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Demonstrating multi-round subsystem
quantum error correction using matching
and maximum likelihood decoders
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Quantum error correction offers a promising path for performing high fidelity
quantum computations. Although fully fault-tolerant executions of algorithms
remain unrealized, recent improvements in control electronics and quantum
hardware enable increasingly advanced demonstrations of the necessary
operations for error correction. Here, we perform quantum error correction
on superconducting qubits connected in a heavy-hexagon lattice.We encode a
logical qubit with distance three and perform several rounds of fault-tolerant
syndromemeasurements that allow for the correction of any single fault in the
circuitry. Using real-time feedback, we reset syndrome and flag qubits con-
ditionally after each syndrome extraction cycle.We report decoder dependent
logical error, with average logical error per syndrome measurement in Z(X)-
basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum
likelihood decoders, respectively, on leakage post-selected data.

Theoutcomes of quantumcomputations canbe faulty, in practice, due
to noise in the hardware. To eliminate the resulting faults, quantum
error correction (QEC) codes can be used to encode the quantum
information into protected, logical degrees of freedom, and then by
correcting the faults faster than they accumulate enable fault-tolerant
(FT) computations. A complete execution of QEC will likely require:
preparation of logical states; realization of a universal set of logical
gates, which may require the preparation of magic states; repeated
measurements of syndromes; and the decoding of the syndromes for
correcting errors. If successful, the resulting logical error rates should
be less than the underlying physical error rates, and decrease with
increasing code distances down to negligible values.

Choosing a QEC code requires consideration of the underlying
hardware and its noise properties. For a heavy-hexagon lattice1,2 of
qubits, subsystem QEC codes3 are attractive because they are well-
suited for qubits with reduced connectivities. Other codes have shown
promise due to their relatively high threshold for FT4 or large number
of transversal logical gates5. Although their space and time overhead
may pose a significant hurdle for scalability, there exist encouraging

approaches to reduce the most expensive resources by exploiting
some form of error mitigation6.

In the decoding process, successful correction depends not only
on the performance of the quantum hardware, but also on the
implementation of the control electronics used for acquiring and
processing the classical information obtained from syndrome mea-
surements. In our case, initializing both syndrome and flag qubits via
real-time feedback between measurement cycles can help mitigate
errors. At the decoding level, whereas some protocols exist to perform
QEC asynchronously within a FT formalism7,8, the rate at which the
error syndromes are received should be commensurate with their
classical processing time to avoid an increasing backlog of syndrome
data.Also, someprotocols, like using amagic state for a logicalT-gate9,
require the application of real-time feed-forward.

Thus, the long term vision of QEC does not gravitate around a
single ultimate goal but should be seen as a continuum of deeply
interrelated tasks. The experimental path in the development of this
technology will comprise the demonstration of these tasks in isolation
first and their progressive combination later, always while
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continuously improving their associated metrics. Some of this pro-
gress is reflected in numerous recent advances on quantum systems
across different physical platforms, which have demonstrated or
approximated several aspects of the desiderata for FT quantum com-
puting. In particular, FT logical state preparation has been demon-
strated on ions10, nuclear spins in diamond11 and superconducting
qubits12. Repeated cycles of syndrome extraction have been shown in
superconducting qubits in small error detecting codes13,14, including
partial error correction15 as well as a universal (albeit not FT) set of
single-qubit gates16. A FT demonstration of a universal gate set on two
logical qubits has recently been reported in ions17. In the realmof error
correction, there have been recent realizations of the distance-3 sur-
face code on superconducting qubits with decoding18 and post-
selection19, as well as a FT implementation of a dynamically protected
quantummemory using the color code20 and the FT state preparation,
operation, andmeasurement, including its stabilizers, of a logical state
in the Bacon-Shor code in ions20,21.

Here we combine the capability of real-time feedback on a
superconducting qubit system with a maximum likelihood decoding
protocol hitherto unexplored experimentally in order to improve the
survivability of logical states.Wedemonstrate these tools as part of the
FT operation of a subsystem code22, the heavy-hexagon code1, on a
superconducting quantum processor. Essential to making our imple-
mentation of this code fault-tolerant are flag qubits that, when found
to be non-zero, alert the decoder to circuit errors. By conditionally
resetting flag and syndromequbits after each syndromemeasurement
cycle, we protect our system against errors arising from the noise
asymmetry inherent to energy relaxation. We further exploit recently
described decoding strategies15 and extend the decoding ideas to
include maximum likelihood concepts4,23,24.

Results
The heavy-hexagon code and multi-round circuits
The heavy-hexagon code we consider is an n = 9 qubit code encoding
k = 1 logical qubit with distance d = 31. The Z and X gauge (see Fig. 1a)
and stabilizer groups are generated by

GZ = hZ 1Z2,Z2Z3Z5Z6,Z4Z5Z7Z8,Z8Z9i ð1Þ

GX = hX 1X4,X2X5,X3X6,X4X7,X5X8,X6X9i ð2Þ

SZ = hZ 1Z2Z4Z5Z7Z8,Z2Z3Z5Z6Z8Z9i ð3Þ

SX = hX 1X2X4X5,X3X6,X4X7,X5X6X8X9i ð4Þ

The stabilizer groups SZ ,SX are the centers of the respective gauge
groups GZ ,GX . This means the stabilizers, as products of gauge
operators, can be deduced from measurements of only the gauge
operators. Logical operators can be chosen to be XL = X1X2X3 and
ZL = Z1Z3Z7.

Here we focus on a particular FT circuit, many of our techniques
can be usedmore generally with different codes and circuits. Two sub-
circuits, shown in Fig. 1b, are constructed to measure the X- and Z-
gauge operators. The Z-gauge measurement circuit also acquires
useful information by measuring flag qubits.

We prepare code states in the logical ∣0iL (∣+iL) state by first
preparing nine qubits in the ∣0i�9 (∣+i�9) state and measuring the X-
gauge (Z-gauge). We then perform r rounds of syndrome measure-
ment, where a round consists of a Z-gauge measurement followed by
an X-gaugemeasurement (respectively, X-gauge followed by Z-gauge).
Finally, we read out all nine code qubits in the Z (X) basis. We perform
the same experiments for initial logical states ∣1iL and ∣�iL as well, by
simply initializing the nine qubits in ∣1i�9 and ∣�i�9 instead.

Decoding algorithms
In the setting of FT quantumcomputing, a decoder is an algorithm that
takes as input syndromemeasurements from an error correcting code
and outputs a correction to the qubits or measurement data. In this
section we describe two decoding algorithms: perfect matching
decoding and maximum likelihood decoding.

The decoding hypergraph15 is a concise description of the infor-
mation gathered by a FT circuit and made available to a decoding
algorithm. It consists of a set of vertices, or error-sensitive events, V,
and a set of hyperedges E, which encode the correlations between
events caused by errors in the circuit. Figure 1c–f depicts parts of the
decoding hypergraph for our experiment.

Constructing a decoding hypergraph for stabilizer circuits with
Pauli noise can be done using standard Gottesman-Knill simulations25

or similar Pauli tracing techniques26. First, an error-sensitive event is
created for each measurement that is deterministic in the error-free
circuit. A deterministic measurement M is any measurement whose
outcome m∈ {0, 1} can be predicted by adding modulo two the mea-
surementoutcomes froma setAM of earliermeasurements. That is, for
an error-free circuit, m=

L
μ2AM

μ : = FM , where the set AM can be
found by simulation of the circuit. Set the value of the error-sensitive
event tom − FM(mod2), which is zero (also called trivial) in the absence
of errors. Thus, observing a non-zero (also called non-trivial) error-
sensitive event implies the circuit suffered at least one error. In our
circuits, error-sensitive events are either flag qubit measurements or
the difference of subsequent measurements of the same stabilizer
(also sometimes called difference syndromes).

