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Causal associations between
cardiorespiratory fitness and type 2 diabetes

Lina Cai1, Tomas Gonzales 1, Eleanor Wheeler 1, Nicola D. Kerrison 1,
Felix R. Day 1, Claudia Langenberg 1, John R. B. Perry 1, Soren Brage 1,2 &
Nicholas J. Wareham 1,2

Higher cardiorespiratoryfitness is associatedwith lower risk of type 2diabetes.
However, the causality of this relationship and the biological mechanisms that
underlie it are unclear. Here, we examine genetic determinants of cardior-
espiratory fitness in 450k European-ancestry individuals in UK Biobank, by
leveraging the genetic overlap between fitness measured by an exercise test
and resting heart rate. We identified 160 fitness-associated loci which we
validated in an independent cohort, the Fenland study. Gene-based analyses
prioritised candidate genes, such as CACNA1C, SCN10A, MYH11 andMYH6, that
are enriched in biological processes related to cardiac muscle development
and muscle contractility. In a Mendelian Randomisation framework, we
demonstrate that higher genetically predicted fitness is causally associated
with lower risk of type 2 diabetes independent of adiposity. Integration with
proteomic data identified N-terminal pro B-type natriuretic peptide, hepato-
cyte growth factor-like protein and sex hormone-binding globulin as potential
mediators of this relationship. Collectively, our findings provide insights into
the biological mechanisms underpinning cardiorespiratory fitness and high-
light the importance of improving fitness for diabetes prevention.

Cardiorespiratoryfitness,whichwe refer to in this paper asfitness, is the
ability of the circulatory and respiratory systems to supply oxygen to
workingmuscles during prolonged exercise1,2. Fitness is amultifactorial
trait2. Twin and family studies suggest that fitness has a strong genetic
component, with an estimated heritability of 40–70%3–6. Fitness can be
improved through exercise training3,7,8; however, it is important to
recognise that fitness is a complex trait, distinct from physical activity
behaviour, representing a dimension of physical health that indepen-
dently predicts various health outcomes9–13.

Higher fitness is associated with higher insulin sensitivity inde-
pendently of the effect of physical activity, which in turn, could reduce
the risk of cardiometabolic diseases including type 2 diabetes14,15.
A recent meta-analysis of 22 observational studies incorporating 1.6
million individuals (40,286 incident type 2 diabetes cases) reported
that the relative risk of type 2 diabetes was 8% lower per 1 metabolic
equivalent of task (MET) increment in fitness, after adjusting for

adiposity16. However, improving fitness has not been an explicit
intervention target in any of the large diabetes prevention trials that
have been conducted to date; thus, it remains unclear whether fitness
is causally linked to type 2 diabetes risk. Using a genetic risk score for
fitness as an instrumental variable in Mendelian randomisation ana-
lyses offers a way of evaluating whether fitness is causally linked to
type 2 diabetes as this approach reduces the risk of confounding and
reverse causality which can affect observational studies17.

The HERITAGE Family Study identified several loci that may be
associated with fitness18. However, this study was undertaken in a
relatively small cohort with limited statistical power and moderate
coverage of the genome.More recently, an analysis of UKBiobank data
identified genetic loci associated with fitness which are enriched
among genes associated with various cardiometabolic diseases19.
However, interpretation of these results is problematic, because fit-
ness estimates from the risk-stratified submaximal bike test were
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derived using a method recently shown to be biased for UK Biobank
bike test data13. No studies have employed validated genetic instru-
ments forfitness to investigate causality of the associationwith disease
outcomes.

Here, we conduct a genome-wide association study of validated
fitness estimates from the subsample with bike test data in the UK
Biobank cohort and triangulate the results with a genome-wide
association study of resting heart rate in the full cohort to develop
an optimised genetic instrument for fitness. We then validate
our instrumental variable in an independent cohort (Fig. 1). We apply
this instrument to evaluate the causal relationships between
fitness and diabetes risk, as well as intermediate risk traits using
Mendelian randomisation methods. Finally, we explore the associa-
tions between genetically predicted fitness and blood protein levels
and conduct bioinformatic analyses to gain further insights into
potential biological pathways.

Results
Observational association between fitness and diabetes
We defined fitness as maximal oxygen consumption (VO2max, expres-
sed inml O2 permin per kg fat-freemass (FFM) in this study) estimated
from a submaximal ramped cycle ergometer test20 in the UK Biobank
study. The validation of these fitness estimates and a description of the
baseline characteristics of participants are reported elsewhere13. In
general, fitter people were younger, more likely to be male, more
physically active, had higher education level, better lung function,
lower body mass index (BMI) and lower resting heart rate. The mean
(±standard deviation) fitness level for the 34,179 men included in this
analysis was 43.1 (±6.4) ml O2·min−1·kg−1 FFM, and it was 39.8 (±7.1) ml
O2·min−1·kg−1 FFM for the 39,395women (Supplementary Table 1). There
were 1,852 cases of incident type 2 diabetes in the total sample of 73,574
people with fitness measurements during 10 years of follow-up. Higher
fitness was strongly inversely and linearly associated with risk of
developing type 2 diabetes (Fig. 2). Each 1ml O2·min−1·kg−1 FFM higher
fitnesswas associatedwith 3% (95%Confidence Interval (CI): 2-4%) lower

risk of developing type 2 diabetes after adjustment for age, sex, adip-
osity and other potential confounders (Supplementary Table 2); this
equates to 19% lower risk for every standard deviation higher fitness.

Genome-wide association study of fitness
After excluding individuals of non-European genetic ancestry and
those without available genotype data, we performed a genome-wide
association study (GWAS) onfitness in 69,416 participants of European
Ancestry in the UK Biobank study. We identified 14 genome-wide
significant fitness-associated SNPs (Supplementary Table 3); the Man-
hattan plot and theQ-Q plot of the GWAS are shown in Supplementary
Fig. 1. The genomic inflation factor λGC was 1.15 and the Linkage
Disequilibrium (LD) score regression intercept was 1.02 (s.e. = 0.01),
which suggests that the slight inflation observed was primarily attrib-
uted to the polygenic nature of the fitness trait. A genome-wide single
nucleotide polymorphism (SNP)-basedheritability of 12.7% (s.e. = 1.0%)
was estimated using LD score regression21.

Cardiorespiratory fitness and resting heart rate
Resting heart rate is inversely correlated with fitness in observational
studies anddecreases as a response to aerobic exercise training2,22–25.We
hypothesised that resting heart rate could also be used as a viable proxy
trait for fitness in a genetic framework and conducted several analyses
to test this. In UK Biobank, the resting heart rate measure is available in
nearly all participants.We leveraged the genetic overlap betweenfitness
and resting heart rate and the large sample size for resting heart rate to
optimise the genetic prediction of fitness, accounting for resting heart
rate associated variants that are not related to fitness.

