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Chemistry-intuitive explanation of graph
neural networks for molecular property
prediction with substructure masking

Zhenxing Wu1,2, Jike Wang1,2,3, Hongyan Du1,2, Dejun Jiang 1,2, Yu Kang 1,
Dan Li1, Peichen Pan 1, Yafeng Deng2, Dongsheng Cao 4 ,
Chang-Yu Hsieh 1 & Tingjun Hou 1

Graph neural networks (GNNs) have been widely used in molecular property
prediction, but explaining their black-box predictions is still a challenge. Most
existing explanation methods for GNNs in chemistry focus on attributing
model predictions to individual nodes, edges or fragments that are not
necessarily derived from a chemically meaningful segmentation of molecules.
To address this challenge, we propose a method named substructure mask
explanation (SME). SME is based on well-established molecular segmentation
methods and provides an interpretation that aligns with the understanding of
chemists. We apply SME to elucidate how GNNs learn to predict aqueous
solubility, genotoxicity, cardiotoxicity and blood–brain barrier permeation for
small molecules. SME provides interpretation that is consistent with the
understanding of chemists, alerts them to unreliable performance, and guides
them in structural optimization for target properties. Hence, we believe that
SME empowers chemists to confidently mine structure-activity relationship
(SAR) from reliable GNNs through a transparent inspection on how GNNs pick
up useful signals when learning from data.

In the past decades, deep learning (DL) has gained tractions and has
been successfully applied to predict a broad range of molecular
properties due to its strong capability to model complex nonlinear
relationships between structures and properties1–5. However, this
superior capability to capture intricate nonlinear relationships is ori-
ginally achieved at the expense of model interpretability, leading to
black-box predictions without insights6–8. For scientific investigations,
such as drug discovery, what we want to know is not only the predic-
tions of a model but also an explanation to validate scientific
hypothesis and gain actionable insights to refine our investigations,
such as hints for molecular structural optimization7.

Ideally, an insightful interpretation should uncover potentially
generalizable principles or actionable insights behind the structure-

activity or structure-property relationships, thereby allowing scientists
to gauge the reliability of model predictions. In fact, some researchers
inmedicinal chemistrymight value the interpretability of amodel over
its accuracy8–11 if a small sacrifice of accuracy can enhance its inter-
pretability.Motivated by the reasons above,many explainable artificial
intelligence (XAI)methods have been proposed to address the general
lack of interpretability in molecular GNNs in order to augment human
reasoning and decision-making7,8,12,13.

However, most existing methods directly adopt attribution
methods for XAI developed in other fields. Different from other
unrelated applications, such as natural language processing and image
recognition, in whichDL has been shown to excel, there is no naturally
applicable, complete, and ‘raw’ molecular representation. After all,
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molecules themselves aremodels that scientists conceive8. The choice
of molecular representation could be a limiting factor for model
explanation and performance because it inherently determines the
kind of chemical information readily available for model training and
prediction. A common choice is molecular graphs, which intuitively
correspond to chemical structures (nodes to atoms, edges to chemical
bonds, and subgraphs to substructures such as functional groups).
This observation indicates molecular graphs as a suitable representa-
tionwith great potential for chemist-friendly interpretability. Recently,
several approaches have been proposed to analyze and interpret how
GNNs make predictions14–19. However, most methods essentially attri-
bute GNNs’ predictions to individual nodes, edges, or node features.
This kind of interpretability is only partially compatible with chemists’
intuition at best. Chemists are more accustomed to comprehending
the causal relationship betweenmolecular structures and properties in
terms of chemically meaningful substructures, such as functional
groups, rather than individual atoms or bonds.