Next, hyperedges are added by considering circuit faults. Our
model contains a fault probability pC for each of several circuit com-
ponents

C 2 fcx, h, id, idm, x, y, z,measure, initialize, resetg: ð5Þ

Here we distinguish the identity operation id on qubits during a
timewhenother qubits areundergoing unitary gates, from the identity
operation idm on qubits when others are undergoing measurement
and reset. We reset qubits after they are measured, while we initialize
qubits that have not been used in the experiment yet. Finally cx is the
controlled-not gate, h is the Hadamard gate, and x, y, z are Pauli gates.
(see Methods “IBM_Peekskill and experimental details” for more
detail). Numerical values for pC are listed in Methods “IBM_Peekskill
and experimental details”.

Our errormodel is circuit depolarizing noise. For initialization and
reset errors, a Pauli X is applied with the respective probabilities pinit
and preset after the ideal state preparation. For measurement errors,
Pauli X is applied with probability pmeasure before the ideal measure-
ment. A one-qubit unitary gate (two-qubit gate) C suffers with prob-
ability pC one of the three (fifteen) non-identity one-qubit (two-qubit)
Pauli errors following the ideal gate. There is an equal chance of any of
the three (fifteen) Pauli errors occurring.

When a single fault occurs in the circuit, it causes some subset of
error-sensitive events to be non-trivial. This set of error-sensitive
events becomes a hyperedge. The set of all hyperedges is E. Two dif-
ferent faults may lead to the same hyperedge, so each hyperedge may
be viewed as representing a set of faults, each of which individually
causes the events in the hyperedge to be non-trivial. Associated with
each hyperedge is a probability, which, at first order, is the sum of the
probabilities of faults in the set.

A fault may also lead to an error which, propagated to the end of
the circuit, anti-commutes with one or more of the code’s logical
operators, necessitating a logical correction. We assume for generality
that the code has k logical qubits and a basis of 2k logical operators,
but note k = 1 for the heavy-hexagon code used in the experiment. We
can keep track of which logical operators anti-commute with the error
using a vector fromZ2k

2 . Thus, each hyperedge h is also labeled by one
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of these vectors γh 2 Z2k
2 , called a logical label. Note that if the code

has distance at least three, each hyperedge has a unique logical label.
Lastly, we note that a decoding algorithm can choose to simplify

the decoding hypergraph in various ways. One way that we always
employ here is the process of deflagging. Flag measurements from
qubits 16, 18, 21, 23 are simply ignored with no corrections applied. If

flag 11 is non-trivial and 12 trivial, apply Z to 2. If 12 is non-trivial and 11
trivial, apply Z to qubit 6. If flag 13 is non-trivial and 14 trivial, apply Z to
qubit 4. If 14 is non-trivial and 13 trivial, apply Z to qubit 8. See ref. 15 for
details on why this is sufficient for fault-tolerance. This means that
instead of including error-sensitive events from the flag qubit mea-
surements directly, we preprocess the data by using the flag

Fig. 1 | Heavy-hexagon code. a Z (blue) and X (red) gauge operators (eqs. (1) and
(2)) mapped onto the 23 qubits required with the distance-3 heavy-hexagon code.
Code qubits (Q1 −Q9) are shown in yellow, syndromequbits (Q17,Q19,Q20,Q22) used
forZ stabilizers in blue, andflagqubits and syndromesused in X stabilizers inwhite.
The order and direction that CX gates are applied within each sub-section (0 to 4)
are denoted by the numbered arrows. b Circuit diagram of one syndrome mea-
surement round, including both X and Z stabilizers. The circuit diagram illustrates
permitted parallelization of gate operations: those within the bounds set by sche-
duling barriers (vertical dashed gray lines). As each two-qubit gate duration differs,
the final gate scheduling is determined with a standard as-late-as-possible circuit
transpilation pass; after which dynamical decoupling is added to data qubits where
time permits. Measurement and reset operations are isolated from other gate
operations by barriers to allow for uniform dynamical decoupling to be added to

idling data qubits. Decoding graphs for three rounds of (c) Z and (d) X stabilizer
measurements with circuit-level noise allow correction of X and Z errors, respec-
tively. The blue and red nodes in the graphs correspond to difference syndromes,
while the black nodes are the boundary. Edges encode various ways errors can
occur in the circuit as described in the text. Nodes are labeled by the type of
stabilizermeasurement (Z or X), along with a subscripts indexing the stabilizer, and
superscripts denoting the round. e Black edges, arising from Pauli Y errors on code
qubits (and so are just size-2), connect the twographs in c andd, but are not used in
the matching decoder. f The size-4 hyperedges, which are not used by matching,
but are used in the maximum likelihood decoder. Colors are just for clarity.
Translating each in time by one round also gives a valid hyperedge (with some
variation at the time boundaries). Also not shown are any of the size-3 hyperedges.
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information to apply virtual Pauli Z corrections and adjust subsequent
error-sensitive events accordingly. Hyperedges for the deflagged
hypergraph can be found through stabilizer simulation incorporating
the Z corrections. Let r indicate the number of rounds. After deflagging,
the sizeof the setV forZ (resp.Xbasis) experiments are ∣V∣ =6r+ 2 (resp.
6r +4), due tomeasuring six stabilizers per round and having two (resp.
four) initial error-sensitive stabilizers after state preparation. The size of
E is similarly ∣E∣ =60r − 13 (resp. 60r− 1) for r>0.

Considering X and Z errors separately, the problem of finding a
minimumweight error correction for the surface code can be reduced
to finding a minimum weight perfect matching in a graph4. Matching
decoders continue to be studied because of their practicality27 and
broad applicability28,29. In this section, we describe the matching
decoder for our distance-3 heavy-hexagon code.

The decoding graphs, one for the X-errors (Fig. 1c) and one for the
Z-errors (Fig. 1d), for minimum weight perfect matching are in fact
subgraphs of the decoding hypergraph in the previous section. Let us
focus here on the graph for correcting X-errors, since the Z-error graph
is analogous. In this case, from the decoding hypergraph we keep
nodes VZ corresponding to (the difference of subsequent) Z-stabilizer
measurements and edges (i.e. hyperedges with size two) between
them. Additionally, a boundary vertex b is created, and size-one
hyperedges of the form {v} with v∈VZ, are represented by including
edges {v, b}. All edges in the X-error graph inherit probabilities and
logical labels from their corresponding hyperedges (see Table 1 for X
and Z-error edge data for 2-round experiment).

A perfect matching algorithm takes a graph with weighted edges
and an even-sized set of highlighted nodes, and returns a set of edges
in the graph that connects all highlighted nodes in pairs and has
minimum total weight among all such edge sets. In our case, high-
lighted nodes are the non-trivial error-sensitive events (if there are an
oddnumber, the boundarynode is also highlighted), and edgeweights
are either chosen to all be one (uniform method) or set as
we = log ð1� peÞ=pe

� �
, where pe is the edge probability (analytic

method). The latter choicemeans that the totalweight of an edge set is
equal to the log-likelihood of that set, and minimum weight perfect
matching tries tomaximize this likelihood over the edges in the graph.

Given a minimum weight perfect matching, one can use the
logical labels of the edges in thematching to decide on a correction to
the logical state. Alternatively, the X-error (Z-error) graph for the
matching decoder is such that each edge can be associated to a code
qubit (or a meausurement error), such that including an edge in the
matching implies an X (Z) correction should be applied to the
corresponding qubit.

Maximum likelihood decoding (MLD) is an optimal, albeit non-
scalable, method for decoding quantum error-correcting codes. In its
original conception, MLD was applied to phenomenological noise
models where errors occur only just before syndromes are
measured24,30. This of course ignores the more realistic case where
errors can propagate through the syndrome measurement circuitry.
More recently, MLD has been extended to include circuit noise23,31.
Here, we describe how MLD corrects circuit noise using the decoding
hypergraph.

