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% Check for updates C-to-G base editors have been successfully constructed recently, but limited

work has been done on concurrent C-to-G and A-to-G base editing. In addition,
there is also limited data on how chromatin-associated factors affect the base
editing. Here, we test a series of chromatin-associated factors, and chromo-

somal protein HMGNI1 was found to enhance the efficiency of both C-to-G and

A-to-G base editing. By fusing HMGNI1, GBE and ABE to Cas9, we develop a
CRISPR-based dual-function A-to-G and C-to-G base editor (GGBE) which is
capable of converting simultaneous A and C to G conversion with substantial
editing efficiency. Accordingly, the HMGNI role shown in this work and the
resulting GGBE tool further broaden the genome manipulation capacity of
CRISPR-directed base editors.

CRISPR-directed base editors (BEs) including a deoxynucleotide
deaminase and a catalytically impaired Cas9 or Cpfl can introduce
single-base conversion. The recently developed CBE', ABE? and
GBE/CGBE*™ enable programmable C-to-T, A-to-G, and C-to-G base
editing, respectively. These technologies could edit the genome
sequence without inducing a DNA double-strand break or requiring
donor DNA templates, with exciting prospects in the genetic therapy
of mutational-associated diseases. It was reported that ABE could
directly correct the pathogenic single-base mutation of nuclear
lamin A in cultured fibroblasts from children with progeria®. And
CBE was successfully applied to edit BCL11A enhancer, which pre-
vented sickle cell phenotype and attenuated the imbalanced globin
chain in erythrocytes’. To broaden the application of this technol-
ogy, we and other labs have been working on increasing the effi-
ciency and diversifying the editing patterns of BEs. Richter et al.®
greatly improved the editing efficiency of ABE through phage-
assisted evolution. Koblan as well as our lab constructed and further
enhanced the editing efficiency of C-to-G transition with DNA repair
factors’ or DNA binding proteins'®. However, the genome editing
capacity still has room for improvement.

One base editor normally catalyzes the transition for a single type
of base pair, and it is not possible to simultaneously implement mul-
tiple editors in most scenarios. However, studies reported the dis-
covery of MNVs (multi-nucleotide variants), which were recognized as
two or more nearby variants existing on the same haplotype in an
individual. Significantly, the MNVs were identified as a clinically and
biologically important class of genetic variation, influencing the
functional interpretation of genomic data™" To extend the editing
possibilities and study MNVs-associated genetic diseases, researchers
have developed dual-function base editors, which enable simultaneous
C-to-T and A-to-G conversion in mammalian cells™™. In addition, an
AGBE system was constructed using human APOBEC3A and TadA,
which could catalyze four types of base conversions”. These recon-
structed BEs broadened the capability of base editing for applications
in genetic therapy or gene regulation. However, a series of MNVs with
simultaneous C-to-G and A-to-G mutations remain poorly understood,
and related genetic correction studies are hindered by the lack of
genome editing tools. For instance, it was reported that the concurrent
C-to-G and A-to-G mutation in GAA (alpha-glucosidase) resulted in
glycogen storage disease type II'®. Additionally, the high efficiency and
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specificity of base editors are indispensable for the construction of
disease models and the development of genetic therapies for muta-
tional disease. However, the recently developed AGBE showed low
efficiency and specificity in performing concurrent C-to-G and A-to-G”
conversions. Despite the prime editor that could introduce the con-
current C-to-G and A-to-G transition, normally the base editing could
induce more efficient editing in a restricted editing range*”. Further-
more, the operation of the base editor is more convenient than that of
the prime editor. Thus, it is desirable further expand the diversity and
capacity of BEs with a highly specific and efficient dual-function base
editor, which simultaneously catalyzes C-to-G and A-to-G conversions.

It was reported that Cas9 nuclease activity was positively asso-
ciated with elevated chromatin accessibility. Ding et al.*° demon-
strated that Cas9-dependent deletion or insertion was improved via
fusion with chromatin-modulating peptides, particularly at refractory
target sites. Furthermore, Liu et al.” found that transactivation mod-
ules could enhance Cas9-dependent editing efficiency, especially at
nuclease-refractory target sites. Both of their functions are demon-
strated to increase chromatin accessibility, which might promote Cas9
activity. More importantly, the editing efficiency of ABE and CBE was
also enhanced with the inhibition of histone deacetylase to alter the
chromatin state”. Collectively, these works indicate that genome
editing is affected by the chromatin microenvironment. Chromatin
remodelers and modifiers were reported to orchestrate the chromatin
state, and thus influence the DNA repair process. It was demonstrated
that BARD1 (BRCA1l-associated RING domain protein 1) coordinates the
binding of H2AK15ub and unmethylated H4K20 to promote homo-
logous recombination®, as well as corroborated the dimethylation of
histone H3K36 and enhanced the repair of DNA double-strand
breaks*. Moreover, LSD1 (lysine-specific histone demethylase 1)-
mediated histone demethylation was reported to be involved in base
excision repair induced by hydrogen peroxide®. Nevertheless, there
were still only limited reports on how chromatin-associated factors
influence base editing. Accordingly, we hypothesized that the fusion of
chromatin-associated factors with BEs might increase the efficiency of
base editing, which could be a promising strategy to further
optimize BEs.

In this research, we engineer GBE and ABE by fusing them with a
series of chromatin-associated factors, which optimizes the editing
efficiency or indel frequency. Furthermore, we fuse HMGNI1 with
GBE, ABE, and GGBE for higher editing efficiency, lower indel
byproducts or a unique editing pattern. Finally, we also demon-
strated the application of GGBE in correcting or creating MNVs in
mammalian cells.

Results

Analysis of chromatin-associated factors for improving GBE and
ABE editing

To further improve the efficiency and expand the editing scope of base
editors, we intended to optimize them by integrating chromatin-
associated factors and further construct a specific dual-function C-to-G
and A-to-G base editor (GGBE) (Fig. 1a). Accordingly, the nascent GBE’
was selected for investigation of C-to-G editing, while the latest highly
efficient A8e (ABESe-V106W)® with reduced off-target editing was
selected to explore A-to-G editing. Then we constructed a series of
engineered GBE and A8e variants fused with 16 chromatin-associated
factors, including chromatin-modulating factors, histone methylation
factors, histone acetylation factors, and histone ubiquitination factors.
Since previous work demonstrated the GBE variants with amino-
terminal fusions exhibited the highest editing efficiency**?, this fusion
pattern was also employed for the selected chromatin-associated
factors (Fig. S1A). HEK293T cells were transiently co-transfected with
the reconstructed GBE/A8e and gRNA vectors, and the editing effi-
ciency within the editing window as well as the indel frequency were
determined via high-throughput sequencing (HTS) and CRISPRess027%%.