To do this, we conducted a GWAS of resting heart rate among
>450kUKBiobankparticipants of EuropeanAncestry and identified427
distinct genome-wide significant variants (p< 5 × 10−8) (see Methods).
We found a strong inverse genetic correlation between fitness
and resting heart rate (Rg = −0.68, s.e. = 0.03, p = 5.4 × 10−120) using
LD score regression21. In secondary analyses, we found that the
genetic correlations between fitness and other physiologically relevant
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Fig. 1 | Flow chart of the study. The figure shows the different steps in describing the association between cardiorespiratory fitness and incident type 2 diabetes, the
derivation of a genetic score for fitness for the Mendelian randomisation analysis and the investigation of mediation using proteomics.
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traits (lung function, handgrip strength and haemoglobin) were not
as strong as the correlation between fitness and resting heart rate
(Supplementary Table 4). The genetic correlations between resting
heart rate and these traits were comparable with those for fitness
(Supplementary Fig. 2).

Bi-directional Mendelian Randomisation analysis between resting
heart rate and fitness was conducted. The result was compatiblewith a
bi-directional causal relationship (p <0.05) (Supplementary Fig. 3).We
compared the effect estimates of the 14 genome-wide significant
fitness-associated SNPs and their look-ups from the resting heart rate
GWAS results and vice versa (comparing the effects of 427 indepen-
dent resting heart rate-associated SNPs with those in the fitness
GWAS). Although the two traits are strongly genetically correlated, the
results show that there are some genetic determinants of resting heart
rate that are independent of fitness. Therefore, further prioritisation
and validation of genetic instruments for fitness is required.

Prioritisation and validation of genetic instruments for fitness
We developed a statistical framework to generate a robust genetic
instrument for fitness by triangulating the genetic basis of fitness and
resting heart rate.We validated this optimised genetic instrument in an
independent study before taking it forward for subsequent Mendelian
Randomisation (MR) and proteomics analyses.

To optimise the genetic instrument for fitness, we constructed
four instruments for fitness using various criteria and evaluated the
validity and strength of these instruments with treadmill-measured
fitness in an independent cohort, the Fenland study (see Methods).
The genetic instruments were calculated as the sum of the number of
fitness-increasing alleles at each locus carried by each individual,
weighted by the corresponding effect size from the associations with
fitness in UK Biobank. The radial-filtering approach (see Methods)
identified 148 resting heart rate variants which showed a consistent
effect with fitness. We combined the 14 variants from the exercise test-
based GWAS with 146 of these 148 variants, representing additional
loci, resulting in a fourth instrument of 160 variants.

Each of the four instruments was significantly associated with
treadmill-measured fitness in the Fenland study (Supplementary
Table 5). The instrument with 14 distinct genome-wide significant

fitness-associated variants explained 0.54% of the phenotypic variance
in fitness in Fenland but the instrument with 160 genetic variants was
the strongest of the four, explaining 1.08% of the variance. We there-
fore selected this 160-variant instrument as the optimal instrumental
variable for fitness to be taken forward in further analyses (Supple-
mentary Data 1). The difference in mean fitness levels between parti-
cipants in the top and bottom decile of this optimised fitness
instrument was 3.6ml O2·min−1·kg−1 FFM (Supplementary Fig. 4). We
also examined the association between this genetic risk score offitness
and device-measured physical activity in the subsample of white
unrelated Europeans with accelerometry data in UK Biobank (n = 71k);
we found a positive correlation for both overall physical activity
volume (p = 1.1 × 10−4) and time spent in at least moderate intensity
activity (p = 3.7 × 10−4).

Evaluating the impact of fitness on risk of type 2 diabetes
Using the 160-SNP instrumental variable for fitness (157 SNPs including
proxies with both fitness and type 2 diabetes GWAS results), we per-
formed a two-sample inverse variance weighted (IVW)MR analysis26 to
assess the potential causal effect of fitness on risk of developing type 2
diabetes (Table 1). We observed a nominally significant association
between higher fitness and lower risk of type 2 diabetes (OR =0.97 per
1-unit higher genetically predicted fitness in ml O2·min−1·kg−1 FFM, 95%
CI: 0.94–1.00; p = 0.086); however, there was evidence of significant
heterogeneity (Cochran’s Q p-value < 0.001), potentially indicating
horizontal pleiotropy (Supplementary Table 6). Therefore, we
removed variants identified as outliers using the Radialmethod27 (see
Methods) resulting in a filtered score containing 126 variants, for
which we observed a significant and directionally consistent causal
association between fitness and type 2 diabetes; 1-SD higher geneti-
cally predicted fitness was associated with an 11% (95% CI: 4-18%;
p = 0.005) lower risk of developing type 2 diabetes (Fig. 3), with no
evidence of heterogeneity (Cochran’s Q p-value = 0.686). A series
of sensitivity analyses were conducted such as MR Egger28 and
weighted median models29. The result was consistent using the MR-
PRESSO method30 and also supported by one-sample MR analysis
using the optimised genetic instrument as a proxy for fitness in an
analysis of association with prevalent type 2 diabetes in UK Biobank
(Supplementary Table 6).

Evaluating the impact offitness on intermediatemetabolic traits
We also assessed whether genetically predicted fitness was causally
associated with glycaemic traits (fasting insulin, fasting glucose, 2-h
post-75 g oral glucose load glucose (2-h glucose) and HbA1c) or adip-
osity (BMI). Similar analytical strategies were applied to each of the
intermediate traits as for the MR analyses with type 2 diabetes. We
observed a significant association of genetically predicted fitness with
fasting insulin after Bonferroni correction for multiple testing
(p = 0.001), but not with other traits (p >0.01). (Table 1: Inverse var-
iance weighted results; Supplementary Table 7: all results).

We conducted multivariable MR to assess the direct effect of
genetically predicted fitness on type 2 diabetes risk, after adjusting for
the effects of the same set of fitness-associated variants on glycaemic
traits or adiposity. We found that the casual association between fit-
ness and type 2 diabetes that was observed in the univariate Radial-
filtered MR was attenuated but remained nominally significant
(p < 0.05) after controlling for the effects of intermediate traits, indi-
vidually and collectively (Fig. 3; Supplementary Table 8).

Association with proteins
We examined the association between genetically predicted fitness
levels and circulating protein levels of 4775 protein targets assessed by
the aptamer-based technology (SomaScan©) in 10,707 individuals
from the Fenland study. We observed significant associations
between genetically predictedfitness andhigherN-terminal pro B-type
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Fig. 2 | Observational association between fitness and risk of type 2 diabetes.
Odds Ratio (and 95% confidence interval) for the association of cardiorespiratory
fitness level with incident type 2 diabetes after adjustment for potential confound-
ing variables (Model 3, Supplementary Table 2) and when using 41ml O2⋅min−1⋅kg−1

fat-free mass (FFM) as the reference level. Histogram bins are 1.75ml O2⋅min−1⋅kg−1

FFM wide and represent the distribution of cardiorespiratory fitness levels in UK
Biobank participants (n= 73,574) who completed exercise testing. Source data are
provided as a Source Data file.
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natriuretic peptide (beta per 1-SD higher fitness = 0.058, s.e. = 0.008,
p = 9.45 × 10−13) and lower hepatocyte growth factor-like protein
(beta = −0.042, s.e. = 0.009, p = 2.59 × 10−6) after Bonferroni correction
for the number of aptamers tested (0.05/4,979 = 1.004 × 10−5) (Fig. 4;
Supplementary Table 9). Although not reaching Bonferroni-corrected
significance, we observed a nominal association between genetically
predicted levels of fitness and higher sex hormone-binding globulin
(beta = 0.026, s.e. = 0.008, p <0.001). Studies have shown that higher
levels of sex hormone-binding globulin reduce the risk of type 2
diabetes31, suggesting a potential mechanismmediating the lower risk
of type 2 diabetes with increased levels of fitness. Further MR analysis
in theUKBiobank study provided supporting evidence that genetically
predicted higher fitness is associated with higher levels of sex
hormone-binding globulin (p = 9.6 × 10−11) (Supplementary Table 7).