MLD deduces the most likely logical correction given an obser-
vation of the error-sensitive events. This is done by calculating the
probability distribution Pr[β, γ], where β 2 Z∣V ∣

2 represents error-
sensitive events and γ 2 Z2k

2 represents a logical correction.
We can calculate Pr[β, γ] by including every hyperedge from the

decoding hypergraph, Fig. 1c–f, starting from the zero-error dis-
tribution, i.e. Pr[0∣V∣, 02k] = 1. If hyperedge h has probability ph of
occurring, independent of any other hyperedge, we include h by
performing the update

Pr½β,γ�  ð1� phÞPr½β,γ�+ph Pr½ðβ� βhÞ,ðγ � γhÞ�, ð6Þ

whereβh 2 Z∣V ∣
2 is just a binary vector representation of the hyperedge.

This update should be applied once for every hyperedge in E.
Once Pr[β, γ] is calculated, we can use it to deduce the best logical

correction. If β* 2 Z∣V ∣
2 is observed in a run of the experiment,

γ* = argmaxγ Pr½β*,γ� ð7Þ

indicates how measurements of the logical operators should be cor-
rected. For more details on specific implementations of MLD, refer to
Methods “Maximum likelihood implementations”.

Experimental realization
For this demonstration we use ibm_peekskill v2.0. 0, a 27 qubit IBM
Quantum Falcon processor32 whose couplingmap enables a distance-3
heavy-hexagon code, see Fig. 1. The total time for qubit measurement
and subsequent real-time conditional reset, for each round, takes
768ns and is the same for all qubits. All syndrome measurements and
resets occur simultaneously for improvedperformance. A simpleXπ-Xπ
dynamical decoupling sequence is added to all code qubits during
their respective idling periods.

Qubit leakage is a significant reason why the Pauli depolarizing
error-model assumed by the decoder design might be inaccurate. In
some cases, we can detect whether a qubit has leaked out of the
computation subspace at the time it is measured (see Methods “Post-
selectionmethod” for more information on the post-selectionmethod
and limitations). Using this, we can post-select on runs of the experi-
ment when leakage has not been detected, similar to ref. 18.

In Fig. 2a, we initialize the logical state ∣0iL (∣+iL), and apply r
syndromemeasurement rounds,where one round includes both X and
Z stabilizers (total time of approximately 5.3μs per round, Fig. 1b).
Using analytical perfect matching decoding on the full data set
(500,000 shots per run), we extract the logical errors in Fig. 2a, red
(blue) triangles. Details of optimized parameters used in analytical
perfect matching decoding can be found in Methods “IBM_Peekskill
and experimental details”. Fitting the full decay curves (eq. (14)) up to
10 rounds, we extract logical error per roundwithout post-selection in
Fig. 2b of 0.059(2) (0.058(3)) for ∣0iL (∣1iL) and 0.113(5) (0.107(4)) for
∣+iL (∣�iL).

Applying the same decoding method on leakage-post-selected
data reduces logical errors in Fig. 2a, and leads to fitted error rates of
0.041(1) (0.044(4)) for ∣0iL (∣1iL) and 0.088(3) (0.085(3)) for ∣+iL (∣�iL)
as shown in Fig. 2b. Rejection rates per round from post-selection for
∣0iL, ∣1iL, ∣+iL, and ∣�iL are 4.91%, 4.64%, 4.37%, and4.89%, respectively.
See Methods “Post-selection method” for details.

In Fig. 2c–f, we compare the logical error for each round and
extracted logical error per round obtained from the post-selected data
sets using the three decoders described previously in Sec-
tion “Decoding algorithms”. We also include a version of the analytical
decoder that exploits soft-information33, which is described in Meth-
ods “Soft-information decoding”. We observe (see Fig. 2e, f) a con-
sistent improvement in decoding moving from matching uniform
(pink), to matching analytical (green), to matching analytical with soft
information, to maximum likelihood (grey), though this is much less
significant for the X-basis logical states. A quantitative comparison
between the three decoders for all four logical states at r = 2 rounds is
provided in Methods “Logical error at r = 2 rounds”.

There are at least three reasons the X-basis states performworse
than the Z-basis. The first is the natural asymmetry in the circuits. The
larger depth required for measuring Z stabilizers leads to more time
where Z errors on data qubits can accumulate undetected. This is
supported by simulations, like those in1, which uses a different
decoder, and here in Methods “Simulation details”, which see worse
performance of the X-basis for this d = 3 code. Second, choices made
in decoding, particularly the deflagging step, can exacerbate the
asymmetry by essentially converting measurement and reset errors
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into Z errors on the data qubits. This leads to a high effective Z-error
rate that cannot be improved much, even by maximum likelihood
decoding. In contrast, if we deflag only the first round of measure-
ments, the logical error of the maximum likelihood decoder on the
r = 2 round, ∣+iL experiment decreases by around 2.8% to 18.02(7)%.
Flagged decoding like this becomes time-consuming for larger round
counts as adding flag nodes to the decoding hypergraph greatly
increases its size. Finally, decoders are only as good as our model of
the experimental noise. Non-depolarizing noise sources such as
spectator ZZ errors, which we know are present, are not modeled by
any of our decoders and will more adversely affect X-basis states.
More accurate estimation and inclusion of such experimental noise
and its implications for fault-tolerance is an important subject for
further research.

Discussion
The results presented in this work highlight the importance of the
joint progress of quantum hardware, both in size and quality, and
classical information processing, both concurrent with circuit
execution and asynchronous to it, as described with the studied
decoders. Our experiments incorporate mid-circuit measurements
and conditional operations as part of a QECprotocol. These technical
capabilities serve as foundational elements for further enhancement
of the role of dynamic circuits in QEC, for example towards real-time
correction and other feed-forward operations that will be critical for
large-scale FT computations. We also show how experimental plat-
forms for QEC of this size and capabilities can trigger new ideas
towards more robust decoders. Our comparison between a perfect
matching and a maximum likelihood decoder sets a promising
starting point towards the understanding of the trade-off between
decoder scalability versus performance in the presence of

experimental noise. Better noisemodeling and the techniques of pre-
decoding errors34, 35 might improve the performance and run-time of
these decoders.

All these key components will play a crucial role in larger distance
codes, where the quality of the real-time operations (qubit conditional
reset and leakage removal, teleportation protocols for logical gates,
and decoding), along with device noise levels, will determine the
performance of the code, potentially enabling the demonstration of
logical error suppression with increased code distance.

Methods
Minimum weight perfect matching edge probabilities and
implementation
We use the Gottesman-Knill theorem25 to propagate Pauli errors
through our Clifford circuits and determine what error-sensitive
events are made non-trivial. An example is shown in Fig. 3. If p is the
probability of specific Pauli error and e is the corresponding set of non-
trivial events, p is added to the edge probability pe.

Note that for experiments on states ∣0iL and ∣1iL, we need only
correct X errors and so just use the Z stabilizers, Fig. 1c. For experi-
ments on ∣+iL and ∣�iL, we need only correct Z errors with the graph in
Fig. 1d. Edge probabilities are given for the ∣0iL and ∣+ iL 2-round
experiments in Table 1. We present just the edge weights for r = 2
rounds of syndrome extraction because this captures the behavior at
time boundaries t = 1 and t = r + 1, as well as the behavior for 1 < t < r + 1.
This latter bulk behavior is repeated over time for cases r > 2.

To implement matching, we use PyMatching28 to perform the
matching and decode. After the decoding graph is set up, decoding an
entire leakage-postselected data set (i.e. typically somewhere between
100,000 and 200,000 unique bit strings) takes about 10 seconds,
largely independent of r > 1.
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Fig. 2 | Logical error results. a Logical error versus number of syndrome mea-
surement rounds r, where one round includes both a Z and an X stabilizer mea-
surement. Blue right-pointing triangles (red triangles) mark logical errors obtained
from using matching analytical decoding on raw experimental data for ∣+iL (∣0iL)
states. Light blue squares (light red circles) mark those for ∣+iL (∣0iL) with the same
decoding method but using leakage-post-selected experimental data. Error bars
denote sampling error of each run (500,000 shots for raw data, variable number of
shots for post-selected). Dashed line fits of error yield error per round plotted in b.
b Applying the same decoding method on leakage-post-selected data, shows sub-
stantial reduction in overall error for all four logical states. See Methods “Post-
selection method” for details on post-selection. Fitted rejection rate per round for

∣0iL, ∣1iL, ∣+iL, ∣�iL are 4.91%, 4.64%, 4.37%, and 4.89%, respectively. Error bars
denote one standard deviation on the fitted rate. c, d Using post-selected data, we
compare logical error obtained with the four decoders: matching uniform (pink
circles), matching analytical (green circles), matching analytical with soft infor-
mation (graycircles), andmaximum likelihood (blue circles). (See Fig. 6 for ∣�iL and
∣1iL). Dashed fitted rates presented in e, f. Error bars denote sampling error.
e, f Comparison of fitted error per round for all four logical states using matching
uniform (pink), matching analytical (green), matching analytical with soft infor-
mation (gray), and maximum likelihood (blue) decoders on leakage-post-selected
data. Error bars represent one standard deviation on the fitted rate.
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Maximum likelihood implementations
There are at least two different ways to implement maximum like-
lihood decoding (MLD), which we call the offline and online imple-
mentations of the decoder. Though they give the same results, the
implementations can differ significantly in run-time depending on the
specific application.

