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Triboelectric-induced ion mobility for artifi-
cial intelligence-enhanced mid-infrared gas
spectroscopy

Jianxiong Zhu 1 , Shanling Ji1, Zhihao Ren 2,3,4, Wenyu Wu1, Zhihao Zhang1,
Zhonghua Ni1, Lei Liu1, Zhisheng Zhang1, Aiguo Song5 &Chengkuo Lee 2,3,4

Isopropyl alcohol molecules, as a biomarker for anti-virus diagnosis, play a
significant role in the area of environmental safety and healthcare relating
volatile organic compounds. However, conventional gas molecule detection
exhibits dramatic drawbacks, like the strict working conditions of ionmobility
methodology and weak light-matter interaction of mid-infrared spectroscopy,
yielding limited response of targeted molecules. We propose a synergistic
methodology of artificial intelligence-enhanced ion mobility and mid-infrared
spectroscopy, leveraging the complementary features from the sensing signal
in different dimensions to reach superior accuracy for isopropyl alcohol
identification. We pull in “cold” plasma discharge from triboelectric generator
which improves the mid-infrared spectroscopic response of isopropyl alcohol
with good regression prediction. Moreover, this synergistic methodology
achieves ~99.08% accuracy for a precise gas concentration prediction, even
with interferences of different carbon-based gases. The synergistic metho-
dology of artificial intelligence-enhanced system creates mechanism of accu-
rate gas sensing for mixture and regression prediction in healthcare.

The need for health and safety has been increasing the demand for
isopropyl alcohol (IPA) as a vital element of anti-virus hand
sanitizers1–5. Many virus-perishing methods are investigated for com-
batting pandemic or cold diseases, such as managing indoor air,
increasing gas ventilation, optimizing humidity levels, maximizing air
filtration efficiency, and the widespread use of IPA. IPA is a flammable
and colorless liquid with a fruity odor and a slightly bitter taste. It is
used to clean electronic components and to remove the thermal paste
from integrated circuit chip packages. Due to its extensive use, various
healthcare problems may occur along with the exposure or inhalation
of the IPA molecules, e.g., skin irritation, nervous system illness, and
respiratory damage. As a result, rapid and accurate detection of IPA
molecules becomes critical. The methods for IPA sensing include
chemiresistive, gas absorption-based, two-dimensional(2-D) material-

based, ion mobility, electrochemical, and other sensors6–16. However,
such IPA sensors can only measure the total gas concentration among
various volatile organic compounds(VOCs), and they have limitations
such as slow response, poor selectivity, and insufficient accuracy.
Thus, a sensing system with fast response, good selectivity, anti-
interference, and high sensitivity for IPA identification is critical.

Ion mobility and mid-infrared spectroscopy are two well-known
analytical techniques for identifying of gas-phase compounds. Scien-
tists focus on ion mobility and investigated many approaches to
increase sensing ability, e.g., producing ions by β-radiation, ultraviolet
(UV) irradiation, and others. However, this approach requires a high-
voltage source and a strict operating environment (e.g., vacuumor low
pressure), yielding expensive and bulky equipment17–23. Mid-infrared
spectroscopy is a non-destructive method applied to identify the
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vibrationalmodesof gasmolecules, and it haswidespread applications
in environmental monitoring, pharmacy, chemical analysis, bio-sen-
sing, and the pharmaceutical industry. Regarding the sensitivity
enhancement in mid-infrared spectroscopy, it is found that the
instantaneous strong electrostatic field could be further tailored to the
molecular vibration along with the optics refection response, thereby
enhancing the absorption effect of infrared spectroscopy. In short,
conventional ion mobility sensing has the constraint of the require-
ment of a strict measurement environment, whereas conventional
mid-infrared spectroscopy is limited by poor response during low-
concentration identification. Overall, bothmethods have drawbacks in
IPA sensing at this point.

