 4
tumor-adjacent tissues. f Coverage of DNMT3B binding on promoter CGIs and
intragenic CGIs across human ES cells. g Coverage of TET1 binding on promoter
and intragenic CGIs across human ES cells.
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regions. Notably, SETD2-mutants have a high level of intronic reads
(Fig. 6f), providing evidence for transcribed reads from introns. Pre-
dominant hypomethylation observed across gene bodies in tumors
was more prevalent in SETD2-mutants, as SETD2mutations accelerate
the epigenetic control, compromising the maintenance of DNA
methylation and resulting in activation of alternative promoters. Thus,
the interplay of DNAmethylation, chromatin accessibility, and histone
modification in cancer preferentially facilitates alternative transcrip-
tion in CG-poor regions (Fig. 6g).

Discussion
Alternative promoters in human HCC were annotated using high-
resolution CAGE-seq. Within this patient cohort, we annotated a total
of 4083 (3052 annotated and 1031 novel) alternative promoters. Since
there is no consensus on which promoter should be assigned as a
reference or alternative, a highly expressed promoter is often anno-
tated as the reference promoter16,19, which is what we used in this
study. Fewalternativepromoters have expression levels similar to their
reference promoters, and in these cases, the annotation of reference
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and alternative promoters is interchangeable across cohorts/studies.
In this study, we analyzed tumor samples and ensured that the refer-
ence promoter was expressed in the normal liver; thus, tumor-specific
promoters are annotated as alternatives. Besides, our annotation of
alternative promoters is supported by multiple data sets across HCC
patient cohorts and in HepG2 liver cancer cells, thus providing a fra-
mework for future functional studies.

We found that CG density is the major distinguishing feature
between reference (high CG density) and alternative (low CG density)
promoters. Depletion of HCC alternative promoters from intragenic
CGIs is notably different than alternative promoters usage from
intragenic CGIs during developmental stages36 or gene upstream
CGIs61 in adult tissues. Human promoters are mostly CG-rich35,62 and
have distinct promoter architecture and regulation11 compared to CG-
poor promoters which are mostly tissue-specific17. Accordingly, a
majority of HCC nonCGI alternative promoters are detected in lower
proportion across other tumor types (Fig. 3h), indicating they drive
tissue-specific or cell type-specific transcription and are enriched for
liver-specific transcription factors. This highlighted the unexpected
presence of two distinct regulatory promoter architectures within a
gene that is widespread in cancer. While reference promoters are
generally ubiquitous and represent the predominant degree of tran-
scription, it is important to understand that cell type-specific tran-
scription might contribute to tissue-specific alternative promoters.
This requires implementation of single-cell capturing the 5′-ends63,
while single-cellmethods currently in use are enriched toward genes at
the 3′-ends and, therefore, insensitive for promoter detection. Single-
cell capturing 5′-ends in mouse neurons63 has revealed many alter-
native promoters detected inbulk tissuesweredetected in a single cell,
which suggests that most alternative promoters might be co-
expressed in the same cell.

We also found that epigenetic (histone modifications and DNA
methylation) landscapes of reference and alternative promoters are
dramatically different, which is due to their differences in CG density.
The H3K4me3 marks are enriched on CGIs47, while we showed that
intragenic CGIs lack H3K4me3marks due to the retention of high DNA
methylation in the tumor. It is known that aged cells (and cancer cells)
generally lose DNA methylation from gene bodies59. We described a
hierarchy that explained preferential loss or retention of intragenic
DNA methylation dependent upon the flanking CG density where CG-
rich regions retain high tumor DNA methylation. This preferential
retention of intragenic DNA methylation is regulated by SETD2,
H3K36me3, and DNMT3B as they preferentially bind to CG-rich
regions. This leads to intragenic CG-rich regions with more repres-
sive chromatin marks, and that would require higher levels of DNA
demethylating enzyme to make their chromatin accessible. Instead,
these intragenic CG-rich regions have low levels of TET1 binding and,
thus, have reduced active demethylation. Thus, intragenicCGIs are less
favorable to act as alternative promoters in cancer, though they can act
as alternative promoters during embryonic development and cell
differentiation36. On the contrary, intragenic CG-poor regions have
lower levels of repressive chromatin state and higher levels of TET1
binding, which collectively makes their DNA sensitive to active

demethylation and accessible chromatin to experience pervasive Pol2
binding64 that, upon the availability of a tissue-specific transcription
factor will efficiently initiate and elongate these Pol2. We propose that
other tumors have similar mechanisms in activating alternative pro-
moters, while their preferred location will be dependent upon DNA
demethylated sites that are enriched for tissue-specific transcription
factors of the specific tumor tissue.