In theoffline case, one calculates and stores the entire distribution
Pr[β, γ] and queries it to determine the correction for each run of the
circuit. The calculation takes O(∣E∣2∣V∣+2k) time, since we must perform
updates from Eq. (6) to the distribution for each hyperedge in E.
Determining a correction using Eq. (7) takes O(22k) time per run.

Alternatively, one can forgo calculating the whole distribution,
and instead calculate sparse distributions specific to each observation
string β* in a data set. Online MLD achieves this by pruning the dis-
tribution as updates are performed, keeping only entries consistent
with β*. We imagine receiving one bit of β* at a time. For the jth bit,
updates aremade using Eq. (6) for all hyperedges that contain bit j and
have not already been included. In fact, all these updates for a given bit
can be combined into a pre-calculated transition matrix. Since no
further updates will be made to bit j, we can now truncate the dis-
tribution by keeping only entries Pr[β, γ] where βj =β

*
j .

We can run through a quick example of this procedure for the 0-
round, ∣0iL experiment. Here there are just ∣V∣ = 2 error-sensitive
events and ∣E∣ = 3 hyperedges. Organizing the hyperedge parameters
like (βh, γh): ph, we write

E = fð10, 1Þ : p1, ð11, 0Þ : p2,ð01, 0Þ : p3g, ð8Þ

where we have left out the ZL bit of γh since ZL corrections are not
relevant to ∣0iL experiments. This corresponds to just one roundof the
graph in Fig. 1c, and the expressions for p1, p2, p3 are the last three rows
of Table 1. We will use �p to mean 1 − p below.

Suppose we want to decode the observation β* = 01. We start with
probability distribution P0 = {(00, 0): 1}. This notation means Pr[β =
00, γ = 0] = 1. All other values of β and γ have probability zero and are

Fig. 3 | Example Pauli propagation. Two examples of Pauli propagation through
the flagged measurement circuit for a Z-gauge operator. Pauli Z corrections due to
deflagging are shown in dotted boxes and depend on the flag qubit measurement
results. In the lower half of the figure in blue, a cx gate is followed by a XY error
(blue) with probability pcx/15. The subsequent cx gate propagates the X error to the
syndromequbitQ19, flipping themeasurementm, andmeanwhile the Y error onQ2
propagates without change (it will have an effect on future measurement rounds).
The propagated errors are in dotted circles. Note the flag measurement b is not
flipped, as the Hadamard gate takes the X error to a harmless Z error. In the top half
of the figure, a Pauli Z error occurs on a flag qubit (red) with probability pcx/15, and
propagates to a Z error on Q6 and an X error before the measurement a (dashed
circles). Deflagging applies Z to Q6, canceling the error there, so that the final
propagated error is just the flip of measurement a.

Table 1 | Decoding graph edges

Edge e Q(e) First-order edge flip probability ~pe Num.