Following the survey work reported by Yuan et al.19, existing
explanation methods can be categorized into 5 classes: gradients/
features-based methods, decomposition methods, surrogate meth-
ods, generation-based methods, and perturbation-based methods.
Gradients/features-based methods employ gradient values or feature
values to assess the importance of input graph nodes, edges or node
features by extending existing image explanation techniques to the
graph domain, such as sensitivity analysis (SA)18, guided back-
propagation (GBP)18 and class activation mapping (CAM)20. Decom-
position methods decompose the original model predictions into
several terms following the backpropagation and take these terms as
the importance scores of the corresponding input features (graph
nodes or edges) to explain GNNmodels, and the representative works
in this category include layer-wise relevance propagation (LRP)18,21,
excitation backpropagation (Excitation BP)20 and GNN-LRP22. The
above two types of methods use gradients and closely-related back-
propagation to explain models, so they can only be used to explain a
single GNNmodel and cannot be applied to study ensemblemethods.
Since many high-performing property prediction models are inte-
grated from multiple sub-models, we have to rely on alternative
methods to derive explanations. For instance, surrogate methods do
not suffer from the above constraints. They employ simple and inter-
pretable models such as linear models based on interpretable
descriptors to capture local relationships of deep graph models
around the input data, and the representative works include
GraphLime23 and PGM-Explainer17. The explanations of the prediction
of a surrogate model are taken as the explanation for the original
model. However, the surrogate methods usually do not work with
molecular graphs and are not fully compatible with expert knowledge
based on reasoning with molecular graphs. XGNN is the only
generation-based method that renders high-level explanations of
GNNs by generating graph patterns that support the given prediction24

of an underlying GNN model. As the only global GNN interpretation
method, it has made a good attempt, but the explainable graph pat-
terns it generates are often meaningless chemical fragments and the
explanation related to mutagenicity is not intuitive. There are also
perturbation-based methods that identify key features by monitoring
the degrees of changes in the predictions through perturbing different
input features, such asGNNExplainer15, PGExplainer16 andSubgraphX19.
GNNExplainer and PGExplainer provide subgraph-level explanations
by combining nodes or edges to form subgraphs through post-pro-
cessing, but the important nodes or edges highlighted by these
methods are not guaranteed to be connected as one fragment. Sub-
graphX can identify connected subgraphs with Monte Carlo tree
search. However, due to the complexity of chemistry rules, the frag-
ments uncovered by these perturbative methods are often not che-
mically meaningful and prone to generating confusing or even
frustrating interpretations for chemists. For example, SubgraphX

splits a common functional group such as nitro into oxygen atoms and
nitrogen atoms for separate masking, but a nitro group should be
treated as a whole when deducing structure-property relationships.
Moreover, similar to gradient-based methods, SubgraphX cannot be
directly used to study a consensus model integrated by multiple sub-
models, since it identifies subgraphs through Monte Carlo tree search
and different subgraphs may be identified in different sub-models.
Given a trained consensus GNN model and an input graph, different
sub-modelswill identify different important subgraphs, so it is difficult
to give a consistent and unified important subgraph for a consensus
model. As summarized above, all existing methods could potentially
be improved to better suit the needs of the chemistry community, and
a more detailed account on all these methods can be found in
reference14.

In short, chemists prefer to investigate molecular properties and
reactivity in terms of chemically meaningful fragments rather than
individual atoms or bonds without a proper characterization of the
atomic environment. For example, when medicinal chemists try to
optimize the structure of a lead compound, they often consider the
replacement of bioisosteres and functional groups. A toxophore
commonly used for toxicity structural alerts is also defined in terms of
a chemical group that is responsible for toxic effects rather than a
simple atomorbondwithout context. Similar reasoning canbe applied
to appreciate the benefits of introducing the concept of pharmaco-
phore in drug design. All in all, it is more natural to explore the
molecular properties in terms of fragments/subgraphs rather than
atoms/bondswithout a proper context. However, nomethod has been
developed to explain the predictions from GNNs by attributing pre-
dictions to fragments derived from chemical knowledge. For instance,
one can segment a molecule by breaking chemical bonds to generate
retrosynthetically feasible chemical substructures (BRICS)25.

