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Spectro-spatial features in distributed
human intracranial activity proactively
encode peripheral metabolic activity

Yuhao Huang1,5, Jeffrey B. Wang 1,2,5, Jonathon J. Parker1, Rajat Shivacharan1,
Rayhan A. Lal 3,4 & Casey H. Halpern1

Mounting evidence demonstrates that the central nervous system (CNS)
orchestrates glucose homeostasis by sensing glucose and modulating per-
ipheral metabolism. Glucose responsive neuronal populations have been
identified in the hypothalamus and several corticolimbic regions. However,
how these CNS gluco-regulatory regions modulate peripheral glucose levels is
not well understood. To better understand this process, we simultaneously
measured interstitial glucose concentrations and local field potentials in 3
human subjects from cortical and subcortical regions, including the hypo-
thalamus in one subject. Correlations between high frequency activity (HFA,
70–170Hz) and peripheral glucose levels are found across multiple brain
regions, notably in the hypothalamus, with correlation magnitude modulated
by sleep-wake cycles, circadian coupling, and hypothalamic connectivity.
Correlations are further present between non-circadian (ultradian) HFA and
glucose levels which are higher during awake periods. Spectro-spatial features
of neural activity enable decoding of peripheral glucose levels both in the
present and up to hours in the future. Our findings demonstrate proactive
encoding of homeostatic glucose dynamics by the CNS.

Maintenance of peripheral glucose levels represents one of the most
vital homeostatic control loops. The central nervous system (CNS) is
heavily reliant glucose as a fuel, as it has the highest energy demand in
the body1. As such, there is a teleologic basis to hypothesize that the
CNS closely surveils and regulates body glucose levels. Growing evi-
dence suggests the presence of distributed CNS ‘glucose-responsive’
neuronal populations, which respond either directly through glucose
sensing or indirectly as a part of the glucose-modulatory circuit2–4. The
most well-studied location of these neurons is the hypothalamus,
whereby multiple nuclei, including the arcuate, paraventricular, ven-
tromedial and lateral nuclei, have demonstrated effector functions
that alter peripheral glucose levels4–7. The amygdalohippocampal
complex (AHC) has also been shown to harbor these neurons8–10 and

recently, the rodent hippocampus was reported to exert a modulatory
effect on peripheral glucose level changes through sharp wave-ripples
(SPW-Rs)9. Further, the habenular nucleus has been implicated in
regulation of glucose metabolism, as lesion in this area increased
insulin sensitivity11. Other direct glucose-sensing neurons have also
been found in the nucleus accumbens12, the thalamus13, and the pre-
frontal cortex14.

In humans, direct evidence supporting intracranial regulation of
peripheral metabolism remains limited. Thus far, non-invasive func-
tional imaging studies coupled with an insulin or glucose challenge in
humans have implicated various corticolimbic regions such as the
insula and orbitofrontal cortex as potential regulators of glucose
homeostasis15,16. Further support for an anatomically distributed brain
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network involved in glucose regulation comes in part via coupling of
spectral power measured by scalp EEG with glucose fluctuations17.
However, a longitudinal human (i.e., over the course of days) study
simultaneously assessing large-scale neuronal activity across multiple
brain regions and peripheral glucose levels has not been performed.

Here, we provide an in-human study combining longitudinal
intracranial recordings with continuous glucose monitoring (CGM), a
similar technology used in previous CNS-glucose studies9,17,18. Given
known presence of glucose-responsive neuronal populations in the
hypothalamus and across multiple corticolimbic structures, we hypo-
thesize that distributed CNS population neural activity encodes
information regarding ongoing and future energy demand that are
reflected in peripheral glucose dynamics. To test this hypothesis, we
obtained intracranial electrographic recordings from corticolimbic
structures alongside time-synchronized interstitial glucose con-
centrations using aCGMdevice over amulti-day period. In one subject,
we had the unique opportunity to directly record from the ventral
diencephalon including the hypothalamus.

First, we found that HFA in the bilateral hypothalami was strongly
correlated with peripheral glucose variations in a diurnally mediated
fashion. Across several corticolimbic sites,we alsoobserved significant
HFA-glucose correlations that were diurnally mediated. Second, to
understand the source of correlation, we performed wavelet coher-
ence analysis and identified strong circadian coupling across cortico-
limbic areasbetweenHFAandperipheral glucose variations,whichwas
partly explained by hypothalamic connectivity. Removal of circadian
influence in the signals revealed significant but diminished correla-
tions in non-circadian (ultradian) HFA and glucose variations. This
correlation of ultradian rhythms in HFA and glucose variations was in
turn higher during wakeful periods. Finally, we trained a multivariate
decoder using spectral profiles of all graymatter recordings to predict
peripheral glucose variations. This model was able to proactively
decode glucose levels both in the present and hours in advance using
circadian and ultradian signal dynamics. Taken together, these results
suggest CNS activity may be a leading indicator of glucose dynamics.

Results
Study participants
Three subjects were included in the study, and all had simultaneous
coverage of hippocampus, amygdala, insula, cingulate, orbitofrontal
cortex, and frontal and temporal cortices (Supplementary Table 1).
Continuous peripheral glucose measurements were recorded in con-
junction with time-synced intracranial activity (Fig. 1A). Subject 1 (S1)
had two depth electrodes targeted at bilateral hypothalami. The
number of days with continuous glucose monitoring and intracranial
recordings were 5.5, 6.5, 9.3 for S1, S2, and Subject (S3), respectively.
The sleep chronotype for each subject demonstrated distinct sleep/
wake cycles (Supplementary Fig. 1).