Our data revealed that several chromatin-associated factors
improved the C-to-G editing efficiency at the HIRA and EMX1 loci,
especially the chromatin-modulating factors and histone ubiquitina-
tion factors. Notably, the HMGNI1-fused GBE (HMGNI1-GBE) showed the
highest editing efficiency at position C6 of the protospacer, which was
also superior to SadN-GBE, an enhanced GBE variant (Fig. 1b). The
HMGNI1-fused A8e (HMGNI1-A8e) also exhibited the highest editing
efficiency, but was similar or slightly higher to the control at the HEK4
and EMX1 loci (Fig. 1c). Importantly, the indel frequency was higher for
HMGNI1-GBE and lower for HMGN1-A8e at the tested loci (Fig. SIB). To
further query the potentially adverse effects of HMGNI fusion, the
protein expression of base editors, gene expression of targeted loci,
and cell viability were evaluated. The results indicated that the over-
expression of HMGNL1 did not significantly influence the expression of
the base editors, gene expression of the targeted loci, or cell viability
(Fig. SIC-E).

To further analyze the role of HMGNI in optimizing GBE and A8e,
we tested the HMGNI1-GBE and HMGNI1-A8e at more genomic loci in
HEK293T cells. The data showed that HMGNI-GBE substantially
increased the editing efficiency at eight genomic loci, especially at
position C6 of the protospacer (Fig. 1d). Surprisingly, the increased
indel frequency was not observed at all testing loci, and even
decreased at the TET2-sitel (Fig. SIF). Our results also indicated that
the HMGNI1-A8e showed a modestly higher editing efficiency at most
of the testing loci, especially at TET2-site4, with average increases of up
to 37.40% (Fig. 1e). Furthermore, the indel frequency of HMGNI1-A8e
slightly decreased at several loci (Fig. S1G). More importantly, the
HMGNI fusions with GBE and A8e also enhanced the editing yield in
HeLa cells (Fig. SIH) and exhibited substantial C-to-G and A-to-G
transition in primary prostate carcinoma cells (Fig. S1I).

To further support the positive effects of HMGNI and construct
enhanced GBE and ABE variants, various components with diverse
arrangements were tested with HMGNL. Firstly, the HMGN1 was fused
to highly efficient miniCGBE variant®, which incorporates the R33A
mutation and deletes the UNG component of GBE. The data showed
the HMGN1-miniCGBE enhanced the editing yield but also slightly
increased the indel products at testing loci (Fig. S2A-C). We also
attempted to replace the UNG component in the GBE to increase the
editing yield. The Ungl from Saccharomyces cerevisiae® and the Udgx
from Mycobacterium smegmatis®*° were placed between APOBEC1
and Cas9 in the GBE system based on previously optimized
arrangements’ (Fig. S2D). The Udgx fusion showed a higher editing
frequency at several genomic targets, especially in the PAM-proximal
region (Fig. S2E). Finally, given that the pioneer factors were found to
promote the chromatin accessibility and thereby enabled PAM-
proximal base editing for CBE and GBE in previous research”, we
assumed that since HMGN1 also increases chromatin accessibility**?, it
might similarly enable the PAM-proximal editing of A-to-G. Thus, we
constructed an A8e variant where HMGNI1 was placed between TadA
and Cas9 (HMGNI1-A8e-M; Fig. S2F) similar to the pioneer factors”. Our
data showed that this reported A8e variant also exhibited a higher A-
to-G yield of PAM-proximal adenines (Fig. S2G). Taken together, our
data proved that HMGNI efficiently enhanced the C-to-G conversion
and modestly improved the efficiency of A-to-G editing.

Construction of simultaneous CeG-t0o-GeC and AeT-t0-GeC base
editors

To extend the editing capacity for more applications of BEs, we
speculate that the fusion of ABE and GBE could introduce a dual-
functional base conversion. To test this, the GBE components includ-
ing APOBECI and UNG were fused to A8e to construct a TABE-UNG
(TadA8e-APOBEC1-Cas9-UNG; Fig. 2a). In addition, given that the UNG
component might negatlvely affect the C-to-G transition’, we also
constructed a TABE system by omitting the UNG component (Fig. 2a).
Then the TABE-UNG and TABE were tested at two genomic loci in
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between GBE and HMGNI1-GBE at eight genomic loci in HEK293T cells. e Base
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Fig. 2 | Construction of simultaneous C+G-to-G+C and A+T-to-G+C base editors.
a Schematic of base editor variant with a fusion of APOBECI1, TadA8e, Cas9, and
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editing frequency and D-value across TABE, ATBE, and TABE (R33A). Total editing is
the sum of editing for all positions. e Comparison of indel frequency across GBE-
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HEK293T cells. Mean + SEM (b, d, e) of all individual values of sets of n=3 inde-
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HEK293T cells. Although our data showed that TABE-UNG could
simultaneously convert A-to-G and C-to-G, the editing efficiency was
significantly lower than that of TABE (Fig. S3A).

To potentially improve the base editing efficiency, a ATBE (APO-
BECI-TadA8e-Cas9) system was established (Fig. 2a), and the
APOBECI-R33A mutant*** was also incorporated to improve the edit-
ing efficiency. To evaluate the balance of editing efficiency between A-
to-G and C-to-G transition for dual functional base editors, we intro-
duced a D-value, which is a measure of the difference in editing effi-
ciency between A-to-G and C-to-G transition in our analysis. Despite
ATBE induced a higher A-to-G conversion than TABE (Fig. 2b, ¢ and
S3B), the D-value was significantly increased, indicating an imbalanced
A-to-G and C-to-G efficiency (Fig. 2d). In addition, the APOBECI-R33A
mutant with higher C-to-G editing was introduced in TABE, but we
observed a relatively lower editing efficiency of C-to-G at two genomic
loci for the TABE-R33A (Fig. 2b, ¢ and S3B). Further, sequencing reads
indicated that the TABE also exhibited the highest percentage of

concurrent C-to-G and A-to-G editing (Fig. S3C). Importantly, the indel
frequency of TABE system retained a similar level to GBE (Fig. 2e).
Thus, we chose the TABE system as the dual-function C-to-G and A-to-G
base editor (GGBEL.0) for further investigation.