In this work, motivated by the lack of a proper XAI technique for
analyzing molecular GNNs strictly in terms of chemically meaningful
fragments, we propose a perturbation-based explanation method
named Substructure-Mask Explanation (SME) that effectively identifies
themost crucial set of substructures in amolecule that are responsible
for a model’s prediction. Three different methods for molecular frag-
mentation (i.e., BRICS substructures25, Murcko substructures26,27, and
functional groups) are incorporated into SME inorder to give chemists
a high flexibility by using various fragment combinations (from dif-
ferent fragmentation methods) to dissect a molecule in a way that is
most appropriate for the task at hand and render a transparent viewon
the structure-property relationships hypothesized by a
molecular GNN.

Four examples (i.e., aqueous solubility, genotoxicity, cardiotoxi-
city, and blood-brain barrier permeation for small molecules) are used
to illustrate howchemists canbenefit fromusing SMEto rationalize the
predictions of a reliable GNN model for the five aforementioned
applications. Different fromthepreviousGNN interpretationmethods,
SME can be used to explain property prediction models at the level of
chemical intuitive fragments rather than at the level of atomsor bonds
and hence provide meaningful SAR information to help medicinal
chemists in structural optimization and de novo design.

Results
To verify the effectiveness of SME in explaining molecular property
prediction models, four different consensus models (ESOL, Muta-
genicity, hERG, and BBBP) are developed. As shown in Table 1, each
model achieved excellent performance on the test set. The ESOL
model achieves the performance of R2 of 0.927, and the Mutagenicity,
hERG, and BBBP models also achieve sufficiently high ROC-AUC of
0.901, 0.862, and 0.919, respectively.

To illustrate the benefits of working with an attribution
analysis that conforms to chemist’s working style, we further
discuss five application scenarios in which SME can help us better
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utilize DL models for molecular property predictions and drug
design. Under each scenario, we recommend different fragmen-
tation schemes to go along with SME for analysis. A succinct
overview is provided below.

Scenarios 1. Mine the SAR for a specific molecule (i.e., local
explanation): analyze the attributions of different substructures in a
molecule, and it would be better to consider all fragmentation
schemes (i.e., a combination of BRICS substructures, Murcko sub-
structures and functional groups);

Scenarios 2. Identify themost positive/negative components of a
specific molecule: obtain the combined fragments with the most
positive/negative attribution through the combination of BRICS sub-
structures and Murcko substructures;

Scenarios 3. Mine the SAR for the desired properties (i.e., global
explanation) on a statistical basis: analyze the functional group attri-
butions on the whole dataset;

Scenarios 4. Provide guidance for structural optimization: com-
pare the average attributions of different functional groups.

Scenarios 5. Molecule generation for desired properties: recom-
bination of BRICS substructures with SME attribution scores.

SME attribution visualization of Aqueous solubility
Chemists have explored and broadly understood the effect of a large
number of functional groups on water solubility. Hence, solubility is
often used to validate model explanation methods and it provides a
good setting for testing SME. By masking different substructures
(BRICS substructures, Murcko substructures, and functional groups),
SME can calculate the attributions of substructures to predictions to
help us understand how the model predicts a particular molecule. For
example, the visualization of the attributions for compound 1 is shown
in Fig. 1a. The SMILES of compound 1 and the compounds used in the
subsequent analysis can be seen in Supplementary Table 4. As shown
in Fig. 1a, hydroxyl is beneficial to enhance the model’s prediction of
hydrophilicity, while methyl, isopropyl, and cyclohexyl are beneficial
to enhance the model’s prediction of hydrophobicity, demonstrating
that the attributions of the substructures are consistent with the
known chemical knowledge. It can also be found that the attributions
of the alkyl groups to hydrophobicity becomehigher as the number of
carbon atoms increases (cyclohexyl>isopropyl>methyl), which also
agrees with our chemical knowledge. In addition, through the combi-
nation of the BRICS substructures andMurcko substructures, SME can
find themost hydrophobic substructure (the alkyl group) and themost
hydrophilic substructure (hydroxyl). Although the atom mask in
compound 1 can also help to understand the attribution of each atom
to hydrophilicity and hydrophobicity, the substructure mask unam-
biguously reveals amore systematic trend from thedata (andeasier for
chemists to generalize and relate to existing knowledge), such as illu-
strated in the earlier comment that we may draw the observation that
increasing the number of carbon atoms can increase the hydro-
phobicity of the alkyl groups. As the complexity of compounds
increases, the explanation of the substructure mask will be easier to
capture the pattern/trend behind the data and to deduce more