Coupling of hypothalamic and corticolimbic activity to periph-
eral glucose variations is diurnally mediated
Given the established role of hypothalamus in both sensing and reg-
ulating peripheral glucose levels, we first examined the relationship
between hypothalamic HFA and peripheral glucose variations in S1
(Fig. 1B–G). Glucose concentrations in the interstitial fluid was con-
tinuously monitored alongside HFA (Fig. 1C) while the subject had ad
libitum meals and self-determined sleep-wake cycle. Mean hypotha-
lamic HFA was significantly correlated to interstitial glucose variations
with no lag correction (Fig. 1D: R =0.36, N = 7 hypothalamic channels).
Higher correlation was found by using HFA as a leading indicator and
coupling itwith future interstitial glucose levels (R =0.55, temporal lag:
2.8 h). This was visualized using a cross-correlogram which showed
overall higher hypothalamic HFA correlation to interstitial glucose
levels when HFA has a leading temporal shift (Fig. 1E). Across con-
ventional powerbands, hypothalamic HFA was associated with the

highest correlation (Fig. 1F: one-wayANOVA: F(5,36) = 17,P < 0.001). To
evaluate if the correlation was driven purely by day-night cycling, we
stratified the time-series by sleep and wake periods. The hypothalamic
HFA-glucose correlation was significantly higher during sleep periods
(Fig. 1G: Paired t-test: t(6) = 23, P < 0.001). Having observed hypotha-
lamic HFA is strongly correlated to peripheral glucose dynamics, we
asked if thebroader subcortical and corticolimbic regional activity also
reflected glucose variations. Across three subjects, mean regional lag-
corrected HFA-glucose correlation ranged from 0.23 to 0.38 with
subcortical regions exhibiting the highest mean correlation (Supple-
mentary Fig. 2A: one-way ANOVA: F(6,287) = 13, P <0.001). When
evaluating the distribution of temporal lag accounting for the highest
correlation across all regions, we observed high intra- and inter-
individual variability, with median being −1.8, −1.2, and +7.3 h,
respectively, for subject 1, 2, and 3 (Supplementary Fig. 2B). In a similar
fashion to hypothalamic HFA-glucose coupling, mean correlation
between HFA and interstitial glucose variations was higher during
periods of sleep across subcortical and corticolimbic regions (Fig. 1H,
Paired t-test: all P <0.05). As there have been studies associating
interictal epileptiform discharges (IEDs) to glucose levels19, we eval-
uated the extent to which IEDs were correlated to glucose levels in our
dataset. In Subject 1 and Subject 3 with epilepsy, we found that IEDs in
the seizure onset zone had lag-corrected correlation 0.22 and 0.20
with interstitial glucosevariations, respectively (Supplementary Fig. 3).
We also evaluated the relationship between hypothalamic HFA and the
derivative of glucose levels (i.e., rate of change) (Supplementary
Fig. 4). Hypothalamic HFA showed significant but modest correlation
with glucose rate of change (R =0.31) and was highest at a slight lag-
ging temporal shift (5min). This correlation was also modulated by
powerbands with HFA exhibiting the highest correlation (Supple-
mentary Fig. 4B: one-way ANOVA: F(5,36) = 15, P <0.001). Across three
subjects, mean regional lag-corrected HFA-glucose rate of change
correlation ranged from 0.16 to 0.22 (Supplementary Fig. 4C).

Circadian rhythm contributes to coupling between intracranial
HFA and interstitial glucose dynamics
To understand the timescales of correlation underlying HFA and
interstitial glucose variations, we evaluated the mean hypothalamic
HFA-glucose wavelet coherence spectrum (Fig. 2A). This revealed high
coherence at circadian periodicity, with a constant HFA-glucose phase
lag. The corresponding spectral periodogram (Fig. 2B) showed peaks
in ultradian (0.7, 1.8, 7.8 h) and circadian periodicities (27 h). The
spectral periodogram for glucose rate of change also exhibited mul-
tiple ultradian (1.6, 4, 6, and 10 h) and circadian periodicities (20h,
Supplementary Fig. 4D). The mean circadian coherence varied by
regions ranging from 0.39 to 0.57 with subcortical, amygdalohippo-
campal and frontal regions exhibiting the highest magnitudes (Fig. 2C:
one-way ANOVA: F(6,287) = 13, P < 0.001). Across all gray matter
electrodes, the mean circadian coherence was 0.49, 0.40, and 0.44
with amean leadingHFAphase lagof 1.8, 9.5, and 7.3 h for Subjects 1, 2,
and 3, respectively (Supplementary Fig. 2C). In channels with sig-
nificant circadian coherence, the HFA-glucose circadian phase lag was
linearly associatedwith the correlational temporal lag (Supplementary
Fig. 2D: Pearson’s correlation, R =0.36, P < 0.001), indicating that the
circadian phase lag as a contributing source to the correlational tem-
poral lag. We conducted a secondary analysis evaluating circadian
coherence using a narrow circadian window (20–28 h vs 16–36 h;
Supplementary Fig. 5A, B). This revealed similar circadian coherence
values with similar regional trend in mean values, indicating circadian
coherence did substantially depend on the circadian window
employed.

In Subject 1, CCEP mapping allowed for interrogation of func-
tional connectivity amongst brain regions with high HFA-glucose
coherence. Specifically, channels with significant HFA circadian cou-
pling to glucose levels had larger CCEP waveforms when the left
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hypothalamus was stimulated, implying that these regions are func-
tionally connected to the hypothalamus (Fig. 2D). Accordingly, the
mean CCEP amplitude was significantly higher in channels with circa-
dian coupling (Fig. 2E; two-sample t-test, t(118) = 2.9, P =0.005). The
same was observed with right hypothalamic stimulation (Supplemen-
tary Fig. 6A, B; two-sample t-test, t(121) = 3.6, P <0.001). Further, the
magnitude of raw correlation across regions correlated with mean
CCEP (Fig. 2F, Pearson’s correlation, R = 0.42, P <0.001), which was

present with right-sided stimulation (Supplementary Fig. 6C, Pearson’s
correlation, R = 0.42, P < 0.001).

