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Quantum behavior of the Duffing oscillator
at the dissipative phase transition

Qi-Ming Chen 1,2 , Michael Fischer1,2, Yuki Nojiri1,2, Michael Renger1,2,
Edwar Xie1,2, Matti Partanen 1,4, Stefan Pogorzalek1,2,5, Kirill G. Fedorov1,2,
Achim Marx1, Frank Deppe 1,2,3,5 & Rudolf Gross 1,2,3

The non-deterministic behavior of the Duffing oscillator is classically attrib-
uted to the coexistence of two steady states in a double-well potential. How-
ever, this interpretation fails in the quantum-mechanical perspective which
predicts a single unique steady state. Here, we measure the non-equilibrium
dynamics of a superconducting Duffing oscillator and experimentally recon-
cile the classical and quantum descriptions as indicated by the Liouvillian
spectral theory. We demonstrate that the two classically regarded steady
states are in fact quantum metastable states. They have a remarkably long
lifetime but must eventually relax into the single unique steady state allowed
by quantummechanics. By engineering their lifetime, we observe a first-order
dissipative phase transition and reveal the two distinct phases by quantum
state tomography. Our results reveal a smooth quantum state evolution
behind a sudden dissipative phase transition and form an essential step
towards understanding the intriguing phenomena in driven-dissipative
systems.

The Duffing oscillator is a simple but prototypical model in nonlinear
physics, which describes a forced oscillation with cubic (Kerr) non-
linearity and linear viscous damping1. In a certain parameter regime,
classical mechanics predicts a double-well potential that allows two
steady states (SSs) at the same parameter setting2. It gives rise to a
hysteretic behavior where two different amplitudes of the forced
oscillation are possible. Depending onwhether the system is initially at
rest or in strong oscillation, the oscillator spontaneously chooses one
of the amplitudes when adiabatically tuning the parameters into the
hysteretic regime. Thermal fluctuations may induce unpredictable
jumps between the two potential wells and lead to the bistability of the
oscillation amplitude3. This classical behavior of the Duffing oscillator
has been observed in a considerable number of experiments, for
example, in superconducting quantum circuits4–6. The underlying
double-well potential model has been used to explain a variety of
physical processes, such as optical bistability7,8, parametric

amplification9,10, and self-oscillation11,12. However, it has been revealed
by Drummond and Walls already in the 1980s that a fully-quantum
treatment of the Duffing oscillator yields a single unique SS over the
entire parameter space, such that it does not exhibit bistability or
hysteresis13. These two perspectives indicate fundamentally different
behaviors of the Duffing oscillator. However, the seeming two classical
SSs are still observed even in a typical quantum experiment setup5,6.
Recently, signatures of dissipative phase transition (DPT) have been
observed in the scattering coefficient14,15, decay rate15,16, and second-
order correlation function17 of the Duffing oscillator, which indicate a
prominent role of the quantum fluctuation in the SS. These experi-
ments are performed around a fixed parameter setting in a
continuous-wave measurement setup.

Here, we use an in-situ tunable superconducting nonlinear reso-
nator to simulate the non-equilibrium quantum dynamics of the
Duffing oscillator. Besides the wide tunability range of sample
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parameters in one device, the pulsed heterodyne measurement dis-
tinguishes our experiment from the experiments already reported in
the literature. Our experimental setup allows for a proper control of
the initial state at different parameter settings as well as a high time
resolution readout. Our experimental results settle the seeming con-
troversy between the classical and quantum properties of the Duffing
oscillator and provide support to the recent results of the Liouvillian
spectral theory18–21. We demonstrate that the two classical SSs are in
fact quantum metastable states (MSs), which emerge when the low-
lying eigenvalues of the Liouvillian superoperator are separated from
the rest of its spectrum18. Different from the classical MSs that are
unstable SS solutions of the equation of motion, quantum MSs have a
lifetime much longer than any other timescale in the system but are
not the exact SS solutions of the Schrödinger equation. A remarkable
feature occurs when the system approaches the thermodynamic limit,
where the MSs gain an increasingly long lifetime when approaching a
critical point but, suddenly, cannot be properly defined at the exact
point19,20. This non-analytical phenomenon is identified as a first-order
DPT,whichoriginates from the interplaybetween a coherent drive and
an incoherent dissipation in a nonlinear driven-dissipative system.