Herein, three critical issues need to be addressed in order to
improve the response of IPA molecules using existing ion mobility or
mid-infrared spectroscopy. Firstly, focusing on the interaction of
molecules with infrared irradiation, high-voltage plasma induces a
strong electromagnetic field, yielding a coupling effect, which
amplifies the mid-infrared absorption response. Therefore, plasma-
enhanced infrared absorption spectroscopy enables the ultrasensitive
detection of molecules with the aid of an existing high-voltage power
source (ion mobility). Secondly, regarding ion mobility, a triboelectric
nanogenerator24–33 was discovered in 2012, allowing for an additional
high-voltage output from mechanical vibrations. With the aid of tri-
boelectric,Wang et al. reported respiration health based onAI-assisted
diagnosis bymulti-self-calibratedparameters fromTENGwith accuracy
>95.21%33. However, anti-virus VOCs diagnosis from hybridmechanism
(mid-infrared spectroscopy) and data-enhanced algorithms still need
to be investigated. For example, the ion power source from the tri-
boelectric nanogenerator could be greatly optimized and provide ion
mobility in cold environments and ambient air pressure. Thirdly, arti-
ficial intelligence (AI) is a hot research topic dramatically promoted
with the fifth-generation cellular network technology (5 G). A cloud
server would easily handle plenty of data based on deep learning
algorithms in a short time34–39. Providing feasible big data processing
using machine learning and deep learning techniques (t-distributed
stochastic neighbor embedding (t-SNE), linear discriminant analysis
(LDA), principal component analysis (PCA), synthetic minority over-
sampling technique (SMOTE), and deep neural networks (DNN)
regression), which may reinforce the characteristic IPA data-sets from
ion mobility and mid-infrared. Thus, the AI-enhanced methodology
would be an ideal solution for IPA detection in factories or personal
healthcare, where identifying IPA molecules requires rapid response,
high accuracy, good selectivity, anti-interference, and high sensitivity.

To realize the IPA detection with good selectivity, fast response,
and high sensitivity, we propose an artificial intelligence (AI)-enhanced
chemical detection based on IMMS assisted by a multi-switched tri-
boelectric nanogenerator. It provides an additional high-voltage power
source for ion mobility and plasma enhancement for mid-infrared
sensing. The plasma-enhanced mid-infrared response in IPA sensing
exhibits a good concentration prediction with ~0.87 R2 score by DNN
regression, which can be improved to ~0.98 R2 score using SMOTE
before DNN regression. What’s more, it is also demonstrated that the
data preprocessing method could remove the background calibration
with high accuracy in feature classification. In the perspective of sen-
sing fusion between IMMS, the regression performance in concentra-
tion prediction can be enhanced to a ~0.99 R2 score. Moreover, even in
the case of different gas interferences, this synergistic methodology of
IMMS reaches ~99.08% accuracy in our study using the AI-enhanced
method and high-voltage triboelectric cold ion mobility.

Results
AI-enhanced detection based on IMMS
As shown in Fig. 1, IPA, as one of the important elements of hand
sanitizers, has recently been globally recommended and used by
doctors and the entire population. Long-term exposure to the IPA

environmentmay induce serious healthcare problems in humans, e.g.,
headache, skin irritation, or nervous system illness. The accurate
detection of IPA species is an urgent need to provide a safe environ-
ment. The most common method for accurate detection of IPA is
based on ion-mobility or mid-infrared. However, the detection is
restricted to specific conditions (low air pressure and high tempera-
ture). To address this issue, we present a self-powered triboelectric
generator as an additional high-voltage source resulting in cold ion
plasma at ambient air pressure. The use of ionmobility in accurate IPA
detection under low and ambient air pressures is greatly enhanced by
the high-voltage generation from the triboelectric nanogenerator
based on mechanical vibrations. Meanwhile, mid-infrared spectro-
scopy reduces the response of IPA molecules along with absorption
and reflection, which wavelength and response are accurately
achieved. The synergistic methodology of IMMS for chemical sensing
becomes a solution for the fast and accurate detection of a gasmixture
at low concentrations taking advantage of the triboelectric nanogen-
erator. Herein, a multi-switched manipulation triboelectric nanogen-
erator is developed to reach a high-voltage output without any
external battery with the theory of charge accumulation. The
mechanics of the high-voltage generator can be found in Fig. S1. The
surface interface effect of the triboelectric and the transfer of charges,
cause the multi-switches alternate between “on” and “off” states,
leading to a continuous accumulation of charge that generates an
extra high voltage from the ground. The Bennet doubler was proposed
nearly 100 years ago. It can be achieved by an in-plane mechanical
structure of the multi-switched manipulation triboelectric nanogen-
erator based on the back-and-forth sliding. Thus, the generated charge
from the groundwould be accumulated on thematerial’s surface using
the electrostatic effect. The open-circuit voltage (Voc) and the accu-
mulative open-circuit charges (Qoc) are presented in Figs. S2, S3 in the
supplementary information.