Ultradian rhythm underlies correlation between intracranial
HFA and interstitial glucose dynamics during wakeful periods
To evaluate if circadian coupling accounted for the HFA-glucose cor-
relations entirely or if there was coupling on faster timescales, wavelet
decomposition was used to separate the raw signals into its circadian
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(18–36 h) and ultradian components (0–18 h) (Fig. 2G). Removal of
circadian influence to the HFA and interstitial glucose time series
reducedmeancorrelationby52%, 35%, and41%, respectively, forS1, S2,
and S3, respectively (Fig. 2H: S1mean correlation: 0.31 to 0.15, S2mean
correlation: 0.23 to 0.15, S3 mean correlation: 0.29 to 0.17, Paired t-
test: all P <0.001). Across subcortical and corticolimbic regions, the
ultradian correlation ranged 0.14 to 0.18, with subcortical regions
having the highest magnitude of correlation (Fig. 2I: one-way ANOVA:
F(6,287) = 3.0, P =0.007). When stratified by sleep and wake cycles,
ultradian correlation across regions showed significantly higher mag-
nitude during wakeful periods than compared to sleeping periods
(Fig. 2J, Paired t-test; all P < 0.05). Finally, as recent studies in non-
diabetic patients have implicated meal-context and post-prandial
interstitial glucose changes are related to appetite, changes in hunger
level, and overall energy intake20,21, we compared ultradian correlation
between HFA-glucose during pre-prandial and prandial periods. These
analyses revealed variable direction of magnitude change based on
region (Supplementary Fig. 7). Specifically, HFA-glucose ultradian
correlationwas decreased during prandial periods inmajority of insula
channels (Paired t-test: t(64) = 4.7, P <0.001), whereas it was increased
in the AHC and frontotemporal cortical channels (Paired t-test: all
P <0.05). Within individual subcortical structures, we also observed
different sleep and meal-related changes in strength of both raw and
ultradian HFA-glucose correlations (Supplementary Fig. 8A–C).

Spatially variant spectral features of intracranial activity
proactively decodes glucose levels
Given the significant correlation between distributed intracranial
activity and glucose levels, we sought to design a decoder for pre-
dicting glucose levels over time (Fig. 3A). We used LASSO regression, a
machine learning method that identifies a subset of most important
features and subsequently fits a linear regressionmodel using reduced
the set of features. This reduces the risk of overfitting given many
features compared to a relatively limited number of datapoints. In this
case, the feature space for this model included all power band activity
(delta, theta, alpha, beta, gamma, and HFA) across gray matter con-
tacts on a single subject level. Using thismodel, we found thatwewere
able to accurately predict bloodglucose across awide range of glucose
levels for each subject (Fig. 3B; Pearson’s Coefficient, average R =0.73,
P <0.001). This model was repeatedly trained at consecutive time
intervals to account for temporal lag and revealed that the model
performance was highest when the intracranial features were hours
prior to the glucose recording (Fig. 3C; temporal lag with highest
decoding performance was 1.5, 7.5, and 7.5 h with powerband features
leading for Subjects 1, 2, and 3, respectively). Compared to the zero-
delay model, the proactive decoder captured faster variation in glu-
cose variations in addition to the general temporal trend (Fig. 3D,
Subject 2).

To validate that the glucose decoder is not simply relying on the
coupled circadian rhythm of glucose and intracranial activity, we tes-
ted the decoder in several conditions (Fig. 3E). First, as a negative
control, we found that decoder performance declines significantly

when predicting glucose levels shuffled in 1-h windows. Second, using
average glucose at a given time of day as a circadian control, we found
thismodel performedbetter than chance, butwas significantly inferior
to the decoder trained on intracranial data (two-sample t-test, 0.50 vs
0.73, P <0.001). Finally, we found that the decoder performance did
not decline when using intracranial data to predict solely circadian
glucose dynamics or non-circadian glucose levels, indicating that the
decoder considers contributions from both circadian and ultradian
rhythms in glucose levels over time. As a secondary analysis, we eval-
uated decoding for the derivative of interstitial glucose (Supplemen-
tary Fig. 9A). Modest decoding performance was only achieved in
Subject 1.

To assess whether decoder fidelity varied across sleep cycle, we
evaluated our decoder’s root mean square error (RMSE) across both
wakeful and asleep periods of the day. We found that the percent
difference in RMSE during wakeful vs asleep periods of the day com-
pared to RMSE during the entire day was not significantly different
(Figs. 3F, 31.2% vs −0.8%, Paired t-test, t(2) = 0.87, P > 0.05). In addition,
we calculated the RMSE between actual and decoded glucose levels
during sleep stages (N1, N2, N3, and REM) as scored by the SleepSEEG
algorithm22. This calculated RMSE was compared to overall RMSE of
the decoder and we found no significant difference in decoding per-
formance (Supplementary Fig. 10A, B, one-way ANOVA, F(4,2) = 1.5,
P >0.26). Similarly, RMSE was not significantly different during pre-
prandial vs prandial periods (Figs. 3G, 4.4% vs −1.9%, Paired t-test, t(2) =
0.93, P >0.05).

To identify electrode channels selected by the LASSO-based glu-
cose decoder, we performed a boot-strap Monte Carlo analysis. We
found that across the 3 patients, a distributed set of corticolimbic
structures were consistently used for LASSO regression (Fig. 3H, I).
Across multiple training-test set permutations, there was a strong
correlation between the number of permutations a specific channel
was used in the decoder and the median linear weight in the decoder
model, which can be interpreted as the strength of contribution of an
electrode to the model (Fig. 3I). Commonly used structures that were
shared across subjects include the insula and cingulate cortex (Fig. 3H,
Supplementary Fig. 11). Notably, the hypothalamic contacts were
consistently used in Subject 1 for decoding of both absolute glucose
levels and glucose rate of change (Supplementary Fig. 9B).