Next, we intended to optimize the GGBE by incorporating the
chromosomal protein HMGNI and other UNG proteins. HMGN1 and
Udgx were integrated into the GGBE in different arrangements
(GGBEL.1-1.5; Fig. 3a), and the resulting constructs were tested at two
genomic loci in HEK293T cells. Our data indicated that the N-terminal
fusion of HMGNI1 (GGBEL1) did not significantly improve the con-
current C-to-G and A-to-G base editing (Fig. 3b-d and S3D, E) or the
D-value (Fig. 3e). With the addition of Udgx between APOBECI and
Cas9 (GGBELS), both the D-value and base editing efficiency was
decreased (Fig. 3b—e and S3D, E). Notably, we observed a higher PAM-
proximal C-to-G editing with HMGNI fusion between APOBEC1 and
Cas9 (GGBEL.3), indicating an improvement of the editing window
(Fig. 3b—d and S3D). Additionally, the indels of GGBEL3 significantly
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Fig. 3| Optimization of GGBE in diverse arrangements with HMGNL. a Schematic
of GGBE variants with fusion of HMGNI. b Base editing efficiency of C-to-G (left) and
A-to-G (right) across GGBEL.O-GGBEL.5 at EMX1-sitel and HEK4 in HEK293T cells.
¢ The genotypes and reads and editing frequency of indicated genotypes across
GGBEL.0-GGBELS at EMX1-sitel. d The genotypes and reads and editing frequency
of indicated genotypes across GGBEL.O-GGBEL.5 at HEK4. e Comparison of editing

frequency and D-value across GGBE1.0-GGBEL.5. Total editing is the sum of editing
for all positions. f Comparison of indel frequency across GGBE1.0-GGBEL.5 at EMX1-
sitel (left) and HEK4 (right) in HEK293T cells. Mean + SEM (b, e, f) of all individual
values of sets of n=3 independent replicates are shown. All statistical analysis for
samples were conducted using unpaired Student’s ¢ test (two-tailed) in GraphPad
Prism 8. Source data are provided as a Source Data file.
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decreased compared to GGBELO (Fig. 3f). Considering that the GBE
could also induce C-to-A/T conversion, the editing purity of cytosine
was also evaluated. The data indicated that the proportion of C-to-G
transition was lower in GGBEL.O than in the original GBE at C6 of
protospacer, whereas the GGBEL.3 induced a significantly higher C-to-
G proportion for PAM-proximal cytosines at EMX1-sitel (Fig. S3F).
Accordingly, GGBEL.O and GGBEL3 were selected for further verifica-
tion of specific concurrent C-to-G and A-to-G base editing in sub-
sequent analysis. Collectively, our data demonstrated that the GGBE
could induce a concurrent C-to-G and A-to-G base editing, and the
fusion of HMGNI could expand the editing window of GGBE.

Characterization and comparison of GGBE variants in mamma-
lian cells

To further characterize the base editing features of GGBE and its var-
iants, we then tested the GGBE1.0 and GGBE1.3 with another 12 geno-
mic loci in HEK293T cells. We observed that A-to-G and C-to-G editing
by GGBE1.0 and GGBEL.3 were mostly induced at positions 4-7 and 5-7
of the protospacer, respectively (Fig. 4a, b and S4A). The average
editing efficiency by GGBEL.0 within the editing window were 16.52%
for A-to-G conversion and 19.47% for C-to-G conversion, respectively.
GGBEL3 exhibited a moderately increased editing efficiency for both
C-to-G and A-to-G transition at most tested genomic loci, especially for
PAM-proximal base editing. The average editing efficiency of GGBEL.3
within the editing window were 25.94% and 21.82% for A-to-G and C-to-
G conversion, respectively. For most tested gRNAs, the indel frequency
of GGBEL3 was modestly lower than that of GGBEL.O (Fig. 4c). The
percentage of concurrent C-to-G and A-to-G editing between GGBEL.O
and GGBEL3 varied across these genomic loci, of which GGBEL3
exhibited similar or higher simultaneous editing compared to GGBE1.0
(Fig. S4B). In addition, a higher proportion of C-to-G was also observed
at several PAM-proximal cytosines in GGBEL3, such as the PPP1R12C-
site3-C9 and TET2-site2-C10 (Fig. S4C). Finally, the GGBEL.O or GGBE1.3
were also tested in HelLa and primary prostate carcinoma cells with
simultaneous C-to-G and A-to-G transition (Fig. S4D, E).

To further characterize the editing efficiency and specificity of
GGBE, we compared it with the AGBE, a recently developed tool that
was also reported to induce a concurrent C-to-G and A-to-G base
conversion”. Considering the components and arrangements of dual
base editors (Fig. 5a), the minAGBE-4 was selected for the comparison
at three genomic loci in HEK293T cells. The data showed that the A-to-
G and C-to-G transition in GGBE1.0 and GGBEL.3 was obviously higher
than miniAGBE-4 at RP1l-sitel and HEK4 (Fig. 5b, ¢ and S5). A sig-
nificantly higher proportion of C-to-G conversion was also observed in
GGBE variants compared to miniAGBE-4 within the editing window
(C5-C7), especially at HEK4-C6 site (Fig. 5d). More importantly, we
found that the miniAGBE-4 could induce a significantly higher indel
frequency than the GGBE variants (Fig. 5e). Overall, our analysis
demonstrated that the GGBE1.0 and GGEBL.3 introduced a concurrent
C-to-G and A-to-G base editing events with high editing efficiency and
specificity.

Off-target analysis of HMGNI-fused GBE, ABE, and GGBE in
HEK293T cells
Given that the HMGNI could alter chromatin accessibility, we further
evaluated the off-target effects of HMGNI-fused GBE, ABE, and GGBE.
To address the gRNA-dependent off-target effects, potential off-target
(OT) sites were selected for analysis using Cas-OFFinder**, or based on
previously reported genomic loci®, after which cumulative C-to-G or A-
to-G editing was calculated. Our data showed a slightly higher off-
target editing was observed in HMGNI-fused base editors (Fig. S6A, B).
Next, the effect of HMGNI-fused variants on Cas9-independent
off-target DNA editing was characterized. A previously developed
orthogonal R-loop assay* (Fig. S6C) was employed to evaluate off-
target DNA editing at three genomic loci. Briefly, HEK293T cells were

co-transfected with plasmids encoding SpBE (Streptococcus pyogenes
base editor) variants and an on-target sgRNA, along with a catalytically
inactive SaCas9 (dSaCas9) and a SaCas9 sgRNA targeting a genomic
locus unrelated to the SpBE on-target site. Then the Cas9-independent
off-target editing was estimated based on detected editing efficiency in
these dSaCas9-generated R-loops. Our data hinted that the HMGNI-
fused base editors exhibited a higher editing frequency in one of the
three R-loops (Fig. S6D). Finally, to measure the extent of cellular RNA
editing by these base editors, HEK293T cells were transfected with the
indicated base editors, after which the C-to-N and A-to-l mutation
frequencies across the transcriptome were detected. The data showed
that the HMGNI1-fused variants did not induce a higher alteration of
RNA editing (Fig. S6E), including the editing frequency (Fig. S6F) and a
number of RNA single nucleotide variants (SNVs) (Fig. S6G). Collec-
tively, our data indicated that the HMGNI1-fused base editors might
induce a modestly increased gRNA-dependent and Cas9-independent
off-target DNA editing, but not RNA off-target editing.