Results
Liouvillian spectral analysis
The non-equilibrium quantum dynamics of the Duffing oscillator is
described by the master equation in the Born-Markov approxima-
tion: ∂tρðtÞ=LρðtÞ, where the Liouvillian superoperator, L, consists
of the Kerr-oscillator Hamiltonian with coherent drive,
H=_=Δaya+Uayayaa + ξ a+ay� �

, and the Lindblad superoperator,
γ=2
� �D a½ �. Besides, a (a†) is the annihilation (creation) operator of
the oscillating mode, Δ the detuning between the resonant fre-
quency and the drive, U the Kerr nonlinearity, and ξ the driving
strength. We define γ as the total energy dissipation rate, which is
approximately 3.85 μs−1 in the measured frequency range, and we
neglect the relatively weak dephasing effect (See Supplementary
Fig. 4). When restricting our discussion to finite dimensions, the
Liouvillian superoperator can be decomposed into Jordan blocks
that lead to the formal solution: ρðtÞ=Pn exp λnt

� � P
mcn,mrn,m

� �
with

cn,m = tr ln,mρð0Þ
� �

. Here, ln,m and rn,m are the left and right eigenma-
trices of L, which correspond to the nth eigenvalue with geometric
multiplicity m. For convenience, we define δn = � Re λn

� �
and sort

the eigenvalues according to δn < δn+1. Under quite general condi-
tions, there exists a single unique SS solution such that δ0 = 0,
δ1 > 022. Thus, the smallest nonzero eigenvalue, forming the Liou-
villian gap δ1, determines the timescale the system requires to relax
into the SS, and thereby results in a general exponential decay of an
observable. However, if the Liouvillian gap is well separated from the
rest of its spectrum, δ1 ≪ δ2, the system may quickly relax onto the
metastable manifold spanned by r0,1 and r1,m

� �
within a timescale of

1/δ2, and stays almost invariant for a relatively large timescale, 1/δ1,
before starting a second relaxation into the unique SS18. The Liou-
villian gap may even close at a single critical point in the thermo-
dynamic limit, where the eigenvalue zero becomes degenerate at the
exact point. The SS thus must undergo a sudden change on the two
sides of the critical point and result in a first-order DPT20.

In-situ tunable Duffing simulator
The system studied in our experiment is realized by embedding a
weakly asymmetric superconducting quantum interference device
(SQUID) in themiddle of a coplanar waveguide resonator. By driving it
with a coherent microwave field, we implement a Duffing oscillator in
superconducting quantum circuits with tunable frequency and Kerr
nonlinearity23,24, as shown in Fig. 1a. In our experiment, the resonant
frequency, ωA/2π, is varied between 6.80GHz and 7.15 GHz, corre-
sponding to a tunable range of the nonlinearity from U/2π = − 295 kHz
to − 58kHz. We modulate the radio-frequency (RF) drive by three

different pulse shapes, which balance the depths of the two potential
wells and prepare the system in one of the two wells or in the SS at the
initial time (See Methods Section). Then, we switch the driving
strength to ξ, and trigger a short measurement of the transmitted or
reflected microwave signal after a time delay of τ. In each repetition,
the measurement lasts for only 16 ns to capture the transient non-
equilibrium dynamics of the system. We repeat this procedure for
more thanonemillion times and concatenate the results in a long trace
for extracting the quadrature histogramof the transient outgoing field
(See Methods Section). Eventually, we obtain the quasi-distribution
functions of the intra-resonator field for different initial states and also
different control parameters, Δ, ξ, and τ.