Multivariable MR analysis results suggested that sex hormone-binding
globulin attenuated the effect of fitness on type 2 diabetes but not
completely (Supplementary Table 8).

Gene-set enrichment and biologically relevant tissue and
cell types
To better understand biology, we used DEPICT32 to prioritise gene-sets
and biological pathways that were enriched with fitness-associated
genes. Several top gene-sets were linked to biological processes
including muscle cell differentiation, muscle tissue and organ devel-
opment, as well as increased cardiac muscle contractility (FDR <0.20)
(Supplementary Table 10). These findings were also supported by
results obtained fromMAGMA (Supplementary Table 11) and from the
FUMA ‘GENE2FUNC’ pipeline (Supplementary Table 12).

Table 1 | Two-sample Mendelian randomisation results using inverse-variance weighted analyses of genetically predicted
cardiorespiratory fitness on type 2 diabetes and related intermediate traits

Outcome Radial-filtered n_SNPs beta s.e. p CochQp EGGER intercept p-value

Type 2 diabetesa No 157 −0.0284 0.0165 0.086 <0.001 0.330

Yes 126 −0.0171 0.0060 0.005 0.69 0.780

fasting insulin No 156 −0.0073 0.0052 0.160 <0.001 0.543

Yes 134 −0.0112 0.0032 0.001 0.79 0.562

fasting glucose No 156 0.0011 0.0057 0.854 <0.001 0.702

Yes 140 −0.0002 0.0027 0.926 0.98 0.423

2-hr glucose No 156 −0.0157 0.0072 0.029 <0.001 0.152

Yes 141 −0.0099 0.0051 0.052 0.86 0.595

HbA1c No 155 −0.0011 0.0048 0.821 <0.001 0.426

Yes 137 −0.0009 0.0031 0.775 0.74 0.325

BMI No 157 −0.0033 0.0038 0.388 0.00 0.778

Yes 108 −0.0024 0.0015 0.103 0.11 0.470
a The effect sizes (betas) for type 2 diabetes MR analyses are logOdds.
2-hr glucose = 2-h post-load plasma glucose, HbA1c = glycated haemoglobin, BMI = BMI.
The effect estimates of the optimised genetic instruments on type 2 diabetes were extracted from the meta-analysis of GWAS summary statistics from the DIAMANTE consortium excluding UK
Biobank participants (55,005 cases, 400,308 controls)55. The effect estimates on FI, FPG, 2hrPG and HbA1c were extracted frommeta-analysis summary statistics for these traits among European
population acquired from the MAGIC investigators working group56. The effect estimates on BMI were obtained from the publicly available meta-analysis results of BMI GWAS from Genetic
Investigation of Anthropometric Traits (GIANT) consortium and UK Biobank57.
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Fig. 3 | Forest plot for Mendelian randomisation analysis results for the
geneticallypredictedeffect of cardiorespiratoryfitness on type2diabetes, and
multivariable Mendelian randomisation analyses of cardiorespiratory fitness
on type 2 diabetes after adjustment for the effects of glycaemic traits and BMI.
Odds Ratios presented are based on Inverse Variance Weighted MR after using
Radial-filtered instrumental variable. Mediation % represents the proportion of
effect of fitness on T2D that is mediated by the intermediate traits, i.e. glycaemic

traits and BMI. SD: standard deviation; CRF: cardiorespiratory fitness; adjFPG:
adjusted for fasting plasma glucose; adjFI, adjusted for fasting insulin; adj2hrPG,
adjusted for 2-h plasma glucose after oral glucose tolerance test; adjHbA1c,
adjusted for HbA1c; adjBMI, adjusted for BMI; adjAll, adjusted for all the inter-
mediate traits above. Sample sizes for each individualMR analysis are provided as a
Source Data file.
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To identify tissues that are more likely involved in the biological
functions of fitness, we used LDSC-SEG33 to identify tissue and cell
type-specific enrichment using the fitness GWAS summary statistics.
We observed that the expressions of fitness-associated loci were
enriched in heart tissues (Fig. 5a; Supplementary Figs. 6 and 7).

Consistently, significant enrichment in four cardiac tissues and cell
types that belong to the cardiovascular system, including the heart,
atria, atrial appendage, and ventricular tissues were found using
DEPICT with input of independent genetic variants associated
with fitness at a suggestive significance level (p < 10−5) (Fig. 5b;
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Fig. 4 | Volcanoplotof associations between theenhanced160-SNPgenetic risk
score for cardiorespiratory fitness and Protein Targets assessed by the
aptamer-based technology (SomaScan©) in 10,707 individuals from the Fen-
land study. Each dot represents a Somamer targeting a protein. The horizontal
dashed line represents p <0.0001 and Somamers with p <0.0001 are annotated.
N-terminal pro-BNP, N-terminal pro B-type natriuretic peptide, MSP, Hepatocyte
growth factor-like protein, MYL6B Myosin light chain 6B MXRA7 Matrix-

remodelling-associated protein 7, CD248 Endosialin, MYPC1 Myosin-binding pro-
tein C, slow-type, WISP-2, WNT1-inducible-signalling pathway protein 2, HS3S4
Heparan sulfate glucosamine 3-O-sulfotransferase 4, MMP-2 72 kDa type IV col-
lagenase, ApoBApolipoproteinB,MYOCMyocilin, VPS29Vacuolar protein sorting-
associated protein 29, SHBG Sex hormone-binding globulin, PAFAH Platelet-
activating factor acetylhydrolase. Source data are provided as a Source Data file.

Fig. 5 | Tissue and cell-type specific enrichment analysis for cardiorespiratory
fitness using LDSC-SEG and DEPICT. a Expression enrichment in a total 207 tis-
sues and cell type specific expression data from GTEx v7 and Franke lab. Each dot
represents a tissue or cell type further categorised into 9 general tissue groups

indicated by different colours. b Results from DEPICT using independent fitness-
associated variants (p < 10−5). Each bar represents a tissue or cell which is cate-
gorised in 10 physiological systems. Orange bar marks the four significantly enri-
ched tissues (FDR<0.05).
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Supplementary Table 12). In addition, directional tissue specificity
profiling in FUMA also indicated that fitness-associated genes were
enriched in up-regulated differentially expressed genes sets in heart
tissue (Bonferroni corrected p < 0.05) (Supplementary Fig. 8).

Discussion
In this large cohort study, we observed a strong linear inverse asso-
ciation between exercise-measured cardiorespiratory fitness and the
risk of developing type 2 diabetes. We used the availability of fitness
and resting heart rate data at scale to develop an enhanced 160-SNP
genetic risk score for fitness, which we validated in an independent
study. Using this genetic risk score in a Mendelian randomisation
analysis, we observed an association between fitness and type 2 dia-
betes risk that was compatible with an underlying causal relationship.
Analyses with intermediate traits showed a probable causal relation-
ship with fasting insulin, a measure of insulin resistance known to be
linked to fitness. Novel potential intermediate pathways between fit-
ness and type 2 diabetes were also highlighted by the association
between genetically predicted fitness and N-terminal pro B-type
natriuretic peptide, hepatocyte growth factor-like protein and sex
hormone binding globulin.