Fig. 1 | The SMEexplanationof aqueous solubility. aThe attribution visualization
of compound 1; b The attribution visualization of compound 2; c The attribution
of the different functional groups in the whole ESOL dataset. Only the functional
groups that appear more than ten times in the dataset are included in Fig. 1. Blue

colors represent attributions lower than 0 and the substructure is favorable for
hydrophilicity, while orange colors represent attributions higher than 0 and the
substructure is unfavorable for hydrophilicity.

Table 1 | The performance of the consensus models on the
test sets

Model Type Metric Performance

ESOL regression R2 0.927

Mutagenicity classification ROC-AUC 0.901

hERG classification ROC-AUC 0.862

BBBP classification ROC-AUC 0.919
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meaningful chemical knowledge than the simple atommask. As shown
in Fig. 1b, the explanation based on the substructure mask are
obviously more intuitive than the atom mask. It is reasonable that
cyclopropyl and phenyl are hydrophobic while hydroxymethyl and
methoxy are hydrophilic (Fig. 1b, BRICS substructure).

Functional group attribution analysis and structure
optimization of aqueous solubility
As shown above, different substructures enable us to more precisely
describe the boundary of fragments responsible for the predicted
molecular property. Moreover, functional groups are predefined
molecular substructures and can be used to evaluate the impact of the
specific functional groups in the whole dataset. The attributions of
different functional groups in the whole ESOL dataset are shown in
Fig. 1c, and the functional groups with less than ten occurrences in the
dataset are not considered.

As shown in Fig. 1c, SME tends to give positive attributions to
common hydrophilic functional groups such as the hydroxyl (−O) and
amino (−N) groups, andnegative attributions to commonhydrophobic
groups such as the tert-butyl (-tBu) group. Hence, through the analysis
of functional groups, SME can roughly assign the attribution of each
functional group to the target property, and help to mine the SAR
information.

Since the Superfast Traversal, Optimization, Novelty, Exploration,
and Discovery (STONED) method enables rapid exploration of che-
mical space without a pre-trained generative model, some interpret-
ability methods combined with STONED can guide structure
optimization7,28,29. And the functional group attribution generated by
SME can also aid in structural optimization. Taking compound 1 as an
example, the average attribution of different functional groups can be
used to guide the optimization of its hydrophilicity. As shown in Fig. 1a,
the Attribution_N of themethyl group is −0.488, and the attribution of
the methyl group is −0.533. To structurally optimize compound 1 to
change its water solubility, we can manually change the methyl group
to a functional group in Fig. 1c. The structural optimization result is
shown in Fig. 2, demonstrating that the aqueous solubility of different
compounds predicted by the model is highly correlated with the
average attributions. The Spearman correlation coefficient between

the average attributions and predictions is 0.882 and the p-value is less
than 0.05, indicating a significant positive correlation between the
average attributions and predictions. Furthermore, by changing the
methyl group to a functional group with a smaller average attribution,
two of the three molecules are predicted to be less hydrophilic than
compound 1, while changing the methyl group to a functional group
with a larger average attribution, 13 of the 14 molecules are predicted
to be more hydrophilic than compound 1. Hence, the above results
demonstrate that SME does give a reasonable explanation. With the
change of different functional groups, we can roughly sketch out the
trend of the predictions by the model according to the average attri-
butions, and then guide structural optimization.