Quantum features behind classical hysteresis
In our experiment, we first tune the nonlinearity to U/2π = − 132 kHz
and drive the system with a varying strength, ξ, and detuning, Δ. The
measurement is delayed by τ = 3.25μs, which is more than 10 times
longer than the free-relaxation time of the resonator, 1/γ. When the
system is initially prepared in one of the two potential wells, the
absolute mean field, ∣hai∣, and the photon number, 〈a†a〉, show an
abrupt change at either of the two boundaries of the classical hys-
teretic regime, as shown in Fig. 1b. Within this regime, the measured
values are also different for the same parameter setting, which corre-
spond to the two possible oscillation amplitudes of the Duffing oscil-
lator, i.e., the two classical SSs in a double-well potential. However, the
transition occurs inside the regime when applying a constant driving
field, which corresponds to an infinitely large measurement delay in
either of the two former cases. Classically, this is explained by the
presence of thermal fluctuations that induce random jumps between
the two potential wells and wash out the dependence on the initial-
state for large τ. However, this interpretation fails in our experimental
situation where the thermal noise at the 30mK base temperature is
much smaller thanhalf a photon, i.e., the vacuumquantumfluctuation,
and thus not likely to cause a noticeable transition between the two
potential wells.

Indeed, quantum fluctuations play a significant role in the hys-
teretic regime, as shown in Fig. 1c for a fixed detuning frequency,
Δ/2π = 2.36MHz. A clear dip in the ∣〈a〉∣ curve is observed during the
transition process, which is predicted as a result of out-of-phase
quantum fluctuations in the unique SS13–15. By comparison, 〈a†a〉 is a
monotonic function of ξ since it is insensitive to the phase of quantum
fluctuations. Moreover, the second-order correlation function, g(2)(0),
is strongly peaked around the transition point and approaches unity
for large ξ. This is a typical signature of afirst-orderDPT, resulting from
a drastic change of the SSs on the two sides of a single critical point17.
Importantly, we observe these quantum-mechanical signatures in
company with the classical hysteretic behavior, indicating that the
system may not have reached the real SS even for τ > 10/γ. This new
perspective suggests that the two classically regarded SSs may be
interpreted as MSs with a remarkably long lifetime in the hysteretic
regime19–21. The specific MS, in which the systems is staying, is deter-
mined by the distance between the initial state and the twoMSs18. This
leads to the seemingly classical behavior of hysteresis in Fig. 1b.

Two-stage relaxation of the MSs
According to the theory of quantum metastability, the MSs exist only
in the time window 1/δ2 ≪ τ ≤ 1/δ1 and should eventually relax into the
single unique SS for τ ≫ 1/δ1

18. To verify this prediction, we then fix the
detuning frequency at Δ/2π = 2.01MHz and measure the complex
reflection coefficient, S22, for varying driving strength, ξ, and mea-
surement delay, τ. In these measurements, the nonlinearity is fixed at
U/2π = − 71 kHz. In Fig. 2a, we plot the reflection coefficients, corre-
sponding to the two MSs, in the complex plane. The twoMS branches
form a closed loop for each fixed τ, manifesting the classical signature
of hysteresis around ξ*/2π = 1.51MHz. However, different from the
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classical interpretation the loop exists within a decreasing parameter
range when increasing τ. It is expected to close for τ > 55μs, where the
two MS branches converge to the single unique SS allowed by quan-
tummechanics (See Supplementary Fig. 8). This observation provides
a clear evidence for the quantum description of the Duffing oscillator.
It indicates that the hysteresis observed in the classical hysteretic
regime is the measurement outcome on two different MSs, while the
system should eventually converge to a single unique SS in the long-
time limit.

To quantify this convergence, we calculate the loop area, A, for
different τ, as shown in Fig. 2b. Fitting the data by an exponential
decay, A / expð�ητÞ, we obtain two distinctively different decay rates
η1 = 0.74 μs−1 and η2 = 0.04 μs−1 at small and large τ, respectively. This
two-stage relaxationprocess is qualitatively different from the classical
prediction25, but can be well understood from the Liouvillian
spectrum16,26. Figure 2c shows the fitted Liouvillian gap, δ1, as a func-
tion of the driving strength, ξ. The gap is approximately 3.79 μs−1 for
both small and large ξ, what agrees well with the free energy decay rate
γ. However, δ1 decreases by more than two orders of magnitude when
approaching the critical point, ξ*, and reaches a minimum value of
0.02 μs−1 at ξ*. This observation indicates a critical slowing down of the
system dynamics around the critical point. This is another signature of
a first-order DPT15. For a sufficiently small τ, the decay rate of the loop
area, η1, is determined by the average value of the Liouvillian gap over
the hysteretic regime, that is, 1.22 μs−1. However, for τ→∞ the decay
rate η2 is dominated by theminimumgap. In the timewindowbetween
the two extreme cases, the decay rate decreases monotonically with τ
and connects the two extremes. This is in quantitative agreement with
the observed two-stage relaxation rates in Fig. 2b.