Potential application of GGBE in MNVs

Our results demonstrated that GGBE enables the efficient and con-
current conversion of C-to-G and A-to-G, thereby expanding the edit-
ing spectrum of conversion types. This expanded editing capability
could be used to study and treat genetic diseases associated with
MNVs, a newly identified category of genomic DNA sequence variants.
Here, we identified a series of MNVs that could be rescued or created
via GGBE through bioinformatics analysis (Supplementary Data 3). To
further demonstrate the application value of GGBE, lentivirus-
mediated knock-in*” was employed to create model MNVs-associated
loci on the chromosome of HEK293T cells, after which GGBE was
introduced to evaluate the capacity to revert these model pathogenic
MNVs. For example, Nakajo syndrome induced by the GG-to-CA
mutation of PSMBS (proteasome 20 S subunit beta 8)*® was selected
for investigation, which was characterized by skin eruption, spleno-
megaly, hyper y-globulinemia, etc*. Our data indicated that the editing
efficiency of targeted MNVs-associated clinical variants with GGBE1.O
ranged from 0.61% to 12.84% with simultaneous C-to-G and A-to-G
editing (Fig. S7A, B). Overall, our analysis showed that the reported
GGBE could be potentially employed to create cell models carrying
clinically relevant MNVs, or even treat diseases by correcting
these MNVs.

Discussion

While the C-to-G base editors have been constructed, a dual functional
C-to-G and A-to-G base editor has not been explored in detail. Further,
the research focusing on how the chromatin microenvironment
influenced genome editing is limited, especially for base editing. In this
work, a chromatin-associated factor HMGN1 was found to improve
both the base editing events of C-to-G and A-to-G. A dual deaminase-
mediated base editor (GGBE) was constructed for simultaneous C-to-G
and A-to-G conversion, which has the potential for studying and
developing genetic therapies for MNVs.

Previous research demonstrated that several chromatin-
modulating factors contributed to a similar improvement in Cas9
activity, including HMGN1, HMGBI, histone H1, and CHD1?°. However,
we found that these four factors had disparate editing enhancement
effects on the C-to-G transition. The chromosomal protein HMGNI1
exhibited the highest improvement for GBE, significantly higher than
the previous GBE variant with pioneer factor SOX2, but the editing
window did not alter. Considering that the C-to-G transition is formed
via the DNA repair pattern of translesion DNA synthesis (TLS)*’, and
HMGNI1 was reported to enhance the rate of DNA repair via reducing
the compaction of chromatin structure®, the improvement of C-to-G
was reasonable. However, HMGNI-fused A8e exhibited only a modest
increase in A-to-G yield. Although HMGNI1 might reduce the com-
pacted chromatin to promote Cas9 binding, the editing effects of GBE
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Fig. 4 | Characterization of GGBE variants in mammalian cells. a Comparison of
editing efficiency between GGBEL.O and GGBEL.3 at twelve endogenous genomic

loci in HEK293T cells. b Average C-to-G and A-to-G base editing efficiency at C1-C20
(left) and A1-A20 (right) positions of protospacer from the twelve loci of GGBEL.O
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a GGBE1.0 TaA8e(V106W) APOBEC1 Cas9
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miniAGBE-4  APOBEC3Ai TaA8e(V106W) Cas9
VISTA_GGBE1.0 VISTA_GGBE1.3 VISTA_miniAGBE-4
GAACACAAAGCATAGACTG C Reference GAACACAAAGCATAGACTG C Reference GAACACAAAGCATAGACT G C Reference
GAACACAAAGCATAGACTGC 3973%(44249reads) GAACACAAAGCATAGACTG C 3446% (44069reads)y GAACACAAAGCATAGACTG C 27.30% (46922 reads)
GAACGGAAAGCATAGACTGC 2283%(25428reads) GAACGGAAAGCATAGACTGC 823%(10520reads) GAACGGAAAGCATAGACTG C 969% (16656 reads)
GAACGGGAAGCATAGACTGC 608%(6775reads) GAACGGGAAGCATAGACTGC 754%(9%648reads) GAACGGAAAGTATAGACTG C 530% (9102 reads)
GAACGCGAAGCATAGACTGC 141%(1570reads) GAACGCGAAGCATAGACTGC 751%(9602reads) GAACGTAAAGTATAGACTG C 218% (3743 reads)
GAACGTAAAGCATAGACTGC 108%(1199reads) GAACGGAAAGCGTAGACTGC 427%(5426reads) GAACGGAAAGGATAGACTG C 210% (3616 reads)
GAACGGAAAGCGTAGACTGC 1,04%(1161reads) GAACGGAAAGCATGGACTGC 245%(3139reads) GAACGGGAAGCATAGACTG C 209% (3587 reads)
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and ABE are also influenced by other molecular mechanisms. While C-
to-G conversion is mediated via UDG and DNA polymerase of TLS in
eukaryotes*°, A-to-G conversion is recognized as the inhibition of
hypoxanthine excision’. Accordingly, while an open chromatin envir-
onment might facilitate the assembly of TLS-related repair factors to
improve the C-to-G transition, the excision of hypoxanthine might not
be influenced. However, we could not exclude other mechanisms
accounting for the discrepancy between the effect of HMGNI on the
GBE and A8e.

A discrepant effect on the indel products between HMGNI1-fused
GBE and A8e was observed. The indel products of HMGNI1-GBE
increased at the majority of testing sites, while that of HMGNI-A8e did
not. Notably, three TET2 sites tested by us in C-to-G conversion
exhibited an obvious alteration of indel products. We assumed that the
sequence context or the chromatin microenvironment might influence
the indel products caused by a base editor. Additionally, histone-
associated factors TIP60*, USP22****, and RNF168**, which were
observed to improve the C-to-G conversion, which was reported to be
involved in DNA repair. Nevertheless, their function in base editing
remains to be explored in more detail in the future. Notably, the his-
tone methylase EZH2***°, which was reported to induce chromatin
compaction, resulted in a significant decrease of C-to-G and A-to-G
transition frequency, which further demonstrated the negative influ-
ence of a compacted chromatin microenvironment on base editing.
More importantly, overexpression of HMGN1 did not induce any
negative effects on the expression of the base editor, transcription of
the targeted loci, or cell viability.