The IPA response mechanism is from the characterizations in
absorption and reflection by mid-IR. The external-provided strong
electric field dramatically improves the sensitivity of the IPA detection
due to thehigh-voltagefluctuation from theplasmadischargeonto the
vibrationalmode of themolecule structure (coupling effect). Thus, the
synergistic mechanism of ion-mobility sensing and enhanced-mid-IR
reflection enables chemical sensing to achieve fast response times and
accurate detection (two kinds of data in computing). Furthermore, the
data processing with an AI-enhanced approach would combine
the advantage of both ion-mobility sensing and enhanced-mid-IR
response resulting in extra high accuracy and wide-range detection.
The detailed experiment photos of the AI-enhanced IMMS can be
found in Fig. S4. The AI algorithms are conducted to identify the
accuracy of IPA concentrations, e.g., t-SNE, LDA, PCA, SMOTE, and
DNN. Through the interaction of IPA molecules with plasma discharge
and mid-infrared irradiation, the species and concentration of IPA can
be accurately identified alongwith the output signal response. The raw
data obtained from both mechanisms is then sent to a computer for
further analysis. Assisted by the deep learning technology, the infor-
mation from the synergistic mechanism of ion discharge and mid-
infrared methodology can be identified with an accuracy of ~99%,
whereas the conventional recognition of IPA can only reach an accu-
racy of ~50%37. Thus, the AI-enhanced approach can process multi-
modal data from the collected data, and it can be further improved
with the synergistic methodology to realize the fast response, wide
detection range, and accurate detection of a gas mixture.

Ion mobility analyzer for gas identification
The ion mobility system is constructed in a tip-plate electrode con-
figuration, high-voltage component, and current collector, as shown in
Fig. 2a. The tip-plate electrode configuration provides a site for ion
mobility and various gas environments, and the current collector is
used to collect dark current from ion mobility for monitoring. The
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high-voltage component is a triboelectric nanogenerator that could
generate high voltage from mechanical vibrations. The voltage range
from multi-switched manipulation triboelectric nanogenerator can
reach up to ~2700V under the load resistance 800 MΩ (Fig. S5) based
on our observation. Figure 2b depicts the schematic diagram of the AI-
enhanced ion mobility methodology. Through the use of the deep
learning methods, both the estimated value of IPA concentrations can
be accurately determined. The deep learning method in our calcula-
tion contains tSNE+LDA and SMOTE +DNN, which are adopted for
classification and regression to assist the IPA identification. This
method is chosen based on the curve pattern of the signals. Figure 2c
and Figs. S6, 7 in the supplementary information, demonstrate the
patterns exhibited by the raw data. The data for specific IPA con-
centrations including 1300, 800, 400, 215 ppm, each of which exhibits
a clear pattern under different concentrations. The reasons to choose
those concentrations are both the limit of the calibration sensor
(SKY2000-VOC) and the range of the IPA in the air from hand sanitizer
which is enough to show the air quality status. The picked con-
centrations (i.e., 1300, 800, 400, 215, and 0 ppm) are the reference to
evaluate the sensing performance of AI-enhanced IMMS (wide range
and response sensitivity). The t-SNE feature dimension reduction or
PCA dimension reduction with different concentrations is shown in
Fig. 2d and Fig. S8 in the supplementary information, and classification
results using t-SNE + LDA are given in Fig. 2e. The ion mobility pattern

represents the concentrations of IPA molecules. The recognition
accuracy of different concentrations can reach ~84.21%, according to
our observation. Therein, the accuracy is calculated as follows:

Accuracy =
Number of correctly outputs

Total sample number
× 100% ð1Þ

In order to enhance the accuracy of IPAdetection,weadopted raw
data analysis bothwith andwithout SMOTE +DNN regression for an in-
depth study of the dark current pattern, as illustrated in Fig. 2f and
Figs. S9, 10 of the supplementary information. It is observed that the
SMOTE +DNN regression gives clear accuracy improvement from
Fig. 2g and Fig. S9b. The detailed modeling process can be found in
Method Section. Use yi to represent the actual concentration, f i to
represent the predicted concentration, and ŷ to represent the average
of the actual concentration. The computational formula of theR2 score
is as follows:

R2 = 1�
X

i

yi � f i
� �2

=
X

i

yi � ŷ
� �2

ð2Þ

Here the R2 score for the test dataset was 0.96, which represents a
good regression performance.
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Fig. 1 | The schematic diagram of AI-enhanced chemical sensing from synergy
methodology by IMMS. Enhanced mid-infrared gas spectroscopy, the schematic
diagram of artificial intelligence(AI)-enhanced chemical sensing from synergy

methodology by ion mobility and mid-infrared spectroscopy, the concept of
triboelectric-induced ion mobility and mid-infrared with synergistic by AI.
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Mid-infrared enhancement
Figure 3a illustrates the plasma-enhanced vibrational spectroscopy of
IPA molecules in the mid-infrared spectral region which significantly
enhances their sensitivity. The IPA response over time in the mid-
infrared spectral region is shown in Fig. 3b and Fig. S11 in the supple-
mentary information, and is used to illustrate the difference in mea-
surement data depending on ion mobility and to understand its
influence during the mid-infrared response. At a wavenumber of
~2400 cm−1, characteristic for CO2, a ~1–3 times higher response is
observed than without plasma (the red curve and the light blue curve,
respectively). The AI-enhanced methodology for mid-infrared spec-
troscopy is shown in Fig. 3c to describe the IPA processing data. The
data processing contains the standard calibration, SMOTE-enhanced
method, and t-SNE classification. The SMOTE method is used to pre-
dict the IPA concentration. The goal of the SMOTE is used to augment
the dataset of the IPA concentration. The t-SNE classification is used to
classify the measured IPA molecules, and the DNN with multilayers is
used to predict the IPA concentration. Figure 3d and Fig. S12 in the
supplementary information show the IPA concentration vs. the mid-
infrared response. Figure 3d is the zoon out of Fig. S12 which is easier
for readers to observe with the wavenumber of 2500 cm−1~3500 cm−1.
The relationship between different IPA concentrations with almost a
linear numerical relationship is shown in Fig. S13 in the supplementary
information. With reference to concentrations chosen (i.e., 1300, 800,
400, 215, and 0 ppm), it concludes that the minimum IPA molecule
concentration is determined by the FTIR equipment’s resolution and
the accuracy of AI engineering. Furthermore, the limit of detection
(LOD) is evaluated by the performance of the equipment relating to
noise. It canbewell calculated by themodifiedBeer–Lambert equation

for the variations in the optical path length and the actual absorption
data39–42. To accurately evaluate the noise in real measurement, the 0
ppm IPA molecules are chosen to extract the signal fluctuations of
these spectra. By plotting the total noise and the output signal with
SMOTE +DNN regression together, it can analyze the LOD of the Ai-
enhanced IMMS. The SMOTE +DNN regression of the signal above the
noise at 0 ppm indicates that the LOD of our IPA could reach a pre-
diction of ~40 ppm based on the estimated mean error using an
improved IMMS technique (Fig. S13b). As shown in Fig. 3e and Fig. S14,
15 in the supplementary information, these raw data can be well han-
dled to provide visualization for readers based on the t-SNE classifi-
cation. The SMOTE augmented dataset of squared markers has more
remarkable t-SNE features and more compact clusters compared with
triangle markers. It also shows the feasibility of the deep learning
algorithm for the identification of IPAmolecules. To further clarify the
difference in the big range of accuracy identification, the SMOTE +
DNN regression prediction method for calculation, as shown in Fig. 3f
and Fig. S16 in the supplementary information, shows good prediction
at almost every IPA concentration. The regression performance R2

score with SMOTE can be improved from 0.91 to 0.97, whereas the R2

score from 0.87 to 0.98 can be observed in Fig. 3g and Fig. S17 in the
supplementary information.