Cardiorespiratory fitness is usually defined by VO2max, the max-
imum oxygen uptake during high-intensity exercise, which is con-
sidered the best indicator of cardiorespiratory capacity. There are
safety concerns to measuring fitness using a maximal exercise test in
large-scale epidemiological studies. Although some studies have used
extensive pre-testing selection criteria to exclude individuals in whom
the testmight be risky, this results in tests that are undertaken only in a
population of relatively healthy fit individuals, with obvious selection
biases and lack of generalisability. Therefore, submaximal tests have
been developed, like the bike ergometer test deployed in the UK
Biobank study which allows safe measurement in the greatest number
of individuals, thus reducing selection bias whilst preserving validity,
as indicated by the strong relationship with the gold standard mea-
surement in validation studies13. Additionally, we used the Fenland
study to validate and prioritise the genetic instruments constructed in
the UK Biobank. There are differences in the tests used to measure
fitness between the two studies13,34, principally that a treadmill test was
used in the Fenland study which is a weight-bearing exercise modality.
Nonetheless, the successful validation of the derived fitness instru-
ment using data from a different study design may also be a strength
since correlation of errors and biases intrinsic to one test modality is
less likely to explain strong validation results.

In this study, we observed a strong inverse genetic correlation
between resting heart rate and fitness in UK Biobank, and given the
large sample size available for resting heart rate, we used the over-
lapping genetic basis of resting heart rate and fitness to create a more
robust genetic instrument for fitness than would have been possible
using only exercise-based fitness estimates alone. We applied the
Radial method to prioritise resting heart rate-associated variants that
were associated with fitness, which were then combined with the top
fitness-associated variants to create an enhanced genetic instrument
for fitness. The proportion of variance explained by this enhanced
instrument in the phenotypic fitness level in the independent dataset
wasdouble that of the instrumentmade fromonly the 14 genome-wide
significant variants identified in the analysis of fitness.

When applying the instrument to examine the association with
type 2diabetes risk inMRanalysis,weobserved anassociation thatwas
compatible with a causal role for fitness. In a recent meta-analysis
among 40,286 incident cases of type 2 diabetes and a total of
1,601,490 participants, each 3.5ml O2·min−1·kg−1 body mass or 1
metabolic equivalent (MET) higher fitness was associated with an
8% (95% CI: 6%-10%) lower relative risk of type 2 diabetes16. In the
UK Biobank study, we observed 3% lower risk of diabetes per 1ml
O2·min−1·kg−1 fat-free mass, equivalent to 19% lower risk per standard

deviation, using the fat-freemass scaled fitness measure and adjusting
for fatmass. To put this in a comparable scale as the previous study, we
observed a 13% lower risk of diabetes per 1METhigherfitness adjusting
for BMI. Based on 2-sampleMR analyses, we observed 11% lower risk of
diabetes per standard deviation higher genetically predicted fitness.

A further investigation of intermediate traits for type 2 diabetes
suggested that genetically predicted higher fitness was also sig-
nificantly associated with lower fasting insulin, a marker of insulin
resistance. The association between fitness and insulin sensitivity is
biologically plausible basedon their commonunderlyingphysiological
function linked with the oxidative capacity of the skeletalmuscle14,35,36.
However, the direct effect of fitness on type 2 diabetes risk was only
slightly attenuated but still nominally significant in the multivariable
MR model, which suggests that the association between fitness and
fasting insulin did not fully explain the causal effect offitness on type 2
diabetes risk and that other mechanisms may be involved.

In contrast with fasting insulin, we did not find convincing evi-
dence supporting a causal relationship between fitness and other
glycaemic parameters, although the association with the 2-h glucose
levels was close to nominal significance. The effect size was compar-
able to that for fasting insulin but may not have been statistically sig-
nificant because the GWAS cohort for the 2-h glucose level is so much
smaller than for other traits. In the multivariable MR analyses, adjust-
ment for BMI did not attenuate the apparent causal effect of fitness on
type 2 diabetes risk, which is concordant with the apparent BMI-
independent observational association of fitness on type 2 diabetes
risk observed both here and in a recent large meta-analysis of pro-
spective cohort studies16.

We explored other potential pathways that might mediate the
associationoffitness on type 2diabetes risk, given the observed strong
linkbetweenfitness and fasting insulin levelsdid notwholly explain the
causal association between fitness and diabetes. In an analysis capita-
lising on the availability of proteomics alongsidefitnessmeasurements
in the Fenland study, we observed a potential mediating role of
N-terminal pro B-type natriuretic peptide, which is compatible with
reports of a previous MR analysis which suggests that one standard
deviation genetically predicted higher N-terminal pro B-type
natriuretic peptide levels was associated with a 21% reduction in type
2 diabetes risk37. The observation in this study of a possible mediating
role for sex hormone binding globulin is also supported by strong
genetic evidence between sex hormone binding globulin and type 2
diabetes in previous reports31,38. The results point to novel pathways
beyond glycaemia and insulin resistance which may link fitness and
type 2 diabetes and are relevant not only to future studies of the bio-
logical basis of fitness but would also be of relevance as potential
targets for therapies that mimic the metabolic health benefits of
improved fitness.

A previous genetic study of fitness in 497 sedentary individuals
from the HERITAGE Family Study highlighted some genes involved in
the underlying mechanisms in the cardiovascular system, skeletal
muscle function, haematopoiesis, and metabolism based on bioinfor-
matic analyses and evidence from knockout mouse models18. Despite
the extensive search centred on biological relevance, the sample size
for the original genetic discovery was small. In this study, we did not
replicate any of the genes suggested by their study. Nonetheless, this
study identifiedmultiple genes that encodeproteins that playkey roles
in cardiac and smooth muscle development and function (such as
CACNA1C, SCN10A,MYH6,MYH7,MYH11), whichwas also supported by
gene-set enrichment analyses and tissue-specific expression patterns.

This current studyhas certain limitations. For instance,we applied
the Radial method to filter outliers in the association between resting
heart rate and cardiorespiratory fitness to construct a more robust
genetic instrument for fitness. Despite the notable improvement in the
enhanced instrument, the causal assessment using this instrument
needs to be interpreted with caution. It is possible that the association
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was driven by the selected resting heart rate-associated variants, given
both observational and MR studies have found a significant positive
association between resting heart rate and type 2 diabetes39,40.

In conclusion, we developed an enhanced genetic instrument for
cardiorespiratory fitness by leveraging the strong genetic overlap
between fitness and resting heart rate. We applied this to confirm that
the observed strong association between fitness and type 2 diabetes is
likely to be causal andpartlymediatedby the effect offitnesson insulin
resistance. The study provides insights into the biologicalmechanisms
thatmayexplainbetween-individual differences in fitness and also into
the pathways that might mediate the beneficial metabolic effects of
higher fitness. The nature of the relationship demonstrated in this
study should reignite interest infitness as a quantifiable parameter that
is causally linked to type 2 diabetes risk and which could be assessed
not only in future prevention trials, but also in clinical practice in
patients at risk and in public health surveillance studies, as an impor-
tant determinant of metabolic health.