Next, to further confirm the effects of HMGNI and construct
improved base editor variants, diverse arrangements with HMGNI1 and
other efficient components were attempted. We found that the
HMGNI1-fused miniCGBE exhibited a higher C-to-G conversion effi-
ciency, further indicating a positive role of HMGNL. In addition, given
that the human UNG was reported to negatively affect the C-to-G
transition, we also replaced it with Ungl and Udgx to construct addi-
tional GBE variants. The HMGNI1-GBE-Udgx exhibited a higher editing
efficiency at the majority of testing loci, especially for the PAM-
proximal cytosines. This finding was consistent with previous
research’. Finally, HMGNI-A8e-M was observed to induce a higher base
transition for PAM-proximal adenines, which was similar to the fusion
of pioneer factors between Cas9 and deaminase. We hypothesized that
the HMGNI could improve the chromatin accessibility and also act as a
long linker in this type fusion, hence increasing the binding capacity
between deaminase and PAM-proximal bases. Overall, HMGN1 was
found to positively influence the base editing efficiency of GBE
and ABE.

Although an AGBE system has been constructed recently, its
editing efficiency and specificity were relatively low". To extend the
genome editing possibility and improve the specificity, a GGBE cata-
lyzing the concurrent C-to-G and A-to-G conversion was established by
the fusion of GBE and A8e. The addition of UNG or Udgx to GGBE did
not increase the editing yield, suggesting that the concurrent base
editing might be negatively affected by the activity of glycosylase,
which was consistent with the AGBE system”. To ensure the balance of
two types of base conversion, we tested several arrangements of the
deaminases, and introduced a more active APOBEC1 mutant into
GGBE. The TadA8e-APOBEC1-Cas9 assembly was found to exhibit the
optimal base editing pattern. To potentially improve the editing
activity of GGBE, several variants incorporating HMGN1 were con-
structed. Unfortunately, the N-terminal fusion (GGBEL.1) was not found
to improve the efficiency of concurrent base editing. These data
indicate that simultaneous A-to-G and C-to-G base editing might
potentially depend on a different molecular mechanism than single-
base transition. Accordingly, the addition of HMGNI to N-terminal did
not result in higher concurrent editing, despite we could not exclude
the possibility that GGBEL1 could improve the efficiency at other

genomic loci with low intrinsic chromatin accessibility. Subsequently,
a GGBE variant in which HMGN1 was placed between APOBECI and
Cas9, called GGBEL.3, exhibited an improved editing window and
decreased indel frequency. This fusion pattern increased the editing
window possibly due to the role of a long linker and improved chro-
matin accessibility. We hypothesized that the decreased indel bypro-
ducts might be caused by the alteration of the editing window and also
the chromatin accessibility. In addition, a comparison between GGBE
and AGBE revealed that the former achieved more specific and effi-
cient concurrent editing of C-to-G and A-to-G. Moreover, the indel
frequency of AGBE was significantly higher than that of GGBE, which
further demonstrated the superiority of our construct. More impor-
tantly, the HMGNI-fused base editor variants also induced slightly
higher gRNA-dependent and Cas9-independent DNA off-target effects
but not the RNA off-target effects. This phenomenon is in accord with
the positive function of HMGNI in base editing possibly due to the
increased chromatin accessibility, which might not affect RNA editing
caused by deaminases. Finally, since the GGBE could induce a dual-
type base conversion, it could be applied for a spectrum of scenarios,
such as the correction or creation of MNVs, and mutagenesis screens,
as well as for programmable installation of transcription factor-binding
sites. Thus, several clinically relevant MNVs were also constructed or
corrected in cellular models with substantial editing efficiencies.
However, the bystanders were also observed in these MNVs, which
could be further optimized using deaminases with a narrow editing
windows.

In summary, the construction of HMGNI1-fused GBE, ABE, and
GGBE has expanded the research frontiers of BEs, and enriched the
base editing toolbox in mammalian cells.

Methods

Ethics statement

The study complied with all the ethical regulations for work with
patients. The study was approved by the Ethics Committee of Union
Hospital, Tongji Medical College, Huazhong University of Science and
Technology and written informed consent was obtained from all
patients.

Cell culture, transfection, and CCKS8 assay

Cell lines used in this research were purchased from the ATCC.
HEK293T and Hela cells were cultured in DMEM supplemented with
10% FBS in the humidified incubator equilibrated with 5% CO, at 37 °C.
For transfected experiments, cells were seeded in 24-well plates
(Corning, USA) and performed using polyethyienimine (Polysciences,
USA) based on the manufacturer’s instructions. Briefly, 600 ng of base
editor and 300 ng of sgRNA-expressing plasmid were together trans-
fected with 50 pl of Opti-MEM (Gibco, USA) containing 2.7 pl of poly-
ethyienimine for 24 h. And then cells were replaced with fresh medium
with 5 pg/ml puromycin (Merck, USA) for another 4 d. Finally, genomic
DNA was extracted via QuickExtract DNA Extraction Solution (Epi-
centre, USA). On-target genomic regions (200 bp~300 bp) of interest
were amplified by PCR for high-throughput DNA sequencing. The cell
viability was evaluated via CCK8 analysis. Briefly, the HEK293T cells
were seeded into 96-well plates and transfected with indicated base
editors at approximately 60% confluency. Then after 48 and 72h
transfection, cell viability was measured by CCK8 reagent according to
the manufacturer’s instructions (DOJINDO, Japan).

Culture, transfection, and assay of human primary prostate
carcinoma cell

The primary cell was dissected and cultured as previously reported®.
Briefly, fresh tissue biopsy samples were placed in media DMEM
(Invitrogen, USA) with GlutaMAX (Invitrogen, USA), 100 U/ml peni-
cillin, 100 pg/ml streptomycin (Gibcom USA), Primocin 100 g/ml
(InvivoGen, USA), and 10 pmol/I ROCK inhibitor (Selleck Chemical Inc.,
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USA) and washed. The dissected tissue was enzymatically digested
with 250 U/ml of collagenase IV (Life Technologies, USA) and TrypLE
express (Gibco) in a ratio 1:2 with Collagenase IV and then centrifuged.
The pellet was washed and resuspended with prostate-specific culture
media composed of DMEM/F12 (Invitrogen, USA) with GlutaMAX,
100 U/ml penicillin, 100 Pg/ml streptomycin (Gibco, USA), Primocin
100 Mg/mL (InvitroGen, USA), B27 (Gibco, USA), N-Acetylcysteine
1.25mM (Sigma-Aldrich, USA), Mouse Recombinant EGF 50 ng/ml
(Invitrogen, USA), Human Recombinant FGF-10 20 ng/ml (Peprotech,
USA), Recombinant Human FGF-basic 1ng/ ml (Peprotech), A-83-01
500 nM (Tocris, USA), SB202190 10 kM (Sigma-Aldrich, USA), Nicoti-
naminde 10 mM (Sigma-Aldrich, USA), (DiHydro) Testosterone 1nM
(Sigma-Aldrich, USA), PGE2 1 MM (R&D Systems, USA), Noggin condi-
tioned media (5%) and R-spondin conditioned media (5%). The final
resuspended pellet was combined with growth factor-reduced Matri-
gel (Corning, USA) in a 1:2 volume ratio and then pipetted onto a 24-
well cell suspension culture plate.