The general view on why some genes have multiple promoters is
that a cell needs more expression of specific genes, and transcription
from multiple promoters may add flexibility manifested through dif-
ferent molecular mechanisms in regulating gene expression65. How-
ever, alternative promoters are widespread in cancer, raising an
interesting question as to whether it is advantageous for tumor cells.
We discussed different scenarios where alternative promoters offer
functional advantages for tumors. Firstly, alternative promoters can
downregulate reference promoters through transcriptional inter-
ference, which often coincides with important genes, including
hepatocyte-specific markers (Supplementary Fig. 2f). Accelerated loss
of expressionof thesegenesmayhelphepatocytes to lose their cellular
identity andgain a new identity as themalignant tumor. Todevelop the
cellular identity, tumor cells might utilize signaling pathways differ-
ently in a globally changed cancer background. As such, alternative
promoters detected only in tumors were enriched for genes in sig-
naling pathways (Fig. 2c), which globally did not downregulate refer-
ence promoters (Supplementary Fig. 2f). This suggests that signaling
pathway genes co-opt both promoters, where tumor cells utilize sig-
naling pathways differently via alternative promoter usage (for
example in CDKN2A and ERBB2 (Supplementary Fig. 1e, f)). From the
clinical perspective, MP genes were significantly associated with OS,
similar to recent observations in multiple myeloma66. This opens an
avenue to elucidate improved diagnostic biomarkers for the early
onset of cancer, as many alternative promoters are expressed in a
tumor-specific manner. Signaling pathways genes are often potential
targets in designing drugs. Hence future work is needed to understand
whether targeting tumor-specific alternative transcripts might
increase the drug specificity and efficacy. While our analyses suggest
an important role of alternative promoters in liver cancer, their bio-
logical significance in the full spectrum of liver cancer remains unex-
plored. The selective use of alternative promoters often goes
uncharacterized in gene expression analyses in standard RNA-seq
analyses, and thuswe encourage scientists to carefully inspectwhether
their genes of interest are under alternative promoter regulation.

Methods
Mapping of HCC CAGE-seq reads to define CTSSs
Raw CAGE-seq reads were downloaded from a previous study8. The
CAGE-seq reads were mapped to the human genome (hg19) with
bowtie267 by allowing up to two mismatches. On average, around 80-
90% of sequenced reads weremapped, resulting in an average of 15-16
million mapped reads (Supplementary Table 1). The 5′ end of mapped
CAGE reads provides TSSs at single nucleotide resolution and is
termed as CTSSs. Low-quality and multi-mapping CTSSs with MAPQ
scores below 20 were filtered using SAMtools68. The CTSSs that

Fig. 6 | RegulationofSETD2. a,bAverage coverage of H3K36me3 along gene body
and flanking regions of the single-promoter (SP) andmulti-promoter (MP) genes in
SETD2-wt (n = 2, replicates merged) and SETD2-kd (n = 2, replicates merged) in
HepG2 cells. c The average coverage of H3K36me3 along intragenic CGIs and
flanking regions in SETD2-wt and SETD2-kd in HepG2 cells. d Volcano plot shows
hypermethylated and hypomethylated CpGs between SETD2-mutant (n = 15) and
SETD2 wild-type (n = 362) tumors from TCGA HCC patients. P-values were deter-
mined by two-tailed unpaired t-tests between SETD2-mutant and SETD2 wild-type
groups. P values were adjusted for multiple testing. Y axis indicates the negative
log2 value of adjusted P values. e Boxplots show average DNA methylation levels
(beta values) of CpGs around reference promoters, alternative promoters, and

intragenic regions. Meanmethylation levels are derived from 15 SETD2-mutant and
362 SETD2 wild-type TCGA HCC patients. Boxplots show the 5th, 25th, 50th, 75th,
and 95th percentiles, where the center line is themedian. P-values weredetermined
by two-tailed unpaired t-tests. f Volcano plot shows fold-change of intronic reads in
SETD2-mutant (n = 15) versus SETD2 wild type (n = 362). P-values were determined
by a two-tailed unpaired t-test. g Schematic representation to illustrate tumor-
specific transcription of alternative promoters from CG-poor regions. The chro-
matin structure of intragenic CG-rich and CG-poor regions have different dis-
tributions of 5mC, 5hmC, H3K36me3, and DNMT3B, leading to the pervasive
initiation of alternative promoters from CG-poor regions.
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overlapped with 421 blacklisted regions from ENCODE69 were exclu-
ded. The CAGE protocol often adds “G” at the 5′-ends of capped TSS11,
which generally remains unmapped and shifts TSS by 1 nucleotide. We
used SAMtools and detected mapped reads with unmapped “G” at the
first base. We then corrected such CTSSs by shifting the TSS position
by 1 nucleotide as described before12.