Methods
Measurement of cardiorespiratory fitness and resting heart rate
in the UK Biobank study
Our primary analyses were conducted in the UK Biobank study. The
study design and details of the study have been described previously
(UK Biobank. https://www.ukbiobank.ac.uk/). In brief, the UK Biobank
is a large-scale population-based cohort study including 503,325 par-
ticipants (aged 40–69 years) recruited through the general practi-
tioners within the UK National Health Service. Participants were
enroled in 22 study centres in England, Scotland and Wales, and pro-
vided extensive data on their demographic information, medical his-
tory and health behaviour through questionnaires. Blood samples and
physical measurements were taken at baseline. The study was
approved by the NorthWest Multi-Centre Research Ethics Committee.
All participants provided written informed consent.

Cardiorespiratory fitness was assessed in a subsample using heart
rate response to a submaximal ramped cycle ergometer test that was
individualised for participant characteristics, including cardiovascular
disease risk. The protocol for measuring fitness has been described in
detail in the UK Biobank Cardio Assessment manual20. Briefly, partici-
pants were categorised into four risk groups based on a risk assess-
ment questionnaire,where the ‘minimal’ and ‘small’ riskgroupswere to
complete an individualised ramp test, a flat test for the ‘medium’ risk
group, and a resting electrocardiograph (ECG) protocol for people
deemed in the ‘high’ risk group. The test protocol was specified
according to the participants’ age, sex, height, weight, and resting
heart rate. During the test, heart rate response was monitored and
recorded using a 4-lead ECG device. All participants assigned to the
bike test exercised for 6min, followed by a 1-minmotionless recovery-
phase on the cycle ergometer. The derivation and validation of fitness
estimates have been reported by Gonzales et al.13. Fitness was defined
using estimated maximum oxygen consumption (VO2max) values
(expressed in ml O2 min−1 kg−1 fat-free mass and, in sensitivity analyses
in ml O2 min−1 kg−1 body mass). After quality control, a total of 76,872
participants had available fitness data and 73,574 participants were
included in anobservational analysis of the associationbetweenfitness
and incident type 2 diabetes risk, following exclusion of prevalent
diabetes41 and missing covariates. The genome-wide association ana-
lyses of exercise test-based fitness were conducted on a sub-group of
69,416 individuals after excluding individuals without genotype data
and those of non-White European ancestry. In the full cohort, the
automated pulse rate reading during seated blood pressure mea-
surement was used as resting heart rate values. Participants who did
not have a resting heart rate measurement (n = 15,167) and those who
were takingbeta-blockers (n = 35,562) for pre-existing heart conditions
that could affect their heart rate were excluded. After excluding indi-
viduals without genotype data and those of non-White European

ancestry, a total of 452,941 participants were included in the analyses
for resting heart rate.

Measurement of cardiorespiratory fitness in the Fenland Study
The Fenland Study is a population-basedprospective cohort study that
aims to investigate the associations between genetic and environ-
mental factors and the risk of obesity, diabetes and related metabolic
traits in adults. Eligible participants were born between 1950 and 1975,
and resided in Cambridgeshire and were registered at a participating
General Practices in Cambridge, Ely, Wisbech and the surrounding
Cambridgeshire region between 2004 and 2014. Exclusion criteria
include clinically diagnosed diabetes mellitus, inability to walk unai-
ded, terminal illness with prognosis ≤1 year at the time of recruitment,
clinically diagnosed psychotic disorder, pregnancy or lactation. A total
of 12,435 participants completed the baseline phenotype assessments
and provided written informed consent. The study was approved by
the Cambridge Local Research Ethics Committee.

Cardiorespiratory fitness was defined using estimated VO2max
values (also expressed inmlO2 perminper kg fat-freemass;mlO2 ;min
−1 kg−1) derived fromheart rate response during a submaximal treadmill
test. Participants attended one of three clinical centres at the MRC
Epidemiology Unit at the University of Cambridge for a progressive
treadmill test protocol consisting of three phases; a 3-min walk at
3.2 km/h followed by a 6-min increasing speed walk (phase 1), a 6-min
brisk walk with an increasing gradient (phase 2) and a 4.5-min flat level
jog/run phasewith increasing speed up to 12.5 km/h (phase 3). The test
was terminated early if the participant (1) wanted to stop, (2) reached
90% of age-predicted maximal heart rate (208 −0.7 × age)41 or (3) had
exercised above 80% of age-predicted maximal heart rate for >2min.
The treadmill protocol and derivation of the VO2max values have been
described indetail elsewhere34,42. Theprocedure of VO2max estimation
has been validated against directly measured VO2max43,44.

Observational analyses
In the UK Biobank, participants self-reporting any diabetes other than
gestational diabetes only, or self-reporting diabetes medication, at
either touchscreen or nurse interview, or having hospital episode
statistics records or death records with ICD10 codes E10-E14 and
recorded or inferred diagnosis date45 before baseline, were classified
as having likely prevalent diabetes (any type); these participants were
excluded from the present analysis. Participants having Hospital Epi-
sode Statistics (HES) or death records indicative of type 2diabetes, and
with an inferred diagnosis date after baseline, were classified as inci-
dent type 2 diabetes cases. Specifically, ICD10 codes used to identify
likely type 2 diabetes were the presence of E11 without E10, or the
presence of E14 without E10-E13.

We used logistic regression to estimate odds ratios for incident
type 2 diabetes according to fitness level in UK Biobank. Logistic
regression models were sequentially adjusted for age and sex (Model
1), ethnicity (White,mixed, AsianorAsianBritish, Blackor BlackBritish,
other), hypertension (binary variable set to ‘1’ if one of the following
were observed: measured systolic blood pressure greater or equal to
140mmHg, measured diastolic blood pressure greater or equal to
90mmHg, or self-reported use of blood pressure medication; ‘0’
otherwise), history of stroke, history of heart failure, history of heart
disease, history of atrial fibrillation, history of chronic obstructive
pulmonary disease, history of cancer, medication use (binary variables
set to ‘1’ if reported use of each of the following: beta blockers, calcium
channel blockers, angiotensin-converting enzyme inhibitors, diuretics,
bronchodilators, lipid-lowering agents, iron deficiency agents; ‘0’
otherwise), smoking (never, previous, current), alcohol consumption
(never, previous, current but less than three times per week, current
and three or more times a week), meat intake (average consumption
days per week derived from self-reported frequency of processed,
beef, lamb and pork intake), oily fish intake (never, less than one per

Article https://doi.org/10.1038/s41467-023-38234-w

Nature Communications |         (2023) 14:3904 7

https://www.ukbiobank.ac.uk/


week, one or more per week), fruit and vegetable intake (a score of
‘0–4’ was computed from self-reported intake frequency of raw
vegetables, cooked vegetables, fresh fruit, and dried fruit), salt intake
(never or rarely, sometimes, usually or always), employment (unem-
ployed, employed), and Area Deprivation Index (Model 2), and adip-
osity (fatmass for FFM scaled fitness, BMI for bodymass scaled fitness;
Model 3). Participants with prevalent type 2 diabetes at baseline were
excluded from analyses.