Robust mid-infrared demonstration from the AI-enhanced
approach
The background calibration by FTIR equipment is critically important
before the real optical measurement. The goal of the background
calibration is to provide the correct form of the curve, by removing
unnecessary information (environmental perturbation). However, the

Fig. 2 | IPA detectionusing ionsmobility analyzer. a Ionmobility platform.b The
schematic diagram of the deep learning method. c The dark current pattern of the
different concentrations IPA, 1300 ppm, 800 ppm, 400 ppm, and 215 ppm,

respectively. d PCA loading classification. e tSNE+LDA classification accuracy of
different concentrations. f IPA concentration with SMOTE in data map. g The
concentration estimation results after SMOTE+DNN.
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manual calibration before the real measurement is inconvenient and
inefficient. To avoid this manual process (labor-consuming), we adopt
an artificial intelligent method to provide the right concentration
measurement. The raw data without data preprocessing is shown in
Fig. 4a. The data preprocessing can be implemented by the standard
transform, SMOTE, and ALS calibration. Afterward, the t-SNE is used
for feature extraction. Then LDA and DNN are used to assist in gas
classification and prediction. The ALS calibration is shown in Fig. 4b
and Fig. S18 in the supplementary information. The obtained curve is
uniform in the right baseline. The t-SNE classification and its results
shown in Fig. 4c, d conclude that LDA can be adequately classified by
all different concentrations of IPA from the mid-infrared data with
~84.58% accuracy. We adopt the DNN prediction method to improve
the sensitivity, with R2 score of 0.97, as shown in Fig. 4e and Fig. S19 in
the supplementary information. It concludes that all different con-
centrations could be obtained even without any calibration step in the
FTIR system.

IPA identification demonstration by synergistic methodology in
the gas mixture
Figure 5 depicts the synergistic methodology of both IMMS. As shown
in Fig. 5a, the signals from both are sent to a machine learning tool for

calculation. The IPA molecules in the IMMS approaches are dramati-
cally shaken by the super-high voltage. In terms of concentration
estimation, data from two methods that measure the same con-
centration are concatenated, and then the t-SNE is used for feature
extraction and DNN for concentration estimation. The data of gas are
parallel connected and addressed in such a way that the gas characters
are classified using LDA to distinguish different IPA concentrations or
different species of the gas. The AI-enhanced sensor-fusion mechan-
ism is implemented for the IPA concentration. Thepurposeof LDA is to
maximize the between-class variance and minimize the within-class
variance. For the regularized LDA in MATLAB, it is assumed that all
classes have the same covariance matrix and the predictor covariance
treatment as follows,

Σ̂γ = ð1� γÞΣ̂ + γdiagðΣ̂Þ ð3Þ

where Σ̂ is the empirical, pooled covariancematrix, and γ is the amount
of regularization. LDAmodel is trained using the labeled data from the
plasma-enhanced mid-infrared spectral region or ion mobility analy-
zer. The synergisticmethodology of IMMS is represented in Fig. S20 in
the supplementary information. The response performance in IPA
concentration estimation with three modes can be observed in

Fig. 3 | Mid-infrared enhancement plasma discharge to different concentra-
tions of IPA. a Schematic diagram of enhancement mid-infrared for IPA species.
b With/without plasma mid-infrared response in IPA. c The schematic diagram of
thedeep-learning.dThe responseof themid-infraredof different concentrations in

IPA. e t-SNE features without and with SMOTE augmentation. f Results with
SMOTE +DNN augmentation. g SMOTE +DNN augmentation with different values
of R2.
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Table S1. It is observed that the time costs for training in IMMS are the
longest, however, it provides a wider concentration detection range,
and higher accuracy compared with the single ion-mobility or mid-
infrared spectrum method. Comparison results among linear discri-
minant analysis, support vector machine, and decision tree, demon-
strate that the LDA-based AI method achieves the best performance
with the least time cost and highest accuracy. To evaluate the
effectiveness of proposed AI-enhanced methods in IPA identification,
we compare the results with the support machine learning (SVM, PCA,
or DNN)34,36,38 and a decision tree. As shown in Fig. 5b in the
supplementary information, the LDA-based method combined with
PCA is most suitable for the AI-enhanced IMMS to recognize gas
molecules from mixtures. In the terms of calculation cost time, the
LDA-based IPA identification method spends the least amount of time
for 0.0382 s, while the SVM-based and tree-based methods spend
0.0417 s and0.8440 s, respectively.Moreover, the LDA-basedand tree-
based methods achieve 100% accuracy in the IPA identification from a
gas mixture, while the SVM-based method obtains 96.97% accuracy. It
concludes that LDA-based AI method achieved the best performance
with the least time cost and highest accuracy. In addition, as shown in
Figs. S21–S23 in the supplementary information, to verify the
validation with different split ratio training to a higher accuracy and
a lower estimated error, the ratio settings for train/test split were
chosen 70:30, 75:25, and 80:20. It concludes that the result with 80:20
presents best training effect in our AI-IMMSmolecule calculation case.
However, considering more training samples, the ratio in the formal
experiment is 70:30.