The first-order DPT
It is then natural to ask whether the Liouvillian gap can be closed at a
particular parameter setting, where the system dynamics becomes
infinitely slow and the two MSs become also SSs. However, this per-
ception is in conflict with the uniqueness of the SS solution for the
Duffing oscillator13. Nevertheless, multiple SSs can exist in the driven-
dissipative Bose-Hubbard model, where an infinite number of Duffing
oscillators are coupled to each other and form a lattice. A bridge
between the mean field description of an N-site Bose-Hubbard lattice
and a single Duffing oscillator may be constructed by rescaling the
nonlinearity and driving strength of the later as U→U0/N and
ξ !

ffiffiffiffi
N

p
ξ0

19. A thermodynamic limit of theDuffingoscillator is defined
as N→∞, where the Liouvillian gap is closed at a rescaled critical point,
ξ *0, and results in a first-order DPT.

In our experiment, we in situ tune the scaling factor from
approximatelyN = 2 to 11, andmeasure the average photon number of
the SS for varying driving strength. Here, we define U0 ≡ − γ for N = 1
and fix the detuning at Δ = 3γ without loss of generality19. As shown in
Fig. 3a, the transition happens at the same rescaled critical driving
strength, ξ *0=2π =0:64MHz, for different N, and the photon density
also saturates at a similar value of around 〈a†a〉/N = 2.5. However, the
transition process becomes sharper with increasing N. Fitting the data
by a linear function, we obtain ∂(〈a†a〉/N)/∂(ξ0/2π) = 3.8, 5.8, and
8.5MHz−1 for N = 6.1, 7.9, and 10.5, respectively, as shown in Fig. 3b.
This observed tendency indicates a sudden change of the photon
density on the two sides of ξ *0 in the thermodynamic limit, known as
the first-order DPT20. It implies a closed Liouvillian gap, equivalently, a
diverging lifetimeof theMSs,when approaching the critical point. This
is consistent with the observed Liouvillian gap in Fig. 2c.

a b
DC

RF (IN)

RF 
(OUT)

c

Fig. 1 | Hysteresis and its quantum features. a Schematic of the experimental
setup for pulsed heterodyne measurement. The Duffing oscillator is initially pre-
pared in one of the twopotential wells (blue and red) or in the steady state (purple).
Then, we switch the driving strength to ξ, and trigger a short measurement after a
waiting time of τ. The direct-current (DC) port is used to control the nonlinearity of
the resonator, and we drive the resonator through one of the two radio-frequency
(RF) ports for transmission- or reflection-type measurements (See Methods sec-
tion). b The absolute mean field, ∣〈a〉∣, and photon number, 〈a†a〉, measured for
ωA/2π = 7.00GHz show a clear dependence ondifferent initial states in the classical
hysteretic regime, which is enclosed by the dashed curves calculated without any

fittingparameter (See SupplementaryNote 1). A drastic change happens at either of
the two boundaries if the system is initially prepared in one potential well. c At a
fixed detuning frequency marked by the arrows in (b), the ∣〈a〉∣ vs. ξ curves show a
dip around the transition point (vertical dashed lines), while 〈a†a〉 is a monotonic
function of ξ. The error bars represent the standard deviation over 8 independent
experiments. The second-order correlation function g(2)(0) is strongly peaked
around the transitionpoint, whichdecays towards unity for large ξ. The solid curves
are Lorentzian functions serving asguides to the eyes. Sourcedata areprovided asa
Source Data file.
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Quantum state tomography during phase transition
To understand the underlying physical process of DPT, we reconstruct
the Wigner quasi-distribution function of the intra-resonator field
according to the first two orders of signalmoments, 〈a〉, 〈a†a〉, and 〈a2〉
(See Supplementary Fig. 10). Here, we operate the SQUID close to its
sweet spot where the dephasing rate is sufficiently small, as indicated
by the good agreement between theory and experiment in Fig. 3a. As
shown in Fig. 4, the reconstructed SS is approximately an either
coherent or squeezed state in one of the two phases27, where the field
mean coincides with the two classical SS solutions19. In each individual
phase, the SS remains almost invariant with respect to the rescaled
driving strength. However, the system undergoes a drastic change in a
relatively small range around the critical point, 0.57MHz ≤ ξ0/
2π ≤0.71MHz. This results in the rapid photon number transition in
Fig. 3a. In this regime, the Wigner function consists of two separate