SME attribution visualization of mutagenicity
Mutagenicity is of great concern in drug development due to its
hazards to human health. Some toxicophores and detoxifying
groups are shown in Supplementary Fig. 1. The attributions of
compound 3 based on different types of substructures are shown
in Fig. 3. A positive attribution means that the substructure is
favorable for toxicity, and a negative attribution means that the
substructure is considered detoxifying. As shown in Fig. 3, the
nitro, amino, and quinone groups are beneficial to enhance the
model’s prediction of toxicity, while the carboxyl group is bene-
ficial to enhance the model’s prediction of non-toxicity. This is
consistent with the existing literature reports that the aromatic
nitro, aromatic amino, and quinone groups are identified tox-
icophores and the carboxyl group is an identified detoxifying
group (Supplementary Fig. 1). In addition, through the combina-
tion of the BRICS substructures and Murcko substructures, SME
can find the most toxic substructure (the aromatic nitro, aromatic
amino, and quinone groups) and the most detoxifying sub-
structure (the carboxyl group) as shown in Fig. 3.

The combination can compensate for the flaws of SME in the
classification problem
As shown in Fig. 3, compared with the regression problem (ESOL), the
model assigns less attributions to fragments for the binary classifica-
tion problem, and even only assigns an attribution of 0.003 to the

Fig. 2 | The structural optimizationofcompound1.The sourcedata canbe found
in Supplementary Data 1. The methyl group are changed to one of the functional
groups in Fig. 1c and each point represents a compound. Yellow represents the
initial functional groups, red represents amore hydrophobic functional group, and
blue represents a more hydrophilic functional group. Regression line with the 95%

confidence interval (the blue shading) and the spearman rank correlation test are
used to describe the correlation between the hydrophilicity of molecules and the
attribution of functional groups. The two-sided p-value indicates the significance of
the correlation.
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amino group. The reason is that there are multiple toxic groups in
some molecules, for example, there are three toxic groups (i.e., the
aromatic nitro, aromatic amino and quinone groups) in compound 3.
After removing a nitro group, the molecule still contains two toxic
groups (aromatic nitro and quinone groups), so that the model still
predicts the remaining part to be toxic. That is, Ysub ≈ Y ≈ 1, which also
causes SME to assign an attribution close to 0 to the toxic group. In
short, this is why SME assigns an attribution close to 0 to the
nitro group.

Compounds 4, 5, and 6 are used to better illustrate the
above flaws of SME. As shown in Supplementary Fig. 2, SME
assigns the attributions close to 0 to the nitro and amino groups
in compounds 4 and 5, but assigns a higher attribution value to
the phenyl ring. The reason is that after removing the nitro and
amino groups, the remaining part of the molecule still contains a
toxic group, but when the phenyl ring is removed, the remaining
part of the molecule no longer retains any identified tox-
icophores. This leads SME to judge that the phenyl ring is a very
important toxic group, while the nitro and amino groups are not.
The azide group is also an identified toxicophore. In compound
6, SME no longer judges the phenyl ring to be an important toxic
group, and the reason is that the molecule still retains the azide
group as a toxic group after the phenyl ring is removed. The
above examples illustrate that SME will underestimate the attri-
butions of toxicophore in molecules in the classification problem,
especially when the molecule contains multiple toxic groups.
Fortunately, by using our proposed method of taking fragment
combinations for attribution analysis, we can largely fix the

observed flaws when only individual fragments are considered. As
shown in Fig. 3 and Supplementary Fig. 2, the combination of
fragments is always able to find all the toxic groups within the
molecules tested in this study.