IPA as one of the important elements in VOCs family can affect
human health and be used for the assessment of various diseases. For
example, IPA has been widely used as antiviral hand sanitizer. Also,
many studies have indicated that IPA levels can reflect the severity of
lung cancer, serving as a specific biomarker for early diagnosis, which
deserves attention and further research43–45. To further demonstrate
the IPA detection inmixture gases, as shown in Fig. 5c and Figs. S24, 25,
IPAmixed with one, two, or three different kinds of species appears. A
higher IPA concentration in the IPA gas mixture induces a strong peak
response at a wavenumber of ~1800 cm−1, clearly implying that the
peak response of different gas species can be well-identified. The gas

species are determined by the response of molecules with their mode
at a certain wavenumber, whereas their concentrations are indicated
by the response value. IPAmixture gas detection based on the plasma-
enhanced mid-infrared spectrum is represented in Fig. S26 in the
supplementary information. It is found that the bestmodel by PCA and
LDA yields an accuracy of ~100%. Thus, the AI-enhanced methodology
demonstrates the identification of the IPA characters. Furthermore, as
shown in Fig. 5d, dark current from ionmobility can be represented as
a pattern. Fig. S27 demonstrated that the concatenate data has an
advantage of data augmentation by the synergistic methodology of
IMMS. As shown in Fig. 5e, the results indicate that thedata dots cluster
is directed to specific concentrations.With the auxiliary sensing fusion
techniques and DNN, the concentration estimation reaches a result of
~0.99 R2 score, which is improved compared with a single measure-
ment as illustrated in Fig. 5f. In addition, assisted by the SNE and LDA
methods, the classification is shown in Fig. 5g, yielding an accuracy of
~99.08%. Thus, the AI-enhanced methodology demonstrates the
identification of the IPA characters and their concentrations.

Discussion
In conclusion, we propose a synergistic IMMS mechanism for AI-
enhanced chemical sensing to achieve rapid response and accurate
detection of a gas mixture. A triboelectric nanogenerator for high-
voltage plasma is proposed to overcome the environmental pressure
constraints to ion mobility and the weak response and reflection
detection of gas molecules, limiting the use of mid-infrared spectro-
scopy. The reported self-powered ion mobility reaches up to almost
two times higher accuracy with the aid of AI-augmentation by auto-
matic extractingof the specific features than the conventionalmethod.
It is also shown that cold plasma from the triboelectric generator
enhances the mid-infrared response for IPA sensing with a good linear
prediction by deep learning. Moreover, the data processing could
remove the background calibration based on our observation with a
labor-consuming effect. Due to the challenges in IPA detection, the AI-
enhanced approach is successfully demonstrated by extracting the
features from the IMMS data with ~99.08% accuracy. This method can
process multi-modal data from collected data, and can be combined
with existing methodology to realize the synergistic mechanism.

Fig. 4 | AI-enhanced methodology without any initial background calibration.
aThe schematicdiagramof the rawdata anddeep learningprocess.bThedatawith

ALS calibration. c The t-SNE feature extraction and classification. d The results by
LDA classification. e DNN prediction results in different concentrations of IPA.
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Methods
Fabrication of the multi-switched triboelectric nanogenerator
The multi-switched triboelectric nanogenerator contains the bottom
pair of plates and a topmovable pair of plates with a contact area of 49
cm2. For power output, a positive triboelectric polymethyl methacry-
late (PMMA) dielectric is connectedwith negative fluorinated ethylene
propylene (FEP). The laser cutting machine is used to cut the acrylic
plate for component assembly. The conductive nickel textile is used to
connect and separate with/from an electrode via the action of “on”
or “off”.