Discussion
Mounting evidence supports that the CNS can directly influence
peripheral metabolic activity through not only regulation of caloric
intake, but also causal glucose modulatory mechanisms18,23–25. This is
thought to be achieved through distributed presence of glucose-
responsive neurons in the hypothalamus as well as other cortico-
limbic regions2–6,26. However, how longitudinal CNS activity in
humans relates to peripheral glucose variations has not been exam-
ined previously. No multi-day recordings of simultaneous CNS
activity and glucose levels are currently available to allow study of
physiologic rhythms in these signals. We address these questions
through simultaneous sampling of putative glucose-responsive

Fig. 1 | Human hypothalamic and corticolimbic activity is correlated with
interstitial glucose dynamics in a diurnally mediated fashion. A Clinical
recording system comprising stereo-encephalography (sEEG) and continuous
glucose monitoring (DexcomG6) in patients undergoing invasive monitoring. This
illustrationwas createdwith BioRender.comBAnatomical location of electrodes in
the bilateral hypothalamus of Subject 1. C Interstitial glucose levels as a function of
time over six recording days in Subject 1 with corresponding mean high-frequency
activity (HFA; 70–170Hz) from the hypothalamic electrodes. Theblack lines denote
periods of sleep while the blue lines denote start and end of ad libitum meals.
D Scatter plots of hypothalamic HFA and interstitial glucose variations with 0-h
(top) and −2.8 h lags (bottom). Pearson’s correlation (R) and associated P-value are
shown.N = 1588 datapoints. EMean cross-correlogram between hypothalamicHFA

and interstitial glucose variations. The error bar indicates the standard error. Cross-
correlograms using shuffled glucose data with 2 standard deviations is shown in
gray. N = 1588 datapoints. FMean lag-corrected correlation between hypothalamic
activity and interstitial glucose variations across conventional powerband
(N = 7 hypothalamic channels, one-way ANOVA; F(5,36) = 17, P <0.001). G Lag-
correctedhypothalamicHFA-glucose correlation stratifiedby sleepandwake states
(N = 7hypothalamic channels, one-sample T-test: t(6) = 23,P <0.001).H Subcortical
and corticolimbic lag-corrected HFA-glucose correlation stratified by sleep and
wake states across three subjects. All tests were Paired t-test with statistics and P-
value shown per region. All error bars indicate standard error of the mean (SEM).
Source data are provided as a Source data file. *P <0.05, **P <0.01, ***P <0.001.
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activity and interstitial glucose dynamics. A Wavelet coherence spectrum
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at circadian periodicity. Arrows denote phase lag. B Corresponding coherence
periodogram showing peaks in ultradian and circadian periodicity. C Circadian
coherence between HFA and interstitial glucose across subcortical and cortico-
limbic regions (Nsubj = 3, Nchannels = 288, one-way ANOVA; F(6,287) = 13,
P <0.001). D Average cortico-cortical evoked potentials (CCEP) elicited by left
hypothalamic stimulation in S1 stratified by whether channels’ HFA were sig-
nificantly coupled to glucose in a circadian manner. Channels with significant
glucose coupling showedanoverall larger CCEPwith left hypothalamic stimulation.
Shaded error bars indicate error of the mean (SEM). E Average CCEP magnitude
(0.01–0.1 s) was significantly higher in channels with significant circadian coher-
ence to glucose (two-sample t-test, t(118) = 2.9, P <0.001). F Left hypothalamic
CCEP magnitude correlates directly with HFA-glucose lag-corrected correlation

across all channels in S1 (Nchannels = 121, Pearson’s R = 0.42, P <0.001).GWavelet
decomposition of circadian and non-circadian rhythms in interstitial glucose
dynamics and mean hypothalamic HFA (Subject 1). Combining the circadian and
non-circadian rhythms reconstruct the original signal trace.HRemoval of circadian
contribution to HFA and interstitial glucose variations resulted in significant
reduction of correlation across 3 subjects (Paired t-test with statistic shown for
each subject). I Lag-corrected non-circadian correlation between HFA and inter-
stitial glucose across subcortical and corticolimbic regions (Nsubj = 3, Nchannels =
288, one-way ANOVA; F(6,287) = 3, P =0.007). J Subcortical and corticolimbic lag-
correctednon-circadianHFA-glucose correlation stratifiedby sleepandwake states
across three subjects (Nchannels per region is noted by the degree of freedom, all
tests were Paired t-test with statistics and P-value shown per region). All error bars
indicate SEM. Source data are provided as a Source data file. *P <0.05,
**P <0.01, ***P <0.001.
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regions and tracking of peripheral glucose variations in humans. This
dataset also gives us the unique potential to examine longitudinal
changes in neurologic and metabolic activity over several days.
Furthermore, we can examine a wide range of subcortical and

cortical regions simultaneously, which is normally more difficult to
accomplish in rodents and other small animal models.

As the hypothalamus is well implicated in the control of glucose
metabolism, we first evaluated hypothalamic activity in relation to

***
***

***
***

***

Shuffled Control
Circadian Control
Predicting IG
Predicting Diurnal IG
Predicting Deviations from Diurnal IG

Subject
S1 S2 S3

Pe
ar

so
n 

C
or

re
la

tio
n

0.2

0.4

0.6

0.8

0.0

***
***

***

***
***

***

***

E

A
6 Frequency Bands

(Normalized)

...

N
 C

on
ta

ct
s

...

6N
 F

ea
tu

re
s

Flatten LASSO

...