Moreover, we also compare the explanation results with the
reported GNN explanation methods. The reported explanation results
of compound 7 are from Yuan’s research and the explanation results
for different explanationmethods are shown in Fig. 4. Compared with
the identified toxicophores in Supplementary Fig. 1, compound 7
contains the toxicophores of aromatic nitro and polycyclic aromatic
system. The reported methods have only identified a single benzene
ring (SubgraphX and MCTS_GNN) or some discrete bonds (PGExplai-
ner and GNNExplainer), and the results do not provide any help in
understanding that polyaromatic rings are toxic fragments. Obviously,
SME provides more reasonable explanation results than the reported
methods through the identification of the attributions to more com-
plete fragments rather than some discrete bonds. As shown in Fig. 4,
SME can find all toxic substructures (aromatic nitro and polycyclic
aromatic system) in compound 7.

Functional group attribution analysis and structure optimization
of Mutagenicity
The attributions of different functional groups in the whole Muta-
genicity dataset are shown in Fig. 5 and the functional groups with less
than ten occurrences are not considered. As shown in Fig. 5, the
functional groups with the positive attributions are often the compo-
nents of the identified toxic groups, such as nitroso (−N=O), nitro
(-NO2) and amino (-N). In addition, the functional groups with the

Fig. 3 | The attribution visualization of compound 3. a The SME explanation of
compound 3 based on atoms; b The SME explanation of compound 3 based on
BRICS substructures; c The SME explanation of compound 3 based on functional

groups; d The SME explanation of compound 3 based on Murcko substructure;
e The most positive/negative component of compound 3; f The identified tox-
icophores; g The identified detoxifying groups.

Fig. 4 | The explanation results of compounds 7 for different methods. The right side of the figure displays explanation results from SME, and the left side presents
results from other methods.
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negative attributions, such as sulfonamide (−SO2NH2), sulfonyl
hydroxide (-SO3H), and trifluoromethyl (-CF3), are identified to be
detoxifying groups. The above results show that SME can indeed
extract reasonable SAR information from the model.

However, as shown in Supplementary Fig. 1, the isocyanate group
is identified as a toxicophore, but SME always assigns negative attri-
bution to the isocyanate group. And we explore what causes SME to
make judgments contrary to the expert knowledge. There are only ten
molecules in the dataset containing such functional groups, nine in the
training set and one in the test set. In addition, only two of the nine
molecules in the training set are toxic, while seven are non-toxic. The
small amount of data and highly imbalanced labels cause themodel to
misjudge the isocyanate group as a detoxifying group. Moreover, the
model also incorrectly predicts the only positive molecule in the test
set that contains this group as a non-toxic molecule. Combining the
SME explanation results and expert knowledge, we are able to discover
problems that the model has learned the wrong information, and then
provide directions to optimize the model. In other words, careful
analysis on SME explanations can help us to judge if the model’s pre-
dictions for themolecules containing certain structures are unreliable,
and more similar molecules should be added to the training set to
further improve the model’s ability to predict such molecules as done
in an active learning loop to improve model reliability with small
amount of highly relevant data. For example, to optimize the predic-
tion ability of the mutagenicity model for molecules containing the
isocyanate group, it is necessary to add molecules containing the
isocyanate group to the training set and provide more balanced data
labels.

We also evaluate whether SME could guide the structural opti-
mization of Mutagenicity, and the results are shown in Supplementary

Fig. 2. We sequentially replace the toxic functional groups in com-
pounds 4, 5, and 6 (the amino, nitro, and isocyanate groups) with
detoxifying groups (sulfonyl hydroxide, sulfonamide, and tri-
fluoromethyl). As shown in Supplementary Fig. 2, after structural
optimization, the prediction results of themodel all change from close
to 1 to close to 0, suggesting that SME really reflects how the model
makes predictions.