(z00, b) 1 44/15pcx + 6pid + 3pinit + 2pidm 0.039

(z00, z
0
1 ) 2 44/15pcx + 14/3pid + 3pinit + 2pidm 0.038

(z01 , b) 3 44/15pcx + 4pid + 3pinit + 2pidm 0.037

(z00, z
1
0) ; 88/15pcx + 4/3pid + 2pinit + 2pmeasure 0.061

(z01 , z
1
0) 2 8/5pcx 0.016

(z01 , z
1
1) ; 88/15pcx + 4/3pid + 2pinit + 2pmeasure 0.061

(z10, b) 1 56/15pcx + 28/3pid + 4pidm 0.055

(z10, z
1
1) 2 56/15pcx + 22/3pid + 4pidm 0.053

(z11 , b) 3 56/15pcx + 28/3pid + 4pidm 0.055

(z10, z
2
0) ; 88/15pcx + 4/3pid + 2pmeasure + 2preset 0.061

(z11 , z
2
0) 2 8/5pcx 0.016

(z11 , z
2
1 ) ; 88/15pcx + 4/3pid + 2pmeasure + 2preset 0.061

(z20, b) 1 44/15pcx + 14/3pid + 2pidm + 3pmeasure 0.040

(z20, z
2
1 ) 2 44/15pcx + 4pid + 2pidm + 3pmeasure 0.039

(z21 , b) 3 44/15pcx + 20/3pid + 2pidm + 3pmeasure 0.042

(x00, x
0
2 ) 4 4/3ph + 8/5pcx + 8/3pid +pinit + 2/3pidm +pmeasure 0.021

(x00, x
0
3 ) 5 2ph + 12/5pcx + 2pid + 3pinit + 2/3pidm 0.028

(x00, b) 1 10/3ph + 4pcx + 16/3pid + 4pinit + 4/
3pidm +pmeasure

0.049

(x00, x
1
0) ; 8/3ph + 16/15pcx +pinit + 2pmeasure +preset 0.012

(x00, x
1
2) 4 8/15pcx 0.005

(x00, x
1
3) 5 8/15pcx 0.005

(x01 , x
0
3 ) 6 4/3ph + 16/15pcx + 10/3pid +pinit + 2/

3pidm +pmeasure

0.016

(x01 , b) 3 4/3ph + 8/5pcx + 8/3pid + 2pinit + 2/3pidm 0.020

(x01 , x
1
1) ; 4/3ph + 8/15pcx +pmeasure +preset 0.006

(x01 , x
1
3) 6 8/15pcx 0.005

(x02 , b) 7 4/3ph + 16/15pcx + 10/3pid + 2pinit + 2/3pidm 0.016

(x02 , x
1
2) ; 4/3ph + 8/15pcx +pmeasure +preset 0.006

(x03 , b) 8 10/3ph + 52/15pcx + 22/3pid + 4pinit + 4/
3pidm +pmeasure

0.046

(x03 , x
1
3) ; 8/3ph + 16/15pcx +pinit + 2pmeasure +preset 0.012

(x10, x
1
2) 4 2/3ph + 28/15pcx + 8/3pid + 4/3pidm +pmeasure 0.025

(x10, x
1
3) 5 4/3ph + 8/3pcx + 2pid + 4/3pidm + 2preset 0.032

(x10, b) 1 2ph + 68/15pcx + 20/3pid + 8/
3pidm +pmeasure + 2preset

0.058

(x10, x
2
0) ; 8/3ph + 16/15pcx + 2pmeasure + 2preset 0.012

(x10, x
2
2) 4 8/15pcx 0.005

(x10, x
2
3) 5 8/15pcx 0.005

(x11 , x
1
3) 6 2/3ph + 4/3pcx + 10/3pid + 4/3pidm +pmeasure 0.020

(x11 , b) 3 2/3ph + 28/15pcx + 10/3pid + 4/3pidm +preset 0.025

(x11 , x
2
1 ) ; 4/3ph + 8/15pcx +pmeasure +preset 0.006

(x11 , x
2
3) 6 8/15pcx 0.005

(x12, b) 7 2/3ph + 4/3pcx + 10/3pid + 4/3pidm +preset 0.020

(x12, x
2
2) ; 4/3ph + 8/15pcx +pmeasure +preset 0.006

(x13, b) 8 2ph + 4pcx + 22/3pid + 8/3pidm +pmeasure + 2preset 0.054

(x13, x
2
3) ; 8/3ph + 16/15pcx + 2pmeasure + 2preset 0.012

(x20, x
2
2) 4 4/3ph + 8/5pcx + 8/3pid + 2/3pidm + 2pmeasure 0.021

(x20, x
2
3) 5 2ph + 12/5pcx + 2pid + 2/3pidm +pmeasure + 2preset 0.028

(x20, b) 1 10/3ph + 4pcx + 20/3pid + 4/
3pidm + 3pmeasure + 2preset

0.052

(x21 , x
2
3) 6 4/3ph + 16/15pcx + 10/3pid + 2/3pidm + 2pmeasure 0.017

(x21 , b) 3 4/3ph + 8/5pcx + 10/3pid + 2/
3pidm +pmeasure +preset

0.022

(x22, b) 7 4/3ph + 16/15pcx + 8/3pid + 2/
3pidm +pmeasure +preset

0.016

(x23, b) 8 10/3ph + 52/15pcx + 6pid + 4/
3pidm + 3pmeasure + 2preset

0.046

Edge data for the decoding graph in Fig. 1c, d correcting X (Z)-errors. Here zts (x
t
s) indicates the

sthZ (X)-stabilizer at time t as in Fig. 1c, d. If edgee is chosenby thematching decoder, a PauliX (Z)
is applied to qubit Q(e) if it is not ;. Numeric values from the optimization in Section “IBM_-
Peekskill and experimental details” are provided in the last column.
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not written. Perform updates according to hyperedges (10, 1) and
(11, 0) to obtain

P0 �!
ð10,1Þ ð00,0Þ�

: �p1, ð10, 1Þ : p1

�

�!ð11,0Þ ð00,0Þ�
: �p1�p2

�
, ð10, 1Þ : p1�p2,

ð11, 0Þ : �p1p2, ð01, 1Þ : p1p2

�
:

ð9Þ

Nowwe can truncate the distribution becausewe aredonewith all
updates involving the first event. Since the first bit of β* is 0, this leaves
us with

P1 = fð00, 0Þ : �p1�p2, ð01, 1Þ : p1p2g: ð10Þ

Now updates proceed for any other hyperedges involving the
second event, just (01, 0) in this case.

P1 �!
ð01,0Þ ð00,0Þ : �p1�p2�p3, ð01,1Þ : p1p2�p3

�
, ð11Þ

ð01, 0Þ : �p1�p2p3 : ð00, 1Þ : p1p2p3

�
, ð12Þ

which similarly is truncated to

P2 = fð01, 1Þ : p1p2�p3, ð01, 0Þ : �p1�p2p3g: ð13Þ

To determine whether β* requires a logical correction or not,
compare perror =p1p2�p3 with pnoerror = �p1�p2p3. As perror is second order
in experimental error rates and pnoerror is first order, we deduce that it
is more likely that no logical error has occurred and apply no
correction.

Suppose the number of nonzero entries in the probability dis-
tribution after truncating after the jth bit is Sj. During the course of
online MLD, there is some maximum instantaneous size of the prob-
ability distribution, say Smax = max

j
Sj . The total time to determine a

correction is Oð∣V ∣SmaxÞ per run, assuming a constant number of
hyperedge updates per bit. Note that Smax depends on the decoding
hypergraph and also the order in which error-sensitive events are
incorporated. It can be argued that for [[n, k]] codes, repeated rounds
of syndromemeasurements, and events incorporated chronologically,
2n�k ≤ Smax ≤ 2

2n. The lower bound holds because after completing
update and truncation for a complete round, any of the entire next
round of n − k stabilizer bits may be flipped due to syndrome mea-
surement errors. The upper bound follows from hyperedges being
bounded to contain events from at most two consecutive rounds.

The online decoder is also amenable to dynamic programming,
storing partially calculated probability distributions up to some
moderately-sized j. This saves time by avoiding repeating the same
calculations when observations with same prefixes are decoded. For
instance, in the example above, we could store P1 since both obser-
vations β* = 00 and 01 would end up calculating it. In our analysis of
three-round experiments, we store distributions up to j = 15, while for
four rounds we keep up to j = 21, in what is largely an attempt to
balance time and memory consumption.

Since online MLD takes exponential (in n, the number of physical
qubits in the code) time per run, if ∣V∣ is small enough, offline MLD is
preferable. If ∣V∣ is large but n and k are small (perhaps a small code
experiment performing many rounds of syndrome measurements),
the online decoder becomes the only feasible option.

In the experiments here, online MLD becomes preferable over
offline MLD for three rounds and greater. For r = 2, either offline or
online MLD can decode a complete data set in around 90 seconds for
logical Z-eigenstates (about 13,000 unique bit strings) and around
12 minutes for logical X-eigenstates (about 21,000 unique bit strings).

However for r = 10, online MLD can take up to 3 weeks for a complete
data set (around 130,000 unique bit strings).

All r ≥ 3 online MLD computations were run on a shared x86_64
Linux server. Using specialized hardware, like FPGAs is not an avenue
we explored. However, given the Smax ≥ 2

n�k factor in the time com-
plexity, we do not expect online MLD to be feasible for use in larger
quantum devices.

Simulation details
We obtain theoretical simulation results using stabilizer simulations of
the Qiskit software stack36. In order to estimate the performance of
quantumerror correction circuits on IBMQuantumFalcon systems,we
performed simulations of the quantum circuits with qubits mapped
onto the Falcon devices using customized error models to reflect the
noise behavior of experimental hardware.

Circuit errors in our simulation are modeled as depolarizing
errors, so that the effect for different error sources of varying strength
canbe captured. Noisemodels were built following error locations and
error channels described in Section “Decoding algorithms” using

• a depolarizing error model for each single and two qubit
operation in the quantum circuit with error rates obtained from
simultaneous randomized benchmarking (RB)

• a bit-flip error model for error in measurement, initialize, and
reset operations

• a depolarizing noise model for idling error

Using the above described error model, we define a realistic
depolarizing error model where simulations are carried out with noise
parameters directly exported from the IBM Quantum processor used
for this work, ibm_peekskill (Tables 2 and 3), including

• specific error rates for each single and two-qubit quantum
operation with depolarizing quantum channel parameter
obtained from simultaneous RB according to the relation

ϵgate =
2n � 1
2n
ð1� αgateÞ,

where ϵgate, n, αgate represents error per gate, number of qubits
in gate, and depolarizing quantum channel parameter,

• initialization, measurement, and reset error obtained as descri-
bed in Table 2,

• idling errors with noise strength proportional to coherence limit
of the gate, where coherence limit is computed using T1, T2 and
idle time of each qubit during the execution of each quantum
operation in the circuit. And eachgate lengthmatches thatof the
actual device (the circuit schedule matches that of experiment).

Furthermore, to demonstrate average performance of the circuit
in a relatively uniform depolarizing error model, we define an average
depolarizing error model where instead of the specific error rates for
different gates and qubits stated above we use average error rates
throughout the entire device to define the depolarizing error channels.

Using the analytical perfect matching decoder parameters
pC = [0.0126, 0.000266, 0.0, 0.001, 0.002, 0.000266, 0.000266, 0.0,
0.00713, 0.0142, 0.0290] ordered by error locations
C = fcx, h, s, id, idm, x, y, z,measure, initialize, resetg defined in Sec-
tion “Decoding algorithms”, we obtained simulated per round logical
error rates for circuits with up to 10 syndromemeasurement rounds as
0.059 (0.038) for logical state ∣0iL and 0.152 (0.106) for logical state
∣+iL under the influenceof realistic (average) depolarizing errormodel,
respectively. Comparing to logical error per round on leakage post-
selected data (with analytical matching decoding) as shown in Fig. 2a,
of 0.0409 for ∣0iL and 0.0882 for ∣+iL, logical error per rounds using
the average depolarizing error model match the data better than the
realistic model. However the average model still over estimates ∣+iL
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state, showing that this simplermodel does not fully capture the errors
in the system.We believe the realisticmodel overestimates both Z and
X-basis errors in part because the error benchmarks (see Tables 2 and
3) supplied to themodelwere themselves not leakage-aware and so the
error benchmarkswere likely inflated by leakage errors.Wedo see that
the realistic model similarly does a better job predicting ∣0iL than ∣+iL.
This is an area of openwork, for simulation andperhaps alsodecoding,
to better capture the experimental data beyond leakage.