Se
le

ct
ed

 F
ea

tu
re

s

Linear
Model

Actual IG

Pr
ed

ic
te

d 
IG

S1 S2 S3
HYP δ HYP δ

STG Hγ

AINS γACING γ

Average Lasso Weight
0 21

0%

90%

99%

99.9%

100%

Pe
rc

en
ta

ge
 o

f M
od

el
s 

C
on

ta
ct

 U
se

d

ACING γ

PAG δ AMY γ AINS γ

THA γTHA Hγ

SFG γ

SFG γ

PUTA δ

PUTA θ

PINS δ

AMY Hγ

0%

90%

99%

99.9%

100%

30 21
Average Lasso Weight

HPC β

MOFC Hγ
HPC γ

PCING θ
ACING δ

MOFC δ

HPC β

ACING Hγ
MTG Hγ

8640 2
Average Lasso Weight

0%

90%

99%

99.9%

100%

Pe
rc

en
ta

ge
 o

f M
od

el
s 

C
on

ta
ct

 U
se

d

0%

90%

99%

99.9%

100%

F

S1
S2
S3

Hippocampus (HPC)

Putamen (PUTA)

Thalamus (THA)

Amygdala (AMY)
Hypothalamus (HYP)

Insula (INS)

Superior Temporal Gyrus (STG)

Anterior Cingulate (ACING)

G

Actual

Time (Days)
1 2 3 4 5 6 7

IG
 (m

g/
dL

)

100

120

140

160

0 Delay Model
Proactive Prediction

D
−4−8 4 80

Delay (Hours)

0.5

0.6

0.7

0.8

Pe
ar

so
n 

C
or

re
la

tio
n

S1
S2
S3

Actual IG (mg/dL)

Pr
ed

ic
te

d 
IG

 (m
g/

dL
)

75

75

100

100

125

125

150

150

175

175

200

200
S1
S2
S3

B C

Brain Proactive Brain Reactive

H

I

S1
S2
S3

10%

−10%

R
M

SE
 D

iff
er

en
ce

0%

20%

Pre-Meal Post-MealpeelsA ekawA

5%

−5%

−10%

R
M

SE
 D

iff
er

en
ce

0%

10% S1
S2
S3

Fig. 3 | Human intracranial activity proactively decodes peripheral glucose at a
fidelity beyond simple circadian dynamics. A Schematic of LASSO for interstitial
glucose decoding. First, all 6 frequency bands across our N electrodes for each
subject are flattened into a single feature vector. LASSO selects a subset of these
features for regularization, and then trains a linear model to predict the interstitial
glucose level. B Decoder performance for predicting interstitial glucose from iEEG
oscillations. Different colored dots represent three separate subjects. C Model
performance, as quantified by average Pearson Correlation between the actual and
predicted interstitial glucose during 5-fold cross validation, given different tem-
poral shifts between the iEEG data and interstitial glucose. Negative shifts indicate
current iEEG data leading in prediction of interstitial glucose in the future (i.e.,
proactively). Shaded regions are ±1 SEM (N = 5 folds).DMoving-average time-trace
of actual interstitial glucose (blue), predicted interstitial glucose given no temporal
delay (orange), and proactively predicted interstitial glucose (green). E Cross-

validated model performance given several conditions, with optimal temporal
shifts. Error bars are ±1 SEM. *** indicates p <0.001 when compared to shuffled
control (N = 5 folds of cross-validation, two-sample Student’s T-test, exact P-values
of all comparisons given in Source data file). F Percent difference in RMSE when
compared toRMSE for all datapoints for all decoded interstitial glucose levelswhen
asleep and awake (Nsubj = 3, two-sample Student’s T-test, p =0.68). G Percent
difference in RMSE when compared to RMSE for all datapoints for all decoded
interstitial glucose levels preprandial and prandial. Comparison is insignificant
(Nsubj = 3, two-sample Student’s T-test, p =0.55). H Plots of contacts (denoted as
circles) that contributed to at least 99% of LASSOmodels with randomized training
and test sets in our three subjects. Individual subjects are given in Supplemental
Fig. 11. I Scatterplot ofmodel coefficients and howoften LASSO selects this feature.
Labeled datapoints appeared in at least 99%ofmodels. Source data are provided as
a Source data file.
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interstitial glucose variation. We identified high correlation between
hypothalamic HFA and peripheral glucose dynamics, especially when
corrected for a leadingHFA temporal lag. To evaluate if this correlation
was driven by the on and off nature of sleep, we calculated the cor-
relation solely during sleeping or wakeful periods. This revealed a
diurnally mediated pattern whereby the HFA-glucose correlation was
significantly higher during periods of sleep not only in the hypotha-
lamus, but also across corticolimbic regions. This may reflect a con-
sequence of the robust nocturnal regulation of blood glucose, which is
influenced by changes in secretion of hypothalamic and pituitary
hormones27,28. Further, to understand the underlying rhythms con-
tributing to HFA-glucose correlation, we used wavelet decomposition
to uncover period-specific coupling. We found that circadian coher-
encewasprominent not only in the hypothalamus, but also in channels
across corticolimbic regions. This circadian coupling contributed to a
large extent the correlation between the HFA and interstitial glucose
variations, as suppressing the circadian component of the signal sig-
nificantly decreased correlation. This was not surprising as the hypo-
thalamus, through the suprachiasmatic nucleus (SCN), has been found
to be necessary for diurnal rhythms in plasmaglucose concentration29,
independent of feeding patterns30,31. In addition, the circadian phase
lag predicted the correlation temporal lag, indicating that the circa-
dian component influences both magnitude and the temporal lag of
HFA-glucose coupling. The circadian phase lag between regional HFA
and glucose levels were also highly uniform across corticolimbic
regions,manifesting as HFA circadian signal several hours ahead of the
glucose circadian signal. These findings indicate that pervasive circa-
dian coupling may be driven by a central circadian oscillator. To sup-
port this, in S1 with hypothalamic recording and CCEP mapping, we
found that the magnitude of circadian glucose coupling in other
regions was related to their hypothalamic effective connectivity. This
suggests that variation in strength of glucose coupling on a regional
basis is at least partly explained by functional connection to the
hypothalamus. This was not surprising as the hypothalamus, through
the suprachiasmatic nucleus, has wide projections and afferents from
cortical and subcortical regions32,33. However, future work will be
needed to probe whether brain regions with circadian glucose cou-
pling arise from endogenous sensing mechanisms or driven by hypo-
thalamic or other regional inputs. In addition, further work is needed
to evaluate the variance in regional correlation strength and temporal
lag. Although we found that the circadian phase shift accounted partly
for the temporal lag seen in theHFA-glucose relationship, other factors
such as sleep chronotype34, which was distinct amongst the three
subject subjects, are also contributive. Future studies employing
regulated sleep/wake cycle and/or constant routine paradigm will be
needed to fully understand the temporal lag observed between brain
activity and peripheral metabolism, as well as contribution from cir-
cadian versus sleep-related modulation.