parts in phase space, corresponding to the different unique SSs in the
two individual phases28,29. The probability of staying in the coherent-
state phase changes continuously into that of being in the squeezed-
state phase with increasing ξ0. Ideally, it reaches an equiprobable
mixture of the two phases at the exact critical point,
ξ *0=2π =0:64MHz20. One can thus understand the dip of ∣hai∣ and the
peakofg(2)(0) in Fig. 1c as a result of the coherent interferencebetween
the two phases. With the increase of N, the photon number diverges
and the system behaves more classically. The SS thus must jump at ξ *0
in the thermodynamic limit, because only one potential well can be
occupied at the same time in a classical system. This observation
explains the increasingly sharp step of 〈a†a〉/N with increasing N in
Fig. 3b, and reveals the origin of the first-order DPT.

Discussion
Thequantumbehavior of theDuffing oscillator promotes the view that
the extensively observed hysteresis and bistability originate from a
non-classical SS around a critical point. The SS consists of two separate
parts in phase space, which correspond to the two phases of the

a

b

Fig. 3 | First-order dissipative phase transition manifested by increasingly
sharp photon number jump. a When approaching the thermodynamic limit
(N→∞), the observed photon number jump becomes increasingly more drastic in
the classical hysteretic regime for a fixed detuning Δ = 3γ. Here, the error bars
represent the standard deviation over 8 independent experiments, and the solid
lines are calculated from the quantum theory with no fitting parameter. The
deviation between theory and experiment becomes increasingly large at lower
resonant frequencies, which we attribute to the increasingly large dephasing rate
when tuning the SQUID away from its sweet spot (See Supplementary Fig. 12).
b Rescaled photon number 〈a†a〉/N vs. ξ0/2π curves for the highest three resonant
frequencies, where the dephasing effect may be fairly neglected. The solid lines
show the linear fits of the transition speed, with fitted values ∂(〈a†a〉/N)/∂(ξ0/
2π) = 3.8, 5.8, and 8.5MHz−1, respectively. The increasingly sharp transition step
indicates a first-order dissipative phase transition at N→∞. Source data are pro-
vided as a Source Data file.

a

b c

Fig. 2 | Two-stage relaxation towards the single unique steady state. a The
reflection coefficients, S22, corresponding to the two metastable branches (blue
and red) form a closed loop, which converge to the unique steady-state solution
with τ. The inset shows the convergence of themetastable branches at each fixed ξ.
b The loop area, A, decays with τ and shows two distinct decay rates. The dashed
lines show the exponential fits, A / expð�ητÞ, of the decay rate at small and large τ,
with fitted values η1 = 0.74 μs−1 and η2 = 0.04 μs−1, respectively. (c) The Liouvillian
gap, δ1, is approximately equal to the total energy dissipation rate,γ, at a sufficiently
small or large ξ (dashed). However, it decreases by more than two orders of mag-
nitude when approaching the critical point, ξ*/2π = 1.51MHz, and achieves a mini-
mum value of 0.02 μs−1 at ξ* (See Supplementary Fig. 9). In all panels, the resonant
frequency is fixed at ωA/2π = 7.10GHz. The error bars represent the standard
deviation over 16 independent experiments, which are smaller than the size of the
dots in (b) and (c). Source data are provided as a Source Data file.
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system and are MSs with a remarkably long lifetime. Their lifetime
diverges when approaching the thermodynamic limit and leads to a
first-order DPT. Instead of seeing the intriguing dynamics as a com-
petition between the classical and quantum tunneling rates30, the
Liouvillian spectral theory provides a simple and quantitative
description for a general driven-dissipative system18,20. The tunable
superconducting nonlinear resonator is a versatile building block for
quantum simulation31–34, and the pulsed heterodyne measurement
enables the time-resolved tomography of a non-equilibrium process.
We therefore expect these methods to serve as a stepping stone for
simulating strongly correlated bosons in the driven-dissipative
regime35 and for unveiling the mystery of multistability from a
quantum-mechanical perspective.