IBM_Peekskill and experimental details
Data in this section uses the qubit numbering (QFN contrasting withQN

in Fig. 1) notation presented in Fig. 4a, matching standard IBM Quan-
tum Falcon systems. Summarized in Table 2 are single qubit bench-
marks for ibm_peekskill, where single qubit gates for all qubits
(excluding virtual Z gates) are identically 35.55ns. While the Falcon
layout has 27 qubits, for the d=3 circuits presented in this paper we
only needed to use 23 of those qubits as shown in Fig. 4a, excluding
qubits QF0, QF6, QF20, and QF26.

The always-on coupling between connected qubits on ibm_-
peekskill also results in undesirable static ZZ, plotted in Fig. 4b, as a
function of qubit-qubit detuning. To mitigate some of these effects, a
simple Xπ-Xπ dynamical decoupling sequence is added to code qubits
throughout the circuit. Furthermore, by introducing mixed dimen-
sionality simultaneous RB37, we can further capture the undesired side-
effects of this coupling by comparing one and two-qubit gate error
taken with standard RB with spectator qubits/gates fully idling or with

those simultaneouslydriven as set by scheduling requirements of the Z
and X checks. Simultaneous gate error for gates and qubits not part of
these measurements (always idling during the experiments presented
in themain text) are thus not included in this extra characterization (in
table as NaN). These results are presented in Tables 2 and 3. Optimi-
zation of two-qubit gates was undertaken on ibm_peekskill to ensure
that no significant degradation in gate error or increase in leakage out
of the computational manifold occurred in simultaneous
benchmarking.

Using the samemethodologypresented in ref. 15, reset operations
conditioned on the preceding measurement result are used for mid-
circuit reset operations shown Fig. 1b. The total time of the measure-
ment + reset cycle is 768ns, and includes an approximately 400ns
measurement pulse, cavity ring-down time overlapping with classical
control path delays, and application of the conditional Xπ. For con-
sistency, all qubits are calibrated to use the same duration pulse and
delays, with pulse amplitude calibrated individually to optimize QND-
ness of readout.

To optimize the performance of the analytical perfect matching
decoding on experimental data, an optimization algorithmwas run on
experimental data of one round stabilizer measurement of distance-3
heavy hexagon code on the same hardware to find a set of input error
parameters thatminimizes thedecoder output logical error rates. Here
we chose to use the L-BFGS-B algorithm38 due to efficiency of optimi-
zation and ability to work with simple linear constraints. This optimi-
zation was done by starting with the physical noise parameters found

Table 2 | Single qubit characterization

Qubit Freq. Anharm. T1 T2 EPG EPG simul Readout Initialization Reset Pm= 10
leak

(QF) (GHz) (MHz) (μs) (μs) (%) (%) error (%) error (%) error (%)

1 4.664 −351.7 420.3 118.4 0.0102 0.0143 1.22 2.37 3.3 0.0884

2 4.799 −346.9 354.8 119.8 0.0128 0.0171 1.25 1.02 5.6 0.0203

3 4.862 −347.9 331.7 25.8 0.0096 0.0096* 0.75 1.27 5.4 0.0097

4 4.933 −345.9 124.8 77.3 0.0332 0.0315 0.47 0.52 2.0 0.0048

5 5.020 −343.9 131.7 215.5 0.0122 0.0145 0.79 1.23 1.2 0.0201

7 4.769 −347.1 424.5 59.7 0.0107 0.0212 0.47 0.22 3.3 0.1046

8 4.941 −344.3 249.4 228.8 0.0181 0.0310 0.46 0.67 1.1 0.0164

9 5.219 −339.4 271.7 316.0 0.0069 0.0287 1.28 1.89 1.7 0.0490

10 4.863 −347.1 357.0 72.0 0.0184 0.0207 0.30 0.53 1.8 0.0106

11 5.128 −341.4 283.8 188.8 0.0199 0.0217 1.38 2.82 2.6 0.0136

12 4.933 −344.8 280.9 353.0 0.0190 0.0367 0.38 0.26 1.2 0.0182

13 5.006 −356.5 349.8 345.0 0.0168 0.0410 0.10 0.74 0.9 0.0898

14 4.839 −377.2 399.3 99.7 0.0157 0.0694 1.22 3.67 4.6 0.0277

15 4.991 −368.8 226.6 217.4 0.0352 0.0473 0.37 1.48 3.2 0.0172

16 5.107 −342.0 259.8 209.2 0.0100 0.0280 0.70 0.88 1.2 0.0200

17 5.173 −339.3 234.4 311.7 0.0207 0.0324 0.65 0.71 1.6 0.0204

18 5.103 −339.9 195.5 34.7 0.0138 0.0118 0.26 0.40 1.2 0.0220

19 4.819 −376.7 319.6 167.6 0.0311 0.0485 2.15 8.87 7.2 0.0128

21 4.890 −345.8 278.1 308.0 0.0131 0.0143 0.53 0.77 0.7 0.0086

22 4.955 −344.2 206.9 132.4 0.0105 0.0177 0.62 1.30 1.8 0.0434

23 5.045 −341.8 278.3 145.0 0.0118 0.0118* 0.28 0.34 0.8 0.0192

24 5.136 −341.1 258.7 14.6 0.0147 0.0169 0.36 0.28 2.6 0.0096

25 5.027 −341.7 364.1 327.5 0.0160 0.0265 0.42 0.45 0.8 0.0164

Mean 4.966 −348.50 287.0 177.7 0.0165 0.0266 0.713 1.42 2.43 0.0288

Std. 0.139 10.8 79.9 107.0 0.0074 0.0140 0.48 1.81 1.73 0.0273

Single qubit device parameters, using IBM-Falcon qubit numbering presented in Fig. 4a for ibm_peekskill. Single qubit error per gate (EPG) from randomized benchmarking (RB) with all coupled
qubits idled. In contrast, simultaneous single qubit EPG (EPG simul) is obtained by performing one qubit RB concurrently with two qubit RB on neighboring gates to more realistically approximate
simultaneous application of gates in stabilizers (asterisked values are isolated EPG, as these qubits are not captured in this scheme). To separate readout from initialization and reset errors, readout
error is extracted fromoverlap of gaussianfits to groundandexcited state histograms. The initialization sequence for thedata presented in this paper used 6 rounds of conditional reset, with a single
Xπe−f after 3 rounds to help reset f-state population. The initialization error is benchmarked with this sequence applied simultaneously on all qubits. Reset error is the average non-zero state
population after a single round of conditional reset (simultaneous on all qubits) after preparing all qubits on with an Xπ/2, to capture mid-circuit reset needed for each stabilizer round. Probability of
leakage after 10 measurements, see Eq. (15), is from benchmarking pulse-sequence in Fig. 5a.
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through device calibration, iteratively updating the parameters while
minimizing the overall logical error. It aims to compensate for deco-
der’s lack of knowledge of realistic noise processes, and outputs a set
of decoding parameters that produces improved decoder perfor-
mance. The optimization resulted in the following set of input error
parameters for the analytical perfect matching decoding algorithm
pC = [0.01, 0.00028, 0.0, 0.001, 0.002, 0.00028, 0.00028, 0.0,
0.0005, 0.0, 0.00001] following the error locations
C = fcx, h, s, id,idm, x, y, z,measure, initialize, resetg as defined in Sec-
tion “Decoding algorithms”.

We use the following equation to fit logical errors at syndrome
measurement round, r,

PfailðrÞ=
1
2
ð1� Ae�r=τÞ ð14Þ

where A is SPAM error, τ = �1
lnð1�2ϵÞ, and ϵ is the logical error rate per

syndrome measurement round (Fig. 2b, e, f).