As we initial observed multiple time scales of HFA-glucose
coherence, we note that even after removal of the circadian compo-
nent, multiple regions remained significantly correlated with periph-
eral glucose dynamics. This correlation may reflect a combination of
ultradian regulation of gluco-regulatory hormones35,36, meal intake
patterns37, and adaptive neural responses to glucose2. Notably, the
ultradian correlation between HFA and glucose across regions was
higher during waking periods, as compared to the original correlation
being higher during sleeping periods. This suggests circadian phy-
siology may predominant during sleep, thus driving correlation
between brain activity and glucose, whereas physiologic events during
wakefulness may enhance coupling on ultradian timescales (i.e., in the
period of time around meals).

Given the distributed correlated activity between intracranial HFA
and glucose variations, we sought to build and test a regression-based
decoder to predict glucose levels using intracranial spectral activity as
features. The decoder reported here accurately predicted glucose

variations across three subjects, notably performing at a high fidelity
for predicting both current glucose and proactively several hours into
the future given current intracranial activity. This indicates that cur-
rent intracranial activity canbeused todecodeboth current and future
glucose variations. This is in alignment with the finding that circadian
coupling, which explains a high proportion of the correlation to glu-
cose, has a proactive phase offset of several hours. As such, data rea-
ligned according to the circadian phase offset might have higher
prediction accuracy.Mechanistically, the phase offset of hypothalamic
activity and glucose variations suggests there may be several hours of
delay in transmission of circadianCNS output to changes in peripheral
metabolism. Prior studies have found the suprachiasmatic nucleus
regulates hepatic glucose production and uptake either directly
through the autonomic nervous system or indirectly through
orexin38–40. However, we also found that decoding results could not
simply be explained by circadian variations, with the full model per-
forming significantly better than a pure diurnal model. This again
highlights that intracranial activity likely couples to glucose on multi-
ple timescales to include circadian, ultradian, and meal-related fluc-
tuations. From a homeostatic perspective, it is possible to speculate
based on these findings that the CNS may principally acts as a proac-
tive controller of peripheral metabolism, governing glucose dynamics
hours in advance through complex orchestration of feeding, hunger,
satiety as well as peripheral glucose uptake and release41–43.

Predictive capabilities of blood glucose levels hours holds
potential for augmenting current closed-loop insulin controllers for
diabetes management, if our findings hold true for diabetic
patients44,45. One of the disadvantages of current implementation of
closed-loop controllers (and sliding-scale insulin regimens used inpa-
tient) is that they are reactive to currently measured glucose. Playing
“catch-up” with boluses of fast-acting insulin is typically inferior to
basal-bolus regimens which use a combination of long-acting basal
insulin with correctional boluses of fast-acting insulin46. However,
optimal dosing of long-acting basal insulin takes weeks of close follow-
up47,48. This makes it difficult to achieve optimal glucose control in the
outpatient setting and impractical in the inpatient setting. Being able
topredict glucoseproactivelyhours in advance, as demonstratedhere,
could potentially enable the use of long-acting basal insulin in closed-
loop controllers to achieve tighter glucose control. Future studies in
patients with diabetes mellitus will be needed to evaluate if similar
findings observed here can be replicated when glucose homeostasis is
already disturbed.

Limitations and future directions
Limited subjects are enrolled in this studygiven thedifficulty and rarity
of simultaneously recording multiple brain regions and continuous
glucose over at least several days. The inclusion criteria required at
least five days ofmonitoring to allow longer physiologic rhythms to be
quantified (e.g., circadian rhythm), multi-site coverage of hypothe-
sized gluco-regulatory regions and agreement to CGM implantation.
These criteria resulted in a limited number of subjects, especially in the
setting of COVID-19 pandemic. In addition, direct hypothalamic
recording is rare given few clinical indications so only one subject had
hypothalamic coverage. On a broader note, because recording loca-
tions are solely dictated by the clinical need for epilepsy localization,
our electrode coverage varies from patient to patient. This makes it
infeasible to use models trained on one subject to predict interstitial
glucose from another patient. An interesting futuredirectionwould be
investigating whethermodels trained on standardized scalp EEG could
be used to predict glucose levels across a wide range of subjects. In
addition, the use ofCGMhas not been formally FDA-approved for non-
clinical use in patients without diabetes. However, the Dexcom
G6 system has been successfully used in for non-clinical contexts,
including for patients without diabetes to track post-prandial glucose
dynamics20,49. Finally, our study design does not allow for direct causal
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interpretation, and as such intracranial activity and peripheral glucose
variations might be correlated due to a potential third unmeasured
variable. Future study employing direct electrical stimulation to acti-
vate or inhibit specific brain regions over varying time scales with
continuous glucose monitoring may help dissect causal relationships.

Taken together, these results provide compelling evidence that
peripheral glucose variations can be decoded from multi-site intra-
cranial activity over days in a proactive manner. The basis of this
decoding involves not only circadian coupling but also correlation on
ultradian dynamics. Future blood glucosemanagement strategiesmay
thus involve sampling intracranial activity as a modality to enable
proactive and tighter control of glucose dynamics.