SME can reveal the hERG optimization strategies
Different from mutagenicity, there are no clearly identified tox-
icophores for hERG toxicity. Fortunately, in previous works,
medicinal chemists have summarized a large number of strategies
to reduce hERG toxicity30–33. Therefore, we explore whether SME
can rediscover these optimization strategies to validate SME. The
attributions of functional groups for hERG toxicity are shown in
Fig. 6, and a positive attribution means that the substructure is
favorable to toxicity while a negative attribution means that the
substructure is unfavorable to toxicity. Introducing the hydroxyl
(−O) groups and acidic groups (−C( = O)O) are common optimi-
zation strategies to reduce hERG toxicity, and SME also considers
that the hydroxyl and acidic groups are unfavorable to hERG
toxicity as shown in Fig. 6. Reducing lipophilicity is also a com-
monly used strategy to reduce hERG toxicity32,33. To verify whe-
ther SME mine this SAR, we evaluate the correlation of the hERG’s
functional group attributions and the ESOL’s functional group
attributions. As shown in Fig. 7, they are highly negatively cor-
related with a spearman correlation coefficient of −0.86 and a p-
value of less than 0.05, indicating a high correlation between
hERG toxicity and lipophilicity.

Fig. 5 | The attributions of different functional groups in the whole Muta-
genicity dataset. Blue colors represent attributions lower than 0, while orange
colors represent attributions higher than 0.

Fig. 6 | The attributions of different functional groups in the whole hERG
dataset. Blue colors represent attributions lower than 0 and the substructure is
unfavorable to induce toxicity, while orange colors represent attributions higher
than 0 and the substructure is conductive to inducing toxicity.
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Examples of structural optimization for hERG toxicity in the
real world
In the above structural optimization, the examples are consistent with
themodel prediction results. Changing functional groups with desired
attributions can yield molecules with desired properties predicted by
models, as exemplified in Fig. 2 and Supplementary Fig. 2. Herewe find
some real-world structural optimization examples for hERG toxicity to
evaluate whether they meet the guidance provided by the average
attributions derived from SME. Since a positive attributionmeans that
the substructure is potentially more toxic while a negative attribution
means that the substructure is ‘detoxifying’, SME can naturally provide
three structural optimization strategies to reduce hERG toxicity as
follows: 1. adding a functional group with an average attribution <0; 2.
removing a functional group with an average attribution >0; 3. repla-
cing a functional group with a more negative attribution. Some real-
world structural optimization examples confirm the rationality of the
above structural optimization strategies.

As shown in Fig. 8a, adding a carboxyl group with the average
attribution of −0.465 to compound 8, the hERG toxicity of the com-
pound decreases (IC50 from 0.8μM to 76.8μM)34. And adding a amide
group with average attribution of −0.069 to compound 8 can also
reduce the hERG toxicity of the compound (IC50 from 0.8μM to
17.1μM)34. The above examples can demonstrate the effectiveness of
adding a functional group with an average attribution <0 to reduce
hERG toxicity. The second structural optimization strategy is to
remove a functional group with an average attribution >0 to reduce
hERG toxicity. As shown in Fig. 8b, removing a methoxy group with an
average attribution of 0.021 to compound 11 can reduce the hERG
toxicity of the compound (IC50 from 0.35μM to 0.76μM)35. Removing
a chlorinated group with an average attribution of 0.036 can reduce
the hERG toxicity of the compound (IC50 from 0.85μM to 5.49μM)35.
Another structural optimization strategy is replacing a functional
group with a more negative attribution to reduce hERG toxicity. As
shown in Fig. 8a, by replacing the amide group in compound 10with a
more negative carboxylic group to obtain compound 9, the hERG
toxicity is significantly reduced (IC50 from 17.1μM to 76.8μM). More-
over, replacing the cyano group with the methylsulphonyl group
(having amore negative attribution) reduces hERG toxicity36. As shown
in Fig. 8c, replacing the amino group with the methylamide group
(having a more negative attribution) also reduces the hERG toxicity
(IC50 from 0.12μM to 2.6μM)37. In addition, Rao et al. proposed a
subjective method to evaluate the explanatory power of different
interpretability methods and provide some hERG cliff molecular pairs.
Some hERG cliff molecular pairs that did not appear in our training
set also verify the effectiveness of SME in guiding structural

optimization, and these results are shown in Supplementary Fig. 338. All
in all, the above real-world examples can demonstrate that SME could
guide the structural optimization of hERG toxicity.