Leakage in the system
Leakage errors outside the computational space comprising the states
∣0i (g-state) and ∣1i (e-state) into ∣2i (f-state) or higher states cannot be
corrected by our quantum error correction code and thus pose a
serious threat to fault-tolerant computing. For fixed-frequency
superconducting qubits, a certain set of qubit frequency assign-
ments may lead to frequency collisions during the cross-resonant gate
operation2. For example, when the target qubit frequency is close to
the e→ f transition frequency of the control qubit, leakage error is

induced during the two qubit gate operation. Another example is a
simultaneous operation of a two-qubit gate with a spectator single-
qubit gate where the spectator qubit frequency together with target
qubit frequencymatch the e→ f transition of the control qubit. This can
result in leakage errors which can be characterized by randomized
benchmarking of the corresponding single- and two-qubit gates39.

Leakage errors can also occur during measurements40. As we
speed up the measurement time by increasing the measurement
power, qubits become more prone to leakage. We characterize this
measurement-induced leakage by repeatedly measuring the qubit and
extracting the leakage rate. The experiment is described in Fig. 5a,
where the sequence consists of Xπ/2 followed by a measurement tone.
The Xπ/2 pulse will map either ∣0i or ∣1i to the equator of the Bloch
sphere, so the sequence randomly samples either ∣0i or ∣1i during the
subsequent measurement. The obtained measurement leakage rate
thus obtained is an average of the leakage rates from ∣0i and ∣1i states.
The outcomes obtained from the sequence in Fig. 5a are classified
according to calibration data obtained by preparing the ∣0i, ∣1i, and ∣2i
states, using the closest distributionmean for each outcome, and then
applying readout error mitigation by constraining the formalism
described in ref. 41 for multi-qubit readout to our single-qubit three-
state subspace. This single-qubit readout errormitigation is applied to
the ensemble ofmeasurements obtained for each iterationof the pulse
sequence. The measurement sequence is repeated for m = 70 times

Table 3 | Two qubit characterization

Gate CX length (ns) EPG (%) EPG_simul (%)

11_14 483.6 0.53 0.95

12_15 433.8 0.78 1.42

12_10 334.2 0.42 1.02

12_13 519.1 0.61 1.03

14_13 504.9 0.77 1.49

15_18 469.3 0.49 1.10

16_14 440.9 0.50 0.82

16_19 696.9 2.09 1.14

18_17 426.7 4.03 3.96

18_21 348.4 0.56 0.73

2_1 362.7 0.34 0.55

21_23 519.1 0.65 0.67

22_19 362.7 0.50 0.94

22_25 412.4 0.47 0.57

24_23 384.0 0.64 0.81

24_25 384.0 0.69 0.91

3_2 426.7 0.52 0.53

3_5 391.1 0.40 0.64

4_1 547.6 0.46 0.49

5_8 348.4 0.47 0.71

7_10 362.7 1.42 0.76

7_4 426.7 0.39 0.54

8_11 526.2 1.16 1.39

9_8 384.0 0.58 0.84

Mean 437.3 0.81 1.00

Std. 82.5 0.77 0.68

The two qubit CX gates are constructed from the echoed cross-resonance gate46, with lengths
and gate directions optimized for overall device performance. EPG is measured with spectator
qubits idling while simultaneous EPG is taken with spectator qubits undergoing single qubit RB.
Mean and standard deviation are across all CX gates listed.

Fig. 4 | Experiment details. a Translation of Fig. 1a qubit numbering (QN) to
standard IBM-Falcon numbering(QFN). b Static ZZ between all connected qubits
pairs versus detuning between qubits. Median qubit anharmonicity, see Table 2 for
breakdown, is -345 MHz.

Article https://doi.org/10.1038/s41467-023-38247-5

Nature Communications |         (2023) 14:2852 9



and we average over the 10,000 shots for each m to compute the
averaged probability that the qubit is binned in the ∣2i state. Figure 5b
shows the measurement leakage probability, pmeas

leak , where the qubit
leaks to the ∣2i state permeasurement. (See Table 2 for further details).
Eventually a steady state population in the ∣2i state, determined by the
measurement leakage and seepage rates, is reached. We extract the
leakage and seepage rates using the equation

pmeas
leak =

ΓL
ΓL + ΓS

1� e�ðΓL + ΓSÞm
� �

, ð15Þ

where the leakage rate ΓL is theprobability of thequbit leaking during a
measurement, the seepage rate ΓS is the probability of a leaked state
returning to the qubit subspace during a measurement. Here, ΓL,S
measures rate permeasurement, therefore it is a unitless quantity. The
obtained average andmedian value of ΓL are 6.54 × 10−3 and 4.86 × 10−3

per measurement, respectively.
We extract the two-qubit gate leakage and seepage rate of the ∣2i

state from simultaneous randomized benchmarking, with the simul-
taneity chosen to match the Z − and X − stabilizer sequences as illu-
strated in Fig. 1. Similarly, we extract the leakage/seepage rate from
repeated measurement described in Fig. 5a. In these estimations, we
account for the number of gate operations andmeasurements for each
syndrome/flag qubits as well as the code qubits measured at the end.
For instance, a two round experiment for the logical Z −basis consists
of an X − check for state preparation, two rounds of X − and Z − checks,

and a final measurement of the code qubits. Each check consists of
two-qubit gates and measurements. As a result, there are three sets
of two-qubit gates and measurements on X − check qubits, two sets of
two-qubit gates and measurements on Z − check qubits, and one
measurement of the code qubits. The post-selection procedure dis-
cards the result if any of the qubit is leaked from the computational
subspace. Therefore, we sum all the leakage probabilities to compute
ptot
leak for each syndrome measurement round.

Figure 5c, d shows ptot
leak as a function of the number of rounds for

the logical Z- and X-basis, respectively. Black symbols denote leakage
detected, as outlined in Methods “Post-selection method”, during the
course of the error correction circuits themselves. This method onlys
detect the occurrence of leakage and cannot differentiate the cause of
leakage (measurement versus 2Q gate). With the analysis described in
this section, we obtain estimates as shown by each bar in Fig. 5c, d,
which represents ptot

leak from two-qubit gates (blue) and measurement
(red) operations. When combined, the estimated leakage rate per
round matches the experimental values decently well.

This analysis shows that reducing leakage error from both two-
qubit gates and measurements is important. Decreasing leakage
induced by two-qubit gates in our architecture will be associated with
slower gates. With respect to measurement, as noted above, it is well
known that a strong drive on a superconducting qubit system can lead
to transitions both beyond the computational space40 and beyond the
confinement of the Josephson cosine potential42. There is therefore a
trade-off to be considered between readout error and measurement

(a)

(b)

(c) (d)

(e) (f) (g)

Fig. 5 | Leakage analysis. a Repeated measurement sequence for extracting leak-
age error during the measurement. The Xπ/2 pulse allows us to randomly sample
leakage events from ∣0i or ∣1i states. b The leakage probability (pmeas

leak ) to the ∣2i
state measured atQF14. The leakage and seepage rate is obtained by fitting the data
with Eq. (15). c, d Qubit leakage in the system as a function of syndrome mea-
surement rounds for Z − and X − basis logical states. Bar plots show the ptot

leak as
computed from the gate and measurement leakage rates, obtained from rando-
mized benchmarking (2Q gates) and from the sequence shown in a, respectively.