Methods
Participants and inclusion criteria
Three human subjects (two females) whowere observed in an epilepsy
monitoring unit for clinical mapping met the inclusion criteria for this
study from January 2020 to January 2021. The inclusion criteria
included (1) simultaneous coverage of hippocampus, amygdala, insula,
and orbitofrontal cortex (regions likely to harbor glucose-responsive
neurons and are frequently targeted for epilepsy mapping), (2) no
known history of diabetes mellitus, and (3) at least 5 days of con-
tinuous monitoring. Subject 1 had electrodes traversing the bilateral
hypothalamic region given clinical concern of gelastic seizures arising
from the hypothalamus in the absence of radiographic evidence of
hamartoma. Summary of patient characteristics and individual subject
electrode coverage is provided in Supplementary Table 1. All patients
provided individual informed consent as approved by the Stanford
University Institutional Review Board (IRB #11354). This includes con-
sent to publication of videos and demographics information.

Statistics and reproducibility
This was a prospective human study between January 2020 and Jan-
uary 2021. The final sample size was based on clinical volume of our
host institution, study duration, and patients meeting eligibility. No
statistical method was used to predetermine sample size, however N
equal or greater than three was required. As there was no intervention,
blinding and randomization processes were not applicable to
this study.

Electrode registration and anatomical parcellation
Electrode location in 3D space was obtained from post-implant CT co-
registered with the subject’s pre-operative MRI. Anatomic location of
each contact was determined using FreeSurfer-based automated
parcellation50. Electrodes in key limbic regions or outside of Free-
Surfer’s anatomical catalog were validated by expert examination. For
electrode visualization, the FreeSurfer average brain was used with
coordinates in standard Montreal Neurologic Institute (MNI) space.

Data acquisition and signal preprocessing
Using stereoelectroencephalography (sEEG), neural recording from
implanted depth electrodes were sampled at 1024Hz. sEEG pre-
processing and analysis were performed using the FieldTrip51. First, a
notch filter was used to attenuate power noise (60, 120, and 180Hz),
followed by a laplacian re-referencing scheme to minimize far-field
volume conduction52. High-frequency activity (HFA, 70–170Hz) was
obtained by applying an 8th-order Butterworth bandpass filter and
subsequently taking the absolute value of the Hilbert transform. This
signal was boxcar smoothed using 60 s windows. Thus, the HFA at any
given point represents an average of one-minute recording. Similarly,
the analytic signals of delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz),
beta (15–25Hz), and gammabands (25–70Hz)were obtained using the
same approach, except 4th order Butterworth filter was used as the
bandpass filter. Interictal epileptiform discharges (IEDs) were com-
puted using an automated algorithm as previously described53. IEDs

were calculated in channels of the seizure onset zone (Subject 1) and in
the probable seizure onset zone (Subject 3, channels with high IED
rates given no electrographic seizures were captured). The seizure
onset zone was defined by consensus from the epilepsy team. Con-
tinuous interstitial glucose level was obtained using the continuous
glucosemonitoring (CGM) system similar to that previously published
for use in rodents9. The clinical CGM system implanted in the three
subjects for the duration of the study was the Dexcom G6 model. The
sensor was inserted into the abdominal subcutaneous tissue and
sampled interstitial glucose levels at 5-min intervals. For every glucose
measurement, the corresponding sEEG data was matched within ±1 s.
Gaps in glucosemeasurements, atmost three consecutive values, were
interpolated using linear regression. Rate of change in glucose level
was calculated as the discretized derivative of interstitial glucose levels
over time. The use of CGM in ambulatory and inpatient setting have
been previously described20,49.

Discrete states identification
Video recording was used to identify four discrete states analyzed in
this study. Ad libitum meals were defined as any substantial con-
sumption of food items lasting at least 15min. The meals were divided
into pre-prandial (−3 to 0 h) and prandial (0 to 3 h) epochs. The index
time (0h) was at the time of meal initiation. Behavioral sleep periods
were defined as periods of sustained eye closure without voluntary
activity lasting at least 2 h. Any other periods were subsequently
defined as wakeful periods. Automated sleep staging based on iEEG
recordings was performed using the SleepSEEG algorithm22. For this
analysis, we first downsampled our recordings to a sampling rate of
256Hz. We then remontaged our recordings to a bipolar configura-
tion, with adjacent contacts on the same electrode being subtracted
from each other, as required by the SleepEEG algorithm. Finally, the
SleepSEEG deep-learning model was applied to our dataset, excluding
any electrodes that were determined to have epileptiform activity
using their previously described automated detection algorithm22.

Time-series correlation analysis
The lag-corrected correlation between continuous glucose measure-
ments and sEEG signal was determined by first calculating the rectified
cross-correlation function (XCF) within temporal lags of ±12 h and
subsequently obtaining the Pearson’s correlation at the point of
highest XCF (crosscorr.m, Econometrics Toolbox,Matlab). The chance
level of correlation at each time lag was obtained by permutation
testing whereby randomly shuffled 30-min segment of glucose mea-
surements was correlated with the average gray matter sEEG signal.
The time frameused for shufflingwas chosen tomaintain the temporal
structure of the glucose time series, but small enough to allow
numerous iterations of shuffling. This procedure was repeated for
1000 iterations. The chance correlation was defined at p-value of 0.05.
To determine the lag-corrected correlation during discrete states
(sleep, awake, pre-prandial, and prandial), glucose and sEEG timeseries
were first corrected for temporal lag. Data indices associatedwith each
discrete state were then applied to the lag-corrected timeseries, and
Pearson’s correlation was subsequently obtained.

Time-series wavelet analysis
The coherence between continuous glucose measurements and sEEG
powerband were determined using Morlet wavelet coherence analysis
(wcoherence.m, Wavelet Toolbox, Matlab)17. The coherence period-
ogram per powerband was obtained by averaging across the coher-
ence spectrum across time. For regional analysis, the coherence values
were calculated on a single channel basis first, then grouped together
based on anatomy. The circadian coherence was defined as the mean
coherence with periodicity of 24 h ± 33%, as to allow variation in
periodicity54. A secondary analysis using a narrower range of 20–28 h
as the definition of circadian rhythm was also performed. To
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determine the chance level of coherence for significance testing,
we generated a null distribution whereby randomly shuffled glucose
measurements at 30-min segments was used to compute coherence
with the average gray matter sEEG signal for 1000 iterations.
The chance coherence was defined at p-value of 0.05. To further
characterize the timescale of coupling between continuous glucose
measurements and sEEG powerband, the circadian component of
the signal (24 h ± 33%) was removed using wavelet analysis to generate
corresponding non-circadian (ultradian) signal (0–18 h) for both the
continuous glucose and sEEG data54.