The primary cells were transfected with indicated base editor and
sgRNA plasmids using lipo3000 (GlpBio, USA). After 24 h transfection,
cells were replaced with fresh medium with 1 pg/ml puromycin (Merck,
USA) for another 5 d. Finally, genomic DNA was extracted via Quick-
Extract DNA Extraction Solution (Epicentre, USA) and on-target
genomic regions were amplified by PCR and analyzed with high-
throughput DNA sequencing.

Plasmid construction

Four chromatin-modulating proteins HMGB1, HMGN1, CHD1, and
Histone H1 were synthesized by AZENTA. The other chromatin-
associated factors were amplified with Phusion DNA polymerase
(NEB, USA) from HEK293T cDNA library. PCR products were gel pur-
ified, digested with Dpnl restriction enzyme (NEB, USA), and assem-
bled via Gibson assembly based on the manufacturer’s instructions. All
gRNA-expression plasmids were assembled via Golden Gate with the
protospacer sequence embedded in the primers, and RNF2 sgRNA
expression plasmids were used as the template’. The main primers are
listed in Supplementary Data 1.

Strains and culture conditions

E. coli Trans5a was used as the cloning host and cultured at 37°C in
lysogeny broth (LB, 1% (w/v) tryptone, 0.5% (w/v) yeast extract, and 1%
(w/v) NaCl). 100 mg/L Ampicillin (Sigma, USA) were used for screen of
positive cloning.

Western blotting

The western blotting assay was performed as previously reported*s.
Briefly, cellular extracts from HEK293T cells were prepared with lysis
buffer (50 mM Tris-HCI, pH8.0, 150 mM NaCl, 0.5% NP-40) for 30 min
at 4°C and then denatured for 10 min at 95 °C. The cell lysates were
resolved using 10% SDS-PAGE gels and transferred onto acetate cel-
lulose membranes. For incubation, membranes were incubated with
Cas9 (Beyotime Biotechnology, dilution: 1:2000, Cat:AF0123, China) or
GAPDH (ABclonal, dilution: 1:10,000, Cat:AC002, USA) antibodies at
4 °C overnight followed by incubation with a secondary antibody HRP-
conjugated Affinipure Goat Anti-Mouse IgG (H + L) (Proteintech, dilu-
tion: 1:5000, Cat:AS003, USA). Immunoreactive bands were visualized
using western blotting luminal reagent (Millipore, USA) according to
the manufacturer’s recommendation.

High-throughput DNA sequencing of genomic DNA samples and
data analysis

Next-generation sequencing library preparations and analysis were
performed as previously reported®. Briefly, purified PCR fragments
were treated in one reaction with End Prep Enzyme Mix for end repair,
5 phosphorylation and dA tailing, which was followed by T-A ligation
to add adapters to both ends, of which PCR products were purified and

quantified. Then the sequencing was carried out on Illumina HiSeq
instrument according to the manufacturer’s instructions.

Analysis of amplicon sequencing data were performed using
CRISPRess02 v.2.0.45 in batch mode?®, with window parameters set to -
wc 10 -w 20. The base conversion frequency was obtained with
the output file ‘Nucleotide_percentage summary.txt’ and indel rates
was acquired with ‘CRISPRessoBatch _quantification_of editing -
frequency.txt’ for base editor experiments. All genomic loci and deep
sequencing oligos of sgRNA are listed in Supplementary Data 2.

RT PCR and Real-time RT PCR (qPCR)

Total cellular RNAs were isolated with SimplyP kit (Biospin, China) and
used for the first strand cDNA synthesis with the Reverse Transcription
System (TaKaRa, Japan). Quantitation of all gene transcripts was done
by qPCR using Power SYBR Green PCR Master Mix and a Roche Roche
LC96 sequence detection system with the expression of GAPDH as an
internal control. The primer pairs used were: EMX1, 5-TGTGCAT
GTGCCTGGCTG-3 (forward) and 5-CTTGGCCACCAAGGACTCTA-3’
(reverse); HIRA, 5-CTGGACTCTGAATGGGCTGG-3’ (forward) and 5
GGCTAGGCTCTTGCCATAGG-3’ (reverse); and GAPDH, 5-CTGGGC
TACACTGAGCACC-3" (forward) and 5-AAGTGGTCGTTGAGGGCAA
TG-3' (reverse).

RNA-seq analysis and SNVs calling

For transcriptome analysis, ~10° cells of each sample were collected
and used for RNA extraction. The RNA-seq libraries were constructed
and the high-throughput transcriptome sequencing was carried out
with mina HiSeq instrument by the AZENTA company. For data
analysis®, qualified reads were mapped to the reference genome
(Ensemble GRCh38) using STAR in 2-pass mode with default para-
meters. Then the Picard tool was used to sort and mark duplicates of
the mapped BAM files, which were subject to split reads that spanned
splice junctions, base recalibration, and variant calling with SplitNCi-
garReads, BaseRecalibrator, and HaplotypeCaller tools from GATK
respectively.

The calling variants were filtered with default parameters using
VariantFiltration tool from GATK. Variant loci in base editor over-
expression experiments were filtered to exclude sites without high-
confidence reference genotype calls in the control experiment. Base
edits labeled as C-to-N comprise C-to-U/A/G edits called on the positive
strand as well as G-to-A/U/C edits sourced from the negative strand.
Base edits labeled as A-to-l comprise A-to-l edits called on the positive
strand as well as T-to-C edits sourced from the negative strand.