Experimental results, pexp
leak = 1� paccept, where paccept is the acceptance probability

calculated from the method outlined in Methods “Post-selection method”, are
shown as black symbols for comparison. The experimental results plotted here do
not include initialization leakage. e Readout calibration data for QF12 (see Fig. 4a).
The qubit is prepared in its ∣0i, ∣1i, and ∣2i states and measured. The collected
statistics can be seen in as blue (∣0i), red (∣1i), and grey (∣2i) where the dot-dashed
lines represent 3-σ for each distribution. f 3-state classification results forQF12 after
qubit initialization, and g after the first X − syndrome measurement.
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length and leakage probability. Slower readout impacts the system by
increasing the idle time of the qubits not being measured. There have
been proposals to deal with leakage in superconducting qubit systems
by moving all the qubit excitations to the readout resonator, from
which they decay to the environment43, or by designing readout
resonator leakage reduction units (LRU)44 which exploit particular
transition levels of the qubit-resonator system and which transform
leakage errors into Pauli errors. LRU have also been proposed at the
code level45. These options, as well as higher branching capabilities in
readout and control electronics to conditionally reset qubits to the
ground state from higher excitation levels, could be explored in
experimental systems demonstrating quantum error correction in the
near future.

Post-selection method
Wepost-select all our results to remove detected leakage events in any
of the qubits in our system. To do this, we look at 5000 integrated
outputs for each qubit when prepared in each of the states ∣0i, ∣1i, and
∣2i. We show this calibration forQF12 (see Fig. 4a) in Fig. 5e. The overlap
between the ∣1i and ∣2i states, which is significant in all 23 qubits used
in this work, makes the classification of these states challenging. Fur-
thermore, the presence of decay events (∣1i to ∣0i, ∣2i to ∣1i, or ∣2i to
∣0i) may impair the results using this training data within a supervised
learning protocol. We instead apply clustering methods to our cali-
bration data using a Gaussian Mixture Model (GMM) with three clus-
ters, each cluster with an independent diagonal covariancematrix. The
diagonal entries of the covariance matrices can be used to extract the
standard deviations of the distribution for each qubit state. This offers
a convenient way for us to define more flexible classification rules,
compared to, for example, simpler clustering algorithms like K-means.
Once the centroids and standarddeviations (σx and σy) are determined

from the calibration data, we define regions for each state within the
I/Q plane determined by a radius of 3σ on each axis around the cor-
responding centroid (see Fig. 5).

For any given measurement in any of the qubits, if the inte-
grated outcome is within the ∣0i-state region and the I-quadrature is
negative, we classify that outcome as ∣0i. If the integrated outcome
is not within the ∣0i-state region or the I-quadrature is positive, if it
is within the ∣1i-state region we classify it as ∣1i, and if it is within the
∣2i-state region but not within the ∣1i-state region, we classify it as
∣2i. For all other results, we classify the output according to its
closest centroid.

This classification method is applied to every qubit after every
measurement and the experimental runs in which any qubit is mea-
sured as ∣2i is discarded. Figure 5f shows the readout outcomes of
QF12 after the last initialization measurement. We only discard
uncorrectable errors (∣2i state) and retain experimental shots in
which a qubit is in the ∣1i state after initialization, as that should be a
correctable error by the code. Figure 5g shows the QF12 results after
the first X − check for a logical ∣0i state preparation. Both the initi-
alization and themid-circuit contain the 500,000 shots that are used
for each error correction run in our experiments. For the initializa-
tion classification we obtain populations of 0.9910, 0.0071, and
0.0019 for the ∣0i, ∣1i, and ∣2i states, respectively. For the mid-circuit
X − syndrome classification, those populations are observed to be
0.4972, 0.4962, and 0.0066.

Logical error at r= 2 rounds
Table 4 shows a comparison across the decoders studied in this work
for state preparation and two rounds of syndrome measurement for
the logical states ∣+iL, ∣�iL, ∣0iL, and ∣1iL. These results correspond to
the values shown in Fig. 2c, d and Fig. 6 at r = 2 rounds.

Table 4 | Decoder comparison for 2 round data

Basis Init.
State

Round
Schedule

Matching Uni-
form (Full)

Matching Uni-
form (PS)

Matching Analy-
tical (Full)

Matching Ana-
lytic (PS)

Maximum like-
lihood (Full)

Maximum like-
lihood (PS)

Shots (PS)

Z ∣0iL XZXZX 0.1187(5) 0.0978(5) 0.1160(5) 0.0940(5) 0.1045(4) 0.0843(5) 322,165

Z ∣1iL XZXZX 0.1151(5) 0.0928(5) 0.1162(5) 0.0920(5) 0.1031(4) 0.0819(5) 306,962

X ∣+iL ZXZXZ 0.2555(6) 0.2212(7) 0.2502(6) 0.2091(7) 0.2502(6) 0.2083(7) 317,672

X ∣�iL ZXZXZ 0.2860(6) 0.2468(8) 0.2805(6) 0.2332(8) 0.2803(6) 0.2321(8) 295,608

Comparisonof logical error extracted usingmatching uniform,matching analytical, andmaximum likelihooddecoders onboth full and leakage-post selected (PS) data-sets at r = 2 rounds. Error bars
denote sampling error. Each full data set corresponding to 500,000 shots before post-selection, after post-selection each data point/set will have a different number of shots that is taken into
account by the error bars.

Rounds Rounds

(b)(a)

Fig. 6 | Logical error for ∣1iL and ∣+iL Comparison of logical error vs. round
number for ∣1iL and ∣�iL states (∣0iL and ∣+iL in Fig. 2c, d) using four different
decoding methods: matching uniform (pink), matching analytical (green),

matching analytical with soft-decoding (gray), and maximum likelihood (blue). All
decoders here are using leakage post-selected experimental data. Logical error per
round extracted fits are shown in Fig. 2e, f.
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Soft-information decoding
In the main text, binary measurement outcomes (0 or 1) were
deduced from experimental data and used in decoding. However, it
has been shown33 that exploiting soft measurement information
before it is converted into hard, binary information can improve
decoding performance. Here we attempt this strategy with the
matching decoder and find small improvements in our logical error
rates per round.

Let us first describe how the soft information decoding works.
For each measurement, three probabilities can be calculated based
on the ∣0i,∣1i,∣2i classification Gaussians described in Section “Post-
selection method”. These probabilities are P½M∣i �, the probability of
measurement M assuming the true qubit state was i = 0, 1, 2. After
leakage post-selection, we assume the qubits were not in state ∣2i, so
only the i = 0, 1 probabilities feature into our modified matching
algorithm.

We can use Bayes’ rule to write P½i∣M�= P½M∣i�P½i�=P½M�, where
P[i] and P½M� are a priori probabilities. We form the likelihood ratio33

L½M�= P½1� h∣M�
P½h∣M� =

P½M∣1� h�P½1� h�
P½M∣h�P½h� , ð16Þ

where h= argmaxi2f0,1gP½M∣i� is the hard outcome corresponding to
measurement M. We also make the assumption that a priori
P[0] = P[1]. This is not a very accurate assumption, especially for the
flag qubits, which are expected to be ∣0i the majority of the time.
However, this simplifies the likelihood ratio to L½M�= P½M∣1�h�

P½M∣h� , a ratioof
probabilities that are calculated directly from the experimental read-
out. Inputting more a priori information, perhaps expected prob-
abilities from Pauli tracing, is a way to potentially improve soft
information decoding.

We nowmodify the edge weightswe and edge flip probabilities ~pe

in the decoding graph (the same graph used by the uniform and ana-
lyticalmatching decoders). The first change is that pmeasure in Table 1 is
replaced by the appropriate likelihoods L½M�. Note that while pmeasure

refers to the average probability ameasurement fails, L½M� is different
for each of the 18r + 15 (or 18r + 21) measurementsM in a Z-basis (or X-
basis) experiment, so Pauli tracing must be modified to assign unique
likelihoods to each measurement. Finally, because we now use like-
lihoods, we replace all other terms aipi in ~pe, for pi ≠pmeasure, with aipi/
(1 − pi), and set we = � log ~pe.

Performing minimum-weight perfect matching with these mod-
ified edge weights on leakage post-selected data gives the logical error
rates in Fig. 2c, d, and Fig. 6. We also attempted to use both hard
pmeasure=ð1� pmeasureÞ and soft L½M� likelihood terms in the edge
probabilities, but this produced worse error rates. It’s possible the
value of pmeasure could be adjusted to improve this hard and soft
combination decoding.

Data availability
Data available upon request to contributing authors.
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