TCs and generating consensus TCs across the cohort
To define TCs for each sample, we clustered CTSSs in the same strand
that overlapped within 20 nucleotides12. The CTSSs with the highest
expression level within TC were defined as the dominant CTSS. All
CTSSs within the TC were added that defined the expression level of
TC. We then computed the interquartile width of the TCs by trimming
the edges of the TCs in the range of 0.1–0.9 percentile of the TC. To
define the consensus TCs across the cohort, we clustered TCs from all
patients and computed their expression levels. To ensure that con-
sensus TCs have robust expression levels, we retained TCs only if their
expression was higher than 1 TPM in at least 15 samples (15% of the
cohort) and had a minimum of 3 TPM at least in 1 sample.

Assignment of reference and alternative promoters among
annotated transcripts
A genewith a single promoterwas classified as a single promoter gene,
and its promoter was assigned the reference (alias as a primary, major,
main) promoter. Genes with two or more promoters were classified as
MP genes. The promoter with the highest mean expression level at the
population level, which is also expressed in normal liver tissue, was
assigned as the reference promoter. The remaining promoters of that
genewere assigned as alternative (aliasminor) promoters of that gene.
The terms reference TSS and alternative TSS have been used
ambiguously.

Annotation of novel alternative promoters
To annotate novel alternative promoters, we implemented a pipeline
(Fig. 1c) that systematically filtered intragenic TCs that are unlikely to
represent true promoters. We filtered CAGE TCs overlapping small
RNAs, drosha processing site of pre-miRNAs23, and 5′ ends capping of
snoRNAs17. Thousands of intragenic CAGE TCs are detected within
exons that represent post-transcriptional processing and are char-
acterized byGG-initiation11,12. We filtered intragenic CAGETCswith GG-
initiation and those overlapping with coding exons and annotated
enhancers24,70. We also annotated novel enhancers from CAGE TCs by
computing directionality24. Briefly, the directionality score (DS) for
intragenic TCswas calculated bymeasuring the expression level of TCs
in forward and reverse strands, where DS = (Forward −Reverse)/(For-
ward +Reverse). CAGE TCs with directionality scores between 0.5 and
−0.5 were classified as enhancer RNAs. On the remaining TCs, we only
retained those that have YR-initiation or YC-initiation initiationmotif15.
The remaining 1077 TCs represent high-confidence true promoter tags
that act as alternative TSSs to annotated genes.We clustered proximal
TCs with 300 bases, thus resulting in 1031 novel alternative TSSs. To
provide evidenceof RNA transcripts for these 1031 alternative TSSs, we
analyzed transcript models from RNA-seq25,26 and expressed sequence
tags27. We excluded transcripts that are proximal (within 300 bases
apart) to 5′ ends of annotated Ensembl transcripts. The remaining
transcripts with distinct 5′ ends overlapped within 300 bases of novel
alternative TSSs.

Histone profiles of annotated HepG2 enhancers
We downloaded previously annotated enhancers24,70 across different
tissues and cell types, and ChromHMM71 annotated enhancers on
HepG2 cells. We intersected ChromHMMHepG2 enhancers with other
enhancers and ensured that enhancerswere annotated acrossmultiple
datasets. We excluded enhancers that overlapped with gene pro-
moters. The remaining 21682 enhancers were divided into two groups

based on overlapwith CGIs. Enhancers that overlapped (aminimumof
10% of enhancer length) with CGIs were annotated as CGI enhancers
(n = 791). The remaining non-overlapping (n = 20891) enhancers were
annotated as nonCGI enhancers.

Mapping and visualization of histone ChIP-seq of HCC patients
and HepG2 cells
We downloaded the raw sequence reads of H3K4me1, H3K4me3,
H3K27ac, and H3K27me3 ChIP-seq data for four HCC patients6. We
downloaded raw sequence reads of H3K36me3 marks on SETD2 wild
type and SETD2 knockdown conditions on HepG2 cells72. The raw
sequence reads were mapped using bowtie267 and excluded multi-
mapping reads.

Analysis of DNA methylation of HCC patients and HepG2 cells
The Illumina 450K DNAmethylation data from the TCGA HCC cohort
was downloaded from UCSC Xena hub73. The methylation levels were
computed as beta values in the range of 0–1. The reduced RRBS of
HepG2 cellswas downloaded fromENCODE. The TET-assisted reduced
RRBS (TAB-RRBS) of HCC patients was downloaded as a beta value6.
For each CpG, we computed the average methylation levels across the
cohort, separately for tumor and tumor-adjacent tissues. Differentially
methylated CpGs around promoter regions were identified using a t-
test on individual methylation levels between tumor and tumor-
adjacent tissues. The P-valuewas adjusted formultiple corrections and
P-value less than 0.05 was defined as significantly methylated CpGs.
For visualization of average methylation levels around TSSs and CGIs,
the mean beta value was converted into bigwig tracks and plotted
average beta value using deepTools74.