Analysis of potential targets for the correction or creation of
MNVs by GGBE

A list of MNVs was obtained from previous reports''?, which were
screened to detect disease-correcting or disease-creating modifica-
tions enabled by GGBE. Disease-correcting or -creating conversions are
defined as having targetable C and A bases with matching T and G
bases in the restricted position (base position 5-7 of the protospacer).
Patterns for selected disease-correcting MNV codons include GNG >
ANC, GGN>ACN, NGG>NAC, GNG>CNA, GGN > CAN, and NGG >
NCA; whereas patterns for disease-creating include ACN >GGN,
ANC > GNG, CAN > GGN, CNA > GNG, NAC > NGG and NCA > NGG. The
filtered MNVs are listed in Supplementary Data 3.

11,12

Lentivirus infection and base editing of MNVs-relevant targets

The generation of lentiviruses was conducted according to the pre-
vious reports’™ Briefly, synthetic target sequences containing
pathogenic point mutations together with psPAX2 and pMD2.G, were
co-transfected into the packaging cell line HEK293T at a weight ratio of
3:2:1. Viral supernatants were collected 48 h later, clarified by filtration,
and concentrated by ultracentrifugation. Then the concentrated
viruses were used to infect 5-10° cells (20-30% confluence) in a 60-mm
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dish with 5 mg/mL polybrene. Infected cells were selected by 4 pg mI™
blasticidin (Solarbio) to the culture medium. The target sequence-
transduced HEK293T cells were then transfected with a mixture of
plasmid encoding GGBEL.0 and targeted gRNA. After 5 days treatment
with puromycin, cells were collected and the genomic DNA was sub-
jected to deep sequencing to measure the editing efficiency of base
editing.

Statistics and reproducibility

Unless otherwise noted, all data are presented as means +s.d. and
analyzed with statistical methods from three independent experi-
ments. The significance of the difference between the control and
experiment group was calculated via student’s ¢ test using GraphPad
Prism 8. P<0.05 was considered to be statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

HTS data generated in this study have been deposited in the NCBI
Sequence Read Archive database under accession code
PRJNA946328. Source data are provided with this paper.

Code availability

Source code for CRISPResso2, STAR, Picard and GATK are available
on github (https://github.com/pinellolab/CRISPRess02; https://
github.com/alexdobin/STAR; https://github.com/broadinstitute/
picard; https://github.com/broadinstitute/gatk).

References

1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Pro-
grammable editing of a target base in genomic DNA without
double-stranded DNA cleavage. Nature 533, 420-424 (2016).

2. Gaudelli, N. M. et al. Programmable base editing of AsT to G-C in
genomic DNA without DNA cleavage. Nature 551, 464-471 (2017).

3. Chen, L. et al. Programmable C:G to G:C genome editing with
CRISPR-Cas9-directed base excision repair proteins. Nat. Commun.
12, 1384 (2021).

4. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted
DNA transversions in human cells. Nat. Biotechnol. 39, 41-46 (2021).

5. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G
base changes. Nat. Biotechnol. 39, 35-40 (2021).

6. Koblan, L. W. et al. In vivo base editing rescues Hutchinson-Gilford
progeria syndrome in mice. Nature 589, 608-614 (2021).

7. Zeng, J. et al. Therapeutic base editing of human hematopoietic
stem cells. Nat. Med. 26, 535-541 (2020).

8. Richter, M. F. et al. Phage-assisted evolution of an adenine base
editor with improved Cas domain compatibility and activity. Nat.
Biotechnol. 38, 883-891 (2020).

9. Koblan, L. W. et al. Efficient C-G-to-G+C base editors developed
using CRISPRi screens, target-library analysis, and machine learn-
ing. Nat. Biotechnol. 39, 1414-1425 (2021).

10. Sun, N. et al. Reconstructed glycosylase base editors GBE2.0 with
enhanced C-to-G base editing efficiency and purity. Mol. Ther. J.
Am. Soc. Gene Ther. 30, 2452-2463 (2022).

1. Wang, Q. et al. Landscape of multi-nucleotide variants in 125,748
human exomes and 15,708 genomes. Nat. Commun. 1,

2539 (2020).

12. Karczewski, K. J. et al. The mutational constraint spectrum quanti-
fied from variation in 141,456 humans. Nature 581, 434-443 (2020).

13. Grinewald, J. et al. A dual-deaminase CRISPR base editor enables
concurrent adenine and cytosine editing. Nat. Biotechnol. 38,
861-864 (2020).

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Sakata, R. C. et al. Base editors for simultaneous introduction of
C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865-869 (2020).
Xie, J. et al. ACBE, a new base editor for simultaneous C-to-T and A-
to-G substitutions in mammalian systems. BMC Biol. 18, 131
(2020).

Zhang, X. et al. Dual base editor catalyzes both cytosine and ade-
nine base conversions in human cells. Nat. Biotechnol. 38,
856-860 (2020).

Liang, Y. et al. AGBE: a dual deaminase-mediated base editor by
fusing CGBE with ABE for creating a saturated mutant population
with multiple editing patterns. Nucleic Acids Res. 50,

5384-5399 (2022).

Park, H. D. et al. Three patients with glycogen storage disease type Il
and the mutational spectrum of GAA in Korean patients. Ann. Clin.
Lab. Sci. 43, 311-316 (2013).

Anzalone, A. V. et al. Search-and-replace genome editing without
double-strand breaks or donor DNA. Nature 576, 149-157 (2019).
Ding, X. et al. Improving CRISPR-Cas9 genome editing efficiency by
fusion with chromatin-modulating peptides. CRISPR J. 2,

51-63 (2019).

Liu, G., Yin, K., Zhang, Q., Gao, C. & Qiu, J. L. Modulating chromatin
accessibility by transactivation and targeting proximal dsgRNAs
enhances Cas9 editing efficiency in vivo. Genome Biol. 20,

145 (2019).

Shin, H. R. et al. Small-molecule inhibitors of histone deacetylase
improve CRISPR-based adenine base editing. Nucleic Acids Res. 49,
2390-2399 (2021).

Becker, J. R. et al. BARD1 reads H2A lysine 15 ubiquitination to direct
homologous recombination. Nature 596, 433-437 (2021).

Fnu, S. et al. Methylation of histone H3 lysine 36 enhances DNA
repair by nonhomologous end-joining. Proc. Natl Acad. Sci. USA
108, 540-545 (2011).

Li, J., Braganza, A. & Sobol, R. W. Base excision repair facilitates a
functional relationship between Guanine oxidation and histone
demethylation. Antioxid. Redox Signal. 18, 2429-2443 (2013).
Dong, X. et al. Enhancing glycosylase base-editor activity by fusion
to transactivation modules. Cell Rep. 40, 111090 (2022).

Yang, C. et al. Pioneer factor improves CRISPR-based C-To-G and C-
To-T base editing. Adv. Sci. 9, 2202957 (2022).