Cortico-cortical evoked potential (CCEP) analysis
As part of the clinical seizure mapping, CCEPs were collected from
Subject 1. We used CCEP mapping to identify regions that were func-
tionally connected to the hypothalamus (i.e., exhibited a significant
evoked potential after hypothalamus stimulation)55–57. Bipolar stimu-
lation was performed across multiple limbic contacts including on
bilateral hypothalamic leads. Approximately 50 (6mA, biphasic) sti-
mulation pulses were delivered at 1 Hz. CCEP analysis was subse-
quently performed offline. sEEG data was first preprocessed as
described previously56. Briefly, the power line noise was removed,
followed by removal of the stimulation artifact and common channel
referencing. The preprocessed data was then epoched to 2 s in dura-
tion centered on the time of the stimulation pulse. The epoch data was
baseline corrected to−150 to 50ms. TheCCEPwasquantifiedby taking
the mean signal between 10 and 150ms. The initial 0ms to 10ms was
not included to avoid roll-off effects from the stimulation artifact.

Glucose decoder model construction, training, and evaluation
To investigate whether spectro-spatial profiles of intracranial electro-
physiology can be used to predict interstitial glucose dynamics, we
constructed a glucose decoder based on electrophysiologic features.
Because of the large number of potential features present in the data
(e.g., channels and powerband combinations), we employed LASSO
(Least Absolute Shrinkage and Selection Operator) regression to
minimize overfitting. The feature vector was constructed by first
creating a N × P × t table, where N is the number of contacts, P is the
number of powerbands (6 in this case), and t is the number of time
points (sampled in 5-minute intervals). Next, the feature vector was
flattened to a two-dimension 6N × t table, representing t different time
points for model fitting. We split the time points randomly into a
training set consisting of 80% of time points and a test set of the
remaining 20%. Intuitively, LASSO regression selects for a subset of
channels and powerbands that are best correlated with interstitial
glucose and then uses multivariate linear regression for that selected
subset to predict glucose levels. To ensure model stability, we use
LASSO with Least Angle Regression (LASSO-LAR)58, as implemented in
Python’s Scikit-learn package59. Briefly, LASSO regression takes a single
parameter α, with higher values of α prioritizing selection of a smaller
subset. In the LAR variant, parameters that are equally correlated to
glucose levels, if selected, are both weighted equally in the model to
ensure stability. To select an optimal α, we utilize 5-fold cross-valida-
tion, where we train a LASSO model for a certain α for 80% of the
training set and test its performance on the remaining 20% of the data,
with model performance defined by Pearson’s correlation between
actual and predicted glucose levels. This process is repeated five times
for a different 20% of the training set each time. We then repeat this
process for different values of α, taking the α with the highest per-
formance.We finally use the optimalα and train a LASSOmodel on the
entire training set and evaluate performance with the test set. In
Subject 2, limited time-points where interstitial glucose was greater or
equal to 160mg/dL were identified as times of hyperglycemia, and our
model was trained to identify those time periods of hyperglycemia
rather than provide an exact value given non-linear relationships
observed between spectral activity and higher glucose levels.

Determining glucose decoder circadian dependency
To determine whether glucose decoder performance is primarily
attributable to only circadian autocorrelation or statistical features of
our dataset, we performed several controls. First, we evaluated model
performance for randomly shuffled blood glucose levels in 1-h seg-
ments, defined as the shuffled control. Second,we calculated themean
glucose level across all times points during a 24-h period. Correlation
coefficients were then determined between the mean glucose levels
and the measured glucose values to create the circadian control. In
addition to quantifying the decoder performance for predicting actual
glucose level, decoder performance was determined for decoding (1)
the circadian component of the interstitial glucose dynamics and (2)
deviations of the interstitial glucose levels from the average circadian
glucose levels. Performance of the model against these two additional
outputs provide an assessment of whether the model is better at
predicting circadian or non-circadian (ultradian) dynamics.

Identifying significantly used contacts in glucose decoder
As discussed above, LASSO regression only uses a subset of the most
correlative channels and powerbands to decode interstitial glucose
levels. To identify which regions of the brain are most frequently used
in glucose decoding, a bootstrap Monte Carlo approach was utilized.
Let t be the number of time points in our dataset. The glucose decoder
was trained using data randomly drawn at time t over 1000 trials with
replacement. For each training session, channels that were used in the
decoder was recorded. Subsequently, an electrode was considered to
significantly contribute to the glucose decoder if it was used at least
99% of the time. In addition, the median of the linear coefficients for
each feature was reported, with the coefficient being zero if the elec-
trode was not used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author on an individual request basis due to institu-
tional data sharing agreements and compliance with U.S. Health
Insurance Portability and Accountability Act (HIPAA). Source data are
provided with this paper.

Code availability
Matlab 2019b was used to perform all electrophysiologic analyses in
this study. The dependent toolboxes used were: Fieldtrip-20190828,
SPM8 (2013-09-17), SPM12 (2018-11-07), iELVis (2019-09-29), Matlab
Signal Processing toolbox (r2019b). Python (>= 3.10) was used for
decoding analysis and included these packages: h5py (>= 2.10.0),
numpy (>= 1.19.2), scikit_learn (>= 1.1.2), scipy (>= 1.5.4). No new algo-
rithm or preprocessing techniques were performed outside of stan-
dard toolbox usages. Customized code for glucose decoding is
available on Github (https://github.com/dancingdarwin/CGM-
Decoder?fbclid=IwAR2TIiA49gMZpq1CwjMF6oWD9jEw13tgk5yS-
54yZAp-Kq7ihK79belUn3w).
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