Genotyping and imputation
In the UK Biobank study, genotyping was performed using the UK
BiLEVE and UK Biobank Axiom arrays. Initial quality control was per-
formed by the UK Biobank with details described previously46. In this
study, the ‘v3’ release of the genetic data was used, which was imputed
to the full set of HRC reference panel47 and the merged UK10K and
1000 Genomes Phase III reference panels48. Approximately 93 million
directly genotyped and imputed autosomal genetic markers were
available after quality control.

In the Fenland study, genotypingwasperformedusingoneof three
genotyping arrays; the Affymetrix UK Biobank Axiom Array (n =8994),
the Affymetrix SNP5.0 Array (n = 1402) and the Illumina CoreExome-24
v1 (n = 1060). For the quality control of Axiom array, samples were
excluded if they had failed channel contrast (DishQC <0.82), low call
rate (<95%), gender mismatch between reported and genetic sex, het-
erozygosity outlier, unusually high number of singletons or impossible
identity-by-descent values. Missing genotypes and those not directly
measured were pre-phased using SHAPEIT249. Genetic variants were
removed if they had a call rate <95%, clusters failed Affymetrix SNPol-
isher standard tests and thresholds, MAF was significantly affected by
plate, were a duplicate based on chromosome, position and alleles
(selecting the best probe set according to Affymetrix SNPolisher),
deviated fromHardy-Weinberg equilibrium (p < 5 × 10-6), did notmatch
the reference or hadMAF=050. The QC procedures were similar for the
other arrays. Remaining variants were imputed using IMPUTE251 based
on the HRC reference panel47, as well as the merged UK10K and 1000
Genomes Project Phase III reference panels48 for additional variants not
available in the HRC reference panel. Post-imputation quality control of
SNPs was carried out50, and the exclusion criteria include: (1) mono-
morphic and singleton variants; (2) imputation quality (INFO) < 0.4 or
(3) Hardy-Weinberg equilibrium p< 5 × 10-6. Approximately 20 million
variants were available after quality control.

Genome-wide association analyses of fitness
In the UK Biobank study, a GWAS of fitness was performed under an
additive genetic model using BOLT-LMM v2.352 among 69,416 partici-
pants of European ancestry. Participants who did not have high-quality
genotyping data, fitness or covariates values were excluded. The cov-
ariates included in themodel were age at recruitment, sex, genotyping
array, and the first 10 principal components to control for population
structure in UK Biobank.

LD score regression (LDSC)21 was used to assess the level of
genomic inflation due to confounding bias, and estimate the genome-
wide SNP-based heritability using pre-calculated 1000 Genomes Eur-
opean LD scores provided by LDSC as the LD reference panel. All the
SNPs included in the analyses were restricted to those available in
HapMapPhase III to avoid confounding by variable imputation quality.

We performed distance-based clumping to identify genome-wide
significant independent signals with a MAF ≥0.01, imputation quality
score > 0.4 and at least 1 megabase (Mb) apart (assuming they would
be at linkage equilibrium). We also used GCTA to perform conditional
and joint analysis53 to identify additional secondary signals using a
collinearity threshold of 0.05, and selected the output variants that
were at a genome-wide significance level (p < 5 × 10−8) both before and
after conditional analyses, had<10% effect estimate change before and
after conditional analyses, had MAF ≥0.01, and had LD correlation

<0.05.Once potential secondary signals were detected, all the selected
variants at the same locus were jointly tested using a joint model to
confirm their independent associations with fitness.

Fitness genetic instruments prioritisation and validation
To leverage the shared genetic basis between cardiorespiratory fitness
and resting heart rate and the large sample size available for resting
heart rate, we conducted a series of analyses to derive and assess the
validity and quality of genetic scores constructed by triangulating the
genetic data of both traits.

First, we tested our hypothesis that resting heart rate could be a
viable proxy trait for fitness in genetic settings. We conducted a GWAS
of resting heart rate in the full UK Biobank cohort (N = 452,941 after
excluding participants who were taking beta-blockers, without geno-
type data and of non-White European ancestry). Covariates included in
the linearmixedmodel were age at recruitment, sex, genotyping array
and first 10 principal components.

We estimated the genetic correlation between fitness and resting
heart rate using LD score regression21. We also compared the genetic
correlations between fitness and other physiologically relevant traits
(lung function, handgrip strength and haemoglobin) with those with
resting heart rate.

Bidirectional Mendelian Randomisation analysis between resting
heart rate and fitness was conducted using previously identified, dis-
tinct genome-wide significant variants as the instrumental variable for
each trait. We then compared the effect estimates of the genome-wide
significant fitness-associated SNPs and their look-ups from the resting
heart rate GWAS results and vice versa (comparing the effects of
resting heart rate-associated SNPs with those in the fitness GWAS).

We utilised the Radial-plot method27 (resting heart rate as expo-
sure and fitness as outcome) to select eligible resting heart rate-
associated genetic variants to construct the proxy genetic instruments
for fitness by excluding heterogenous outliers. We constructed a total
of four genetic instruments for fitness using various criteria. Each
instrument, a weighted genetic risk score generated from each of the
four sets of genetic variants,was calculated by summing the number of
fitness-increasing alleles carried by each individual at each of the
selected loci in the Fenland Study, weighted by its corresponding per-
allele effect estimate on fitness from the GWAS summary statistics in
UK Biobank. The four genetic instruments for fitness were

(Instrument 1) Genome-wide significant variants independently
associated with exercise-based fitness;
(Instrument 2) Genome-wide significant resting heart rate-
associated variants that passed the Radial test mentioned above
and not identified as outliers;
(Instrument 3) Radial-filtered resting heart rate-associated variants
that were also nominally significant in the fitness GWAS (p <0.05);
(Instrument 4) Independent variants combining the list of variants
from (1) and (3); variant pairs in LD (r2 > 0.01) were identified and
fitness variants from (1) were prioritised.

Subsequently, we evaluated the validity and strength of these
instruments by comparing the significance and proportion of pheno-
typic variance explained in observed fitness in an independent study,
the Fenland study (one-sample MR method). As a sensitivity analysis,
we also conducted a fat-free mass weighted fitness GWAS in the Fen-
land Study. After excludingparticipantswithout fat-freemassweighted
fitness phenotype and genotype data, those not of European ancestry,
and related individuals, a total of 9512 individuals were included in this
GWAS. QUICKTEST was used to perform GWAS among unrelated par-
ticipants genotyped in each genotyping array, using an additive model
adjusted for age, sex and first 5 principal components. METAL54 was
used to meta-analyse the results across each genotyping array. Next,
we applied the inverse varianceweightedMRmethod (2-sampleMR) to
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assess these four instruments by regressing the effect estimates of
these variants from UK Biobank fitness GWAS results on the effect
estimates of these variants from Fenland fitness GWAS.

Combining the results from both approaches, the genetic instru-
ment with the strongest effect on fitness which explained the largest
proportion of variance in fitness was selected and taken forward to the
analyses of association with health outcomes.