Methods
Sample preparation
The in-situ tunable Duffing oscillator consists of a 7.2mm long
necklace-type resonator with an asymmetric DC-SQUID embedded in
the middle23,24,36 (See Supplementary Fig. 1) . When applying a static
magnetic field to the SQUID, we can set the resonant frequency
between ωA/2π = 5.65GHz and 7.15 GHz with a nonlinearity varying
from U/2π = −6.1MHz to −58 kHz. In this experiment, we restrict the
resonant frequency in a 350MHz range below the sweet spot, where
the energy dissipation rate, γ = 3.85 μs−1, dominates the dephasing
effect (See Supplementary Fig. 4). The sample is cooled down to a base
temperature of 30mK to suppress the thermal noise. A detailed
description of the experimental setup and its characterization data can
be found in Supplementary Notes 1 and 2, respectively.

Fast flux line
For the measurements of signal moments, we apply the driving field
through the flux line to avoid reflection at the RF output. The RF and
DC signal of the flux line are combined by a bias-tee thermalized at the
base temperature (See Supplementary Fig. 2). We describe the com-
bined field as a collection of harmonic oscillators (bath),
Hb =

P +1
k =�1 ωkb

y
F,kbF,k , with k being the wave vector and by

F,k (bF,k) the
creation (annihilation) operator. We assume that the system-bath
interaction is a combination of a photon-preserving interaction
Hð1Þ

int = iκFðby
F,ka� bF,ka

yÞ and an optomechanical-like interaction
Hð2Þ

int = iκφðby
F,k � bF,kÞaya, where κF and κφ are the corresponding

coupling strengths. Following the input-output analysis and neglecting
the two-photon process37, we see thatHð2Þ

int can be neglected if the input
field is close-to-resonancewith the system. It indicates that a singleflux
line can be simultaneously used for DC bias and RF drive38 (See Sup-
plementary Note 1).

Initial state preparation
Whendriving the systemwith a sufficientlyweakor strongfieldoutside
the hysteretic regime, the Duffing oscillator has a single potential well
that is located in proximity to either of the two wells inside the hys-
teretic regime.We therefore can set the driving strength to either zero
or a sufficiently large value (~11MHz in our case) and wait for
approximately 4μs for the system to reach the SS in the single
potential well. Finally, we switch the driving strength to the objective
value, ξ, in the next 250ns that completes the initial state preparation
(See Supplementary Note 3).

Pulsed heterodyne measurement
Upon initial state preparation, we count for a waiting time, τ, and
measure one single period of the output signal. We repeat the pro-
cedure for 106−109 times depending on the required accuracy and
concatenate the data for digital filtering. We then obtain one data
point of the field quadratures in each period of the concatenated
signal (16 ns), and we calculate the quadrature moments to the sec-
ond order and record the histogram in a 256 × 256 matrix (See Sup-
plementary Note 3). The major advantage of the pulsed
measurement setup is that it allows for the application of a narrow-
band low-pass filter (cutoff frequency at 2MHz in our case) without
sacrificing the time resolution of the measurement results. The
obtained 16 ns time resolution enables the observation of a non-
equilibrium process.

Data availability
The data that support the findings of this study are provided in the
paper and the Supplementary Information. Source data are provided
with this paper.

Code availability
The codes for analyzing the data of this study are provided with
this paper.

Fig. 4 |Wigner function of the steady state during dissipative phase transition.
Shown are theory (top) with no fitting parameter and experiment (bottom) at the
resonant frequencyωA/2π = 7.15 GHz. The steady state is approximately a coherent
(squeezed) statebefore (after) the phase transition, which separates the twophases
of the Duffing oscillator (See Supplementary Fig. 11). The transition between the

two phases happens within a relatively small range, 0.57MHz ≤ ξ0/2π ≤0.71MHz,
during which the steady state has two distinctive parts in the phase space and is a
weighted mixture of the two phases. Ideally, it reaches an equiprobable mixture of
the two phases at the exact critical point, which is around ξ *0=2π =0:64MHz.
Source data are provided as a Source Data file.
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