Clement, K. et al. CRISPResso2 provides accurate and rapid gen-
ome editing sequence analysis. Nat. Biotechnol. 37, 224-226 (2019).
Ahn, W. C. et al. Covalent binding of uracil DNA glycosylase UdgX to
abasic DNA upon uracil excision. Nat. Chem. Biol. 15,

607-614 (2019).

Tu, J., Chen,R., Yang, Y., Cao, W. & Xie, W. Suicide inactivation of the
uracil DNA glycosylase UdgX by covalent complex formation. Nat.
Chem. Biol. 15, 615-622 (2019).

Birger, Y. et al. Chromosomal protein HMGN1 enhances the rate of
DNA repair in chromatin. EMBO J. 22, 1665-1675 (2003).

Murphy, K. J. et al. HMGN1 and 2 remodel core and linker histone tail
domains within chromatin. Nucleic Acids Res. 45,

9917-9930 (2017).

Griinewald, J. et al. Transcriptome-wide off-target RNA editing
induced by CRISPR-guided DNA base editors. Nature 569,
433-437 (2019).

Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile
algorithm that searches for potential off-target sites of Cas9 RNA-
guided endonucleases. Bioinformatics 30, 1473-1475 (2014).

Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and mini-
mization of cellular RNA editing by DNA adenine base editors. Sci.
Adv. 5, eaax5717 (2019).

Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and
minimization of Cas9-independent off-target DNA editing by cyto-
sine base editors. Nat. Biotechnol. 38, 620-628 (2020).

Nature Communications | (2023)14:2430


https://www.ncbi.nlm.nih.gov/bioproject/PRJNA946328
https://github.com/pinellolab/CRISPResso2
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/gatk

Article

https://doi.org/10.1038/s41467-023-38193-2

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

Song, M. et al. Sequence-specific prediction of the efficiencies of
adenine and cytosine base editors. Nat. Biotechnol. 38,
1037-1043 (2020).

Ebstein, F., Poli Harlowe, M. C., Studencka-Turski, M. & Kriiger, E.
Contribution of the unfolded protein response (UPR) to the patho-
genesis of proteasome-associated autoinflammatory syndromes
(PRAAS). Front. Immunol. 10, 2756 (2019).

Kanazawa, N. Nakajo-Nishimura syndrome: an autoinflammatory
disorder showing pernio-like rashes and progressive partial lipo-
dystrophy. Allergol. Int. 61, 197-206 (2012).

Jiang, G. et al. Molecular mechanism of the cytosine CRISPR base
editing process and the roles of translesion DNA polymerases. ACS
Synth. Biol. 10, 3353-3358 (2021).

Lashgari, A., Kougnassoukou Tchara, P. E., Lambert, J. P. & Coté, J.
New insights into the DNA repair pathway choice with NuA4/TIP60.
DNA Repair 113, 103315 (2022).

Nardi, I. K., Stark, J. M., Larsen, A., Salgia, R. & Raz, D. J. USP22
interacts with PALB2 and promotes chemotherapy resistance via
homologous recombination of DNA double-strand breaks. Mol.
Cancer Res. 18, 424-435 (2020).

McCann, J. J. et al. USP22 functions as an oncogenic driver in
prostate cancer by regulating cell proliferation and DNA repair.
Cancer Res. 80, 430-443 (2020).

Wang, A. et al. USP22 induces cisplatin resistance in lung
adenocarcinoma by regulating yH2AX-mediated DNA damage
repair and Ku70/bax-mediated apoptosis. Front. Pharmacol. 8,
274 (2017).

Krais, J. J. et al. RNF168-mediated localization of BARD1 recruits the
BRCA1-PALB2 complex to DNA damage. Nat. Commun. 12,

5016 (2021).

Katsuki, Y. et al. RNF168 E3 ligase participates in ubiquitin signaling
and recruitment of SLX4 during DNA crosslink repair. Cell Rep. 37,
109879 (2021).

Kim, J. J. et al. A novel reciprocal crosstalk between RNF168 and
PARP1 to regulate DNA repair processes. Mol. Cells 41,

799-807 (2018).

Grau, D. et al. Structures of monomeric and dimeric PRC2:EZH1
reveal flexible modules involved in chromatin compaction. Nat.
Commun. 12, 714 (2021).

Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin
through different mechanisms. Mol. Cell 32, 503-518 (2008).
Wang, K. et al. WNT5a signaling through ROR2 activates the hippo
pathway to suppress YAP1 activity and tumor growth. Cancer Res.
83, 1016-1030 (2023).

Li, B. et al. Sequence motifs and prediction model of GBE editing
outcomes based on target library analysis and machine learning. J.
Genet. Genomics 49, 254-257 (2022).

Yang, C. et al. Circadian rhythm is disrupted by ZNF704 in breast
carcinogenesis. Cancer Res. 80, 4114-4128 (2020).

Acknowledgements

This research was financially supported by the National Natural Science
Foundation of China (82203238, 32225031, 32171449), Tianjin Synthetic
Biotechnology Innovation Capacity Improvement Project (TSBICIP-
CXRC-034, TSBICIP-KJGG-017).

Author contributions

C.Y., J.L., Z.C., X.Z., and C.B. designed the research and wrote the
manuscript. C.Y. performed the experiments studies, and the compu-
tational studies, and analyzed data. Z.M., K.W., X.D., and M.H. performed
experiments. Q.L. and X.Z. performed the computational studies and
analyzed data.

Competing interests
The authors declare no conflicts of interest.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38193-2.

Correspondence and requests for materials should be addressed to
Changhao Bi or Xueli Zhang.

Peer review information Nature Communications thanks Liangxue Lai
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Nature Communications | (2023)14:2430

12


https://doi.org/10.1038/s41467-023-38193-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing
	Results
	Analysis of chromatin-associated factors for improving GBE and ABE editing
	Construction of simultaneous C•G-to-G•C and A•T-to-G•C base editors
	Characterization and comparison of GGBE variants in mammalian cells
	Off-target analysis of HMGN1-fused GBE, ABE, and GGBE in HEK293T�cells
	Potential application of GGBE in MNVs

	Discussion
	Methods
	Ethics statement
	Cell culture, transfection, and CCK8 assay
	Culture, transfection, and assay of human primary prostate carcinoma cell
	Plasmid construction
	Strains and culture conditions
	Western blotting
	High-throughput DNA sequencing of genomic DNA samples and data analysis
	RT PCR and Real-time RT PCR (qPCR)
	RNA-seq analysis and SNVs calling
	Analysis of potential targets for the correction or creation of MNVs by GGBE
	Lentivirus infection and base editing of MNVs-relevant targets
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