Attribution-based molecular generation for desired properties
The generation of molecules with desired properties has attracted the
attention of computational chemists and a lot of excellentworks based
on DL has emerged in recent years. Through the BRICS fragments
endowed with the attributions predicted by SME, we provide a mole-
cular generation method that does not require any conditional gen-
erative model to generate molecules with target properties. BRICS
fragments are originally designed to be recombined for molecular
generation. SinceSME can assign the attributions of desiredproperties
to different BRICS fragments, it is natural to recombine the BRICS
fragments with desired properties to generate molecules with desired
properties.

The “positive BRICS fragments” (attribution>0) and “negative
BRICS fragments” (attribution<0) are recombined to yield 3000
molecules, and the desired properties of these molecules are
predicted. For different properties, the positive fragments
include hydrophilic BRICS fragments, Mutag-toxic BRICS frag-
ments and hERG-toxic BRICS fragments, while the negative frag-
ments include hydrophobic BRICS fragments, Non-Mutag-toxic
BRICS fragments and Non-hERG-toxic BRICS fragments. As shown
in Fig. 9a, the distribution of the desired properties of the
molecules generated by the recombination of the fragments with
the desired attributions is indeed as expected. However, it can
also be seen that there is still a partial intersection between the
two classes of generated molecules, and even some molecules
composed entirely of so-called “non-toxic fragments” are still
predicted to be toxic. The main reason is that the attributions
given by SME only represents that of the fragments in the current
molecules, and their attributions may even be completely oppo-
site in the new molecules. As shown in Fig. 5, the same fragment
may also exhibit different attributions in different molecules. A
simple solution to this problem is to sample fragments that are
more likely to exhibit negative attributions throughout the
dataset, since existing data suggests that these fragments tend to
be non-toxic in the vast majority of existing molecules. And these
fragments will also more easily retain their non-toxic properties
in new molecules, such as sulfonyl hydroxide (-SO3H) and tri-
fluoromethyl (-CF3) for mutagenicity toxicity.

Hence, in order to reduce the overlap between the two classes of
generated molecules, we only take the top 20% fragments with the
smallest attributions less than 0 as the negative fragments, and only

Fig. 7 | The correlation of the average attributions between hERG and ESOL’s
functional groups. The source data can be found in Supplementary Data 2. The
regression line with the 95% confidence interval (the blue shading) and the

spearman rank correlation test are used to describe the correlation of the average
attributions; The two-sided p-value indicates the significance of the correlation.
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the top 20% fragments with the largest attributions higher than 0 as
the positive fragments. A total of 3000 negative molecules and 3000
positive molecules are generated for 3 different tasks, respectively,
and the corresponding properties are predicted. As shown in Fig. 9b,
the overlap between the two classes of generated molecules is sig-
nificantly reduced, demonstrating the effectiveness of the above
strategy.

In addition, we also explore the application of attribution-based
molecular generation for multiple desired properties. We merge the
fragments co-existing in the top 20% Non-Mutag-toxic and Non-hERG-
toxic fragments to obtain the Non-Mutag-toxic&Non-hERG-toxic
fragments. 3000 molecules are generated from the Non-Mutag-tox-
ic&Non-hERG-toxic fragments, and the predictions of the 3000
molecules from the Mutagenicity model and the hERG model can be
seen in Fig. 9c. As shown in Fig. 9c, the vast majority of the 3000
generated molecules are predicted to be non-toxic, illustrating the
potential of the attribution-based molecular generation approach