Mendelian randomisation on type 2 diabetes and related
metabolic traits
We conducted two-sample Mendelian randomisation analyses to
examine whether genetically predicted fitness levels were causally
associated with type 2 diabetes related intermediate traits, including
fasting insulin (FI), fasting plasma glucose (FPG), the 2-h post-75 g oral
glucose load glucose level (2hrPG), glycated haemoglobin (HbA1c) and
BMI. The effect estimates of the optimisedgenetic instruments on type
2 diabetes were extracted from the meta-analysis of GWAS summary
statistics from the DIAMANTE consortium excluding UK Biobank par-
ticipants (55,005 cases, 400,308 controls, provided by Anubha
Mahajan anubha@well.ox.ac.uk)55. The effect estimates on FI, FPG,
2hrPG and HbA1c were extracted from meta-analysis summary statis-
tics for these traits among European population acquired from the
MAGIC investigators working group56. FPG, 2hrPG, HbA1c and natural-
log transformed FI levels were first regressed on study-specific cov-
ariates including age, age2, sex, genetic principal components and BMI
(except for HbA1c) to obtain residuals, which were then rank-based
inverse-normal transformed before used as the phenotypes for GWAS
analyses. The effect estimates on BMI were obtained from the publicly
available meta-analysis results of BMI GWAS from Genetic Investiga-
tion of Anthropometric Traits (GIANT) consortium and UK Biobank57.
Proxies in high LD (r2 > 0.8, D' > 0.8) were found for index SNPs not
available in the outcomeGWAS using the genotyped and imputed data
of a random sample of 25,000 unrelated UK Biobank White-British
participants as the reference panel, among which the common variant
with the smallest p-valuewas used as the appropriate proxy. The effect
alleles from the exposure and outcome GWAS were aligned to the
fitness-increasing allele.

For eachMR analysis, we first applied the Radial method27 to filter
out outliers, then took the remaining set of instruments forward for
analyses. The inverse variance weighted method (MR-IVW)26 with the
random-effectsmodel was used as the primarymethod. The Cochran’s
Q test58 was used to assess heterogeneity between instruments, the
MR-Egger regression29,59 was conducted with the regression intercept
examined to assess unbalanced horizontal pleiotropy, and the weigh-
ted median and penalised weighted median methods29 which were
designed to be robust with the presence of some invalid instruments
were also performed. As further sensitivity analyses, Steiger filtering60

was applied to identify reverse directionality (the association between
a genetic instrument and the exposure was stronger than its associa-
tion with the outcome) and MR-PRESSO30 was also applied as an
alternative approach to identify horizontal pleiotropic outliers. Sub-
sequently, to assess the direct effect of CRF on T2D, we conducted
multivariable MR to account for potential residual horizontal pleio-
tropic effects by adjusting for the effects of glycaemic traits or BMI in
themodel individually. Additionally, all intermediate traits were added
to the model jointly as covariates in a full multivariable model.

MR analyses were conducted with MR-Base (http://www.mrbase.
org), ‘TwoSampleMR’ R-package61 or the ‘MendelianRandomization’
R-package developed by Yavorska and Burgess et al.62.

Genetic correlation with other fitness-related traits
The GWAS results for lung function traits (forced expiratory volume
(FEV1), forced vital capacity (FVC), FEV1/FVC and peak expiratory flow
(PEF)) were publicly available and acquired from the study by Shrine
et al.63; the haemoglobin concentration results from Astle et al.64.

To obtain genome-wide association results for handgrip
strength, a GWAS was performed using BOLT-LMM v2.352 in UK Bio-
bank. The isometric handgrip strength of UK Biobank participants
was measured in an upright sitting position using a Jamar J00105
hydraulic hand dynamometer at the assessment centre at baseline65.
The participants were asked to rest their forearms on armrests and
squeeze the device as strongly as they could for about 3 s, and the
maximum value reached was recorded on the device. One measure-
ment was taken from each hand, and the higher value of the mea-
surements from two hands or the single value for those who only had
one measurement was taken forward for analyses. People who did
not have either measurement or had a measurement value of ‘0’ for
any reason were excluded (n = 1360). The relative grip strength
(absolute grip strength divided by body mass or size measures)
better reflects overall physical fitness than absolute grip strength66

and is a stronger predictor of cardiometabolic risk67,68. For this study,
relative maximum handgrip strength in UK Biobank was derived as
the absolute maximum grip strength divided by fat-free mass mea-
sured by bioelectrical impedance analysis (Tanita BC418MA).
Another 7926 participants were excluded due to missing fat-free
mass measurement. A total of 478,624 individuals were included in
the GWAS for fat-free mass weighted handgrip strength. The linear
mixed model was adjusted for age at recruitment, sex, genotyping
array and first 10 principal components.

All genetic corrections were tested after removing SNPs with
MAF <0.01, imputation quality info <0.4, located in the MHC region
andwith a z-score (beta/s.e.) >8.9 from the GWAS results. A Bonferroni
corrected p-value was used as the significance threshold for genetic
correlations (p = 0.05/number of pairs of traits tested).

We also examined the association between genetically predicted
fitness and observed physical activity, as measured by wrist accel-
erometry in a subsample of 71k unrelatedWhite European participants
with at least 3 days of valid data as previously described69.We analysed
two behavioural outcomes; total volume of movement and time spent
in at least moderate intensity activity (defined as time spent above a
movement-related acceleration of 150mg)70,71.

Biological insights
Fitness and proteomics. We examined association between the 160-
SNP fitness genetic risk score for cardiorespiratory fitness and protein
targets assessed by the aptamer-based technology (SomaScan©) in
10,707 individuals from the Fenland study using linear regression
models. The model was constructed using aptamers as outcome,
weighted genetic risk score of fitness as the exposure, and included
age, sex, test site (a proxy measure for sample handling which can
influence the SomaLogic measures), genotyping array and the first 10
genetic principal components as covariates.

Candidate variants and genes associated with fitness. We used
Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA)72 web-based ‘SNP2GENE’ function to search for can-
didate variants to select genome-wide significant independent signals
(r2 < 0.6;p < 5 × 10−8; default setting) and all the variants thatwere in LD
with the identified independent signals (r2 ≥0.6; p < 10−5, UKBB v2
Random 10K White British cohort as the reference panel). These
candidate variants were then annotated using the Ensembl Variant
Effect Predictor (VEP)73 for functional consequences, amongwhich the
missense variants were annotated using sorting intolerant from tol-
erant (SIFT) score and polymorphism phenotyping (PolyPhen) for
predicted deleterious effects. As implemented in VEP, LoFtool was
used to assess the genic intolerance and consequent susceptibility to
diseases based on the ratio of Loss-of-function (LoF) to synonymous
mutations, and CADD scale score was also evaluated for relative
pathogenicity. Finally, we searched GWASCatalog with the candidate
variants for previously associated phenotypes (p < 5 × 10−8).
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Subsequently, to identify potentially relevant genes, the previously
identified candidate variants were mapped to protein-coding genes (1)
located in or in proximity to (within 10 kb) significant fitness-associated
loci defined by the independent signals, (2) significantly associatedwith
expression quantitative trait loci (eQTLs) among the candidate variants
(FDR≤0.05) based on a range of database (GTEx v8, BRAINEAC, BIOS
QTL, Blood eQTL, MuTHER, eQTLGen, PsychENCODE, DICE, scRNA
eQTLs) or (3) showed significant chromatin interaction activities with
candidate variants in the CRF-associated loci (using the FUMA default
options on all the four built-in chromatin database, including Hi-C of 21
tissue and cell types from GSE87112, Hi-C loops from Giusti-Rodriguez
et al. 2019, Hi-C baseddata fromPsychENCODEand Enhancer-Promoter
correlations from FANTOM5)72.