Characterization
A programmable electrometer (Keithley model 6514) is adopted for
Voc, and Qoc parameters. The infrared spectra are recorded using an
FTIR spectrometer (Agilent Cary 610 Series), which operates at wave-
lengths from 4 to 8 μm. The measurement environment is at room
temperature, exhibiting the tolerance of the test environment. The
calibration sensor of the IPA is a commercial device.

IPA platform
The platform is made of the multi-switched triboelectric nanogen-
erator, the pre-mixture IPA chamber, and the FTIRequipment. Thepre-
mixed chamber is constructed to mix different gases. The calibration
sensor (SKY2000-VOC) is used to identify the specific concentration of
IPA. An oscilloscope is used to monitor the dark current from the

collection electrode to record thedark current responsealongwith the
gases. A computer is used to record FTIR data for further machine
learning. The gas chamber is sealed during the operation to improve
the accuracy of the IPA concentration measurement. The oscilloscope
is connected to the plate electrode collector to record the dark current
response during the sliding of the multi-switched triboelectric
nanogenerator.

AI algorithms for IPA concentration estimation
Synthetic minority oversampling technique is a synthetic data algo-
rithm with comprehensive sampling, which can be used to solve the
problem of unbalanced data distribution. Owing to the limitation of
data collection, it is difficult to ensure that the information of sampled
IPA data in different concentrations is distributed evenly, yielding
worse performance in the predictive model. Thus, SMOTE which rea-
lizes inMATLAB R2022a is adopted for each concentration of IPA data.
The data of each concentration should be equal in amount so that it
can be used in the classification or regression model. The deep neural
network is developed for the gas feature regression and IPA con-
centration estimation. The proposed DNN is developed on python 3.8
using the Keras and sci-kit-learn packages. Our DNN model is specifi-
cally constructed by multiple connected layers: dense (50, “relu”) →
dropout (0.2)→ dense (15, “relu”)→ dense (1, “linear”). The batch size is
20. The epoch number is 300. The loss function between the predict
value and the true value is a mean-squared error. The optimizer is

Fig. 5 |Mixture gasdetectionbased on the synergy of IMMS. aThe characteristic
and the deep learning method. b Comparison results among linear discriminant
analysis, support vector machine, and decision tree. cMid-infrared raw data with a
different mixture IPA. d IPA with ethanol disturbance by ion mobility. e t-SNE

features to all the mixture IPA. f AI-enhanced method for IPA gas estimation with
~0.99 R2 score. g AI-enhanced method for mixture gas identification with ~99.08%
accuracy.
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Adam. The ratio settings for train/test split are 70:30, 75:25, and 80:20.
The result with different ratio settings are shown in Figs. S21–S23,
where the increased training amount results in a higher accuracy. All
data before regression or classification is preprocessed. The normal-
ization is implemented and transformed the data range into [−1,1]. The
asymmetric least squares calibration is applied for the baseline sub-
traction by the second derivative constrain weighted regression. The
estimated mean error using improved IMMS technique is about 40.15
ppm~52.03 ppm.

AI algorithms for IPA identification from gas mixture
The t-SNE is used in exploratory data analysis and for nonlinear
dimensionality reduction. t-SNE reserves the local characteristics by
transforming the data distance relationship into a probability dis-
tribution. When implementing t-SNE, the same amount of low-
dimensional data is randomly generated, and then the loss function
measures the difference between two probability distributions. The
gradient descent method is used to update this batch of data, and
the low-dimensional data satisfying the requirements is obtained.
The t-SNE is performed in MATLAB R2022a to intuitively visualize
the feature space in two and three dimensions. The support vector
machines by the “libsvm” package inMATLAB 2022a are implemented
to compare with LDA.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All technical details for producing the figures are enclosed inMethods
and Supplementary Information. Data are available from the corre-
sponding author C.L., J.Z., and A.S. upon request.

Code availability
The codes that support the findings of this study are available from the
corresponding author C.L., J.Z., and A.S. upon request.
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