For the analyses of DNA methylation landscapes induced by
SETD2 mutations, we separated TCGA HCC patients into two groups,
namely, SETD2 mutants (n = 16) and SETD2 wild type (n = 352). Differ-
entially methylated CpGs were identified using a t-test on individual
methylation levels between SETD2 mutants and SETD2 wild-type
tumors. The P-value was adjusted for multiple corrections and a P-
value less than 0.05 was defined as significantly methylated CpGs.

Visualization of metaplots across genes and CGIs
All metaplots across genes and CGIs were plotted using deepTools74.
From mapped BAM files, we first generated coverage as wig tracks
which are normalized as RPKM using default parameters from deep-
Tools. For the genes and CGIs metaplot, variable lengths of genes and
CGIs were scaled between start and end.

Enrichment of transcription factor and de-novo motif analysis
We downloaded transcription factors (TFs) ChIP-seq peaks for HepG2
from ENCODE75. To calculate the density of TFs, we intersected TFs
peaks with promoter regions by using bedtools76. Different TFs over-
lappingpromoterswere summed todetermine the total number of TFs
per promoter. To identify overrepresented transcription factors, we
performed motif analyses using HOMER77. We used 500 bases around
TSSs as the search region to detect motifs. The background regions
were controlled for nucleotide composition and selected by default by
HOMER. We first identified motifs using the following parameter
“findMotifsGenome.pl -chopify -len 8,10,12 -S 25 -size −500,500”. To
compare these identified motifs with known motifs, we reran predic-
tion using the following command “findMotifsGenome.pl -chopify -len
8,10,12 -S 25 -mcheck -mknown -size −500,500”. For visualization of
motifs, we computed the matrix of p-value across promoter types and
plotted them as heatmaps.

Signature genes from the literature
Curated signature genes for hepatocytes28, Hoshida signature genes29,
sorafenib resistance signature31, and GSEA cancer hallmark genes30

were downloaded from the literature. We are interested in these gene
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signatures with annotated SP and MP genes. We computed Fisher’s
exact test to determine the statistical significance of the overlap
between signature genes with single and MP genes.

Patients’ OS analysis
To compute the OS of patients associated with expression level for
each transcript, we downloaded TCGA LIHC clinical data2,78 and tran-
script expression levels from UCSC Xena hub73. Each transcript was
sorted based on its expression levels and classified into high-
expression and low-expression groups. We associated the expression
levels of these transcripts from two (high-expression and low-expres-
sion) groups with the survival status of patients and performed
Kaplan–Meier analyses. For MP genes, we performed Kaplan–Meier
analysis on the reference transcript and on the alternative transcript.

Differential expression at promoter and gene level
Differentially expressed genes and promoters were identified using
DE-seq232. The significance cut-off was defined at an adjusted P-value
of 0.05 and log2 fold-change of absolute (0.5). For gene level analysis,
we summed the expression levels of reference and alternatives pro-
moter for each MP gene.

Analysis of N-terminus of protein and UniProt domains
To compare whether alternative promoters altered the N-terminus of
the protein, we analyzed only those alternative transcripts that have
assigned UniProt protein domains and hence excluded noncoding
transcripts and novel alternative promoters. We compared the
N-terminus of the reference and alternative promoters, and if they had
different start codons, they were assigned as different N-terminus
proteins.

Classification of CGIs and observed/expected CG ratio
Annotated CGIs were downloaded from the UCSC database27. We
intersected CGIs with assigned promoter regions of annotated tran-
scripts, and those overlapping promoters were assigned as promoter
CGIs. The remaining CGIs that overlapped gene bodies were classified
as intragenic CGIs. The remaining CGIs were classified as intergenic
CGIs. The observed/expected (O/E) CG dinucleotides for a given
genomic window were calculated using the following formula O/E
CG= (CG count) (genomic window)/(C count * G count). We used
“bedtools nuc” function from Bedtools76 to measure these values and
computed the O/E CG ratio for each genomic window.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data analyzed in this study are publicly available. Data
accession codes are provided: HCC CAGE data (dbGap phs000885.v1.
p1)8, normal liver CAGE data (DDBJ DRA: DRA000991: https://fantom.
gsc.riken.jp/5/data/)17, HCC histonemodifications and RRBS data (GEO
GSE112221)6, H1ESC DNMT3B (GEO GSE150072)79 and HepG2 shCtrl
and shSETD2 H3K36me3 data (GEO GSE110323)72. The data generated
by the TCGA (https://www.cancer.gov/tcga)2,7 was downloaded from
https://xenabrowser.net/73. ENCODE data22,60 was downloaded from
https://www.encodeproject.org/. Processed data are provided as sup-
plementary tables. Source data are provided in this paper.
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