To find genes that are likely to be involved with biological
mechanisms underlying fitness, we also usedMAGMAandDEPICT (see
details below). We combined the lists of prioritised genes from these
two methods with previously mapped genes by FUMA to constitute a
prioritised list of genes, which was then used as the input for FUMA
‘GENE2FUNC’ analyses. A systematic search for genes linked with
monogenic and Mendelian diseases was completed using OMIM
database (www.ncbi.nlm.nih.gov/omim), drug-gene pairs were identi-
fied from GeneCards v5.0 database (contains 20,916 protein-coding
genes; www.genecards.org) and T2D Knowledge Portal (contains 135
datasets and 261 traits) (www.type2diabetesgenetics.org) for any type
2 diabetes related functions.

Gene and gene-set based enrichment analyses. A variety of gene-
based and gene-set enrichment analyses have been developed to
extrapolate relevant functional information to gain biological insights
from genetic association studies. Some approaches apply to priori-
tised genes mapped to associated genetic loci of genome-wide or
suggestive significancewith the trait of interest32,74, whilst othersutilise
the full genome-wide association summary statistics75,76. However, no
defined formula exists in guidance of which approach or approaches
are the most appropriate and often each approach yield somewhat
variable results. Therefore, in this study, we utilised LDSC-SEG,
DEPICT, MAGMA, FUMA DEG and MetaXcan to obtain a more well-
rounded picture.

LDSC-SEG. We used the stratified LDSC applied to specifically
expressed genes (LDSC-SEG) method33 to the GWAS summary statis-
tics in order to identify CRF-relevant tissue and cell types. The 53 tissue
and cell type-specific expression data from GTEx v7 and 152 from
Franke Lab were analysed jointly, and tissue and cell type-specific
chromatin-based annotations from peaks for 6 epigenetic marks,
including 93 labels from Encyclopedia of DNA Elements (ENCODE) EN-
TEx and 396 from Roadmap Epigenomics database were used
respectively for validation. False Discovery Rate (FDR) ≤0.05 was used
as the significance threshold for enrichment.

DEPICT. DEPICT (Data-driven Expression Prioritized Integration for
Complex Traits)32 was developed by Pers et al., who utilised informa-
tion on co-regulation of genes based on expression data and existing
annotated gene sets to predict gene functions and generate ‘recon-
stituted’ gene sets. Each gene is functionally characterised by its
membership probabilities across all reconstituted gene sets, and each
reconstituted gene sets contain genes with various membership
probabilities across the genome.

We applied DEPICT (version 1 rel194) on independent genetic
variants pre-clumped using distance clumping (>1Mb) on SNPs with a
significance level of p < 10–5 in the CRF GWAS results. Associated
genes were selected using positionalmapping, eitherwithin or overlap
with the CRF-associated loci (LD lock defined by variants have r2 > 0.5
with the independent variants) or closest to the independent variants if
no genes were positionally mapped. Genes were prioritised if they

share predicted functions with genes from the other fitness-associated
loci more often than expected by chance. We also assessed whether
any of the reconstituted gene sets of specific biological pathways and
cellular processes were significantly enriched for CRF-associated
genes. To gain more biological insights, we also utilised DEPICT to
identify tissue or cell types where the expressions of fitness-associated
genes were enriched based on the data from a set 37,427 expression
microarray samples from a total of 209 human tissues and cell types.

MAGMA. MAGMA (Multi-marker Analysis of GenoMic Annotation)
utilised the full genome-wide association summary statistics and data
from the GTEx project to identify gene-sets that are enriched based on
5500 ‘Curated gene sets’ and 9,996 Gene Ontology (GO) terms
obtained from MsigDB v7.075. Rather than using a permutation-based
method, MAGMA’s gene analysis applies a multiple regression princi-
pal component approach, which takes into account of the LD structure
between the SNPs, to compute gene-level p-values using an F-test.
When only using summary-level data as input, the gene-analysis test
was conducted using the mean of the χ2 statistics for the SNPs in
the gene.

We applied MAGMA v1.6 embedded in FUMA (SNP-wide mean
model) on GWAS results of CRF to perform gene-based and gene-set
analyses, where SNPs were assigned to all the protein-coding genes
from Ensemble build 92. The genes that were genome-wide significant
after Bonferroni-correction (p <0.05/19,208) were added the priori-
tised gene list mentioned previously. The competitive gene-set analy-
sis was then performed using the gene analysis results, to test whether
the genes in a gene-set are more strongly associated with CRF than
genes not in the gene set using a one-sided two-sample t-test. We also
used MAGMA to identify tissue-specific enrichments in 30 general
tissue types and 54 specific tissue type expression data from GTEx v8.

Furthermore, in contrast with the genome-wide approach applied
inMAGMA,we also used FUMA to interrogate tissue-specific expression
using differentially expressed gene (DEG) sets. The DEG sets were pre-
calculated by two-sided t-test for a given gene significantly more or less
expressed in one tissue compared with all the other tissue types based
on normalized expression levels. The group of genes with significant p-
value after Bonferroni correction and absolute log fold change ≥0.58
were defined as a DEG set in a given tissue type. Similarly, by taking the
direction of t-test into account, upregulated and downregulated DEG
sets were defined. We tested our 140 prioritised genes against the DEG
sets using hypergeometric test for any overrepresentation in DEG sets
in specific tissue types. A tissue type with test p-value ≤ 0.05 after
Bonferroni correction was considered enriched.

The prioritized genes were also tested against existing pre-
defined gene sets obtainedMSigDB (such as hallmark gene sets, KEGG,
Reactome, gene sets, computational gene sets, GO gene sets, onco-
genic and immunologic signatures) and WikiPathway for over-
representation of biological functions and cellular processes using
hypergeometric tests (FDR ≤0.05).

MetaXcan. MetaXcan76 infers the results of PrediXcan77, which applies
a gene-based approach to test the mediating effects of predicated
gene expression levels (using models trained with eQTL data from
GTEx) on phenotype, to prioritise genes with regulatory mechanisms
on the phenotype using summary-level GWAS statistics instead of
individual-level data. In addition, MetaXcan can also perform tissue-
specific analysis using models made available through PredictDB
(http://predictdb.org)76.

In this study, we used MetaXcan76 to identify genes whose pre-
dicted transcription levels were significantly associated with fitness in
specific tissue types. Up to 25,834 genes were tested in 48 different
tissue types. Bonferroni correctionwas applied to theMetaXcan testp-
values (significance level p =0.05/248,520 tests = 2.01 × 10−7) to select
genes that show tissue-specific altered gene expressions.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genotypic, proteomic, metabolic and phenotypic data used in
this paper from the two cohort studies are available under restricted
access for ethical and regulatory reasons. The results from UK Bio-
bank presented here use applications 408, 12871 and 44448. Access
to the UK Biobank data is open to all approved health researchers
(http://www.ukbiobank.ac.uk/). The Fenland study data can be
requested by bona fide researchers for specified scientific purposes
via the study website (https://www.mrc-epid.cam.ac.uk/research/
studies/fenland/information-for-researchers). Data will either be
shared through an institutional data sharing agreement or arrange-
ments will be made for analyses to be conducted remotely without
the need for data transfer Source data are provided with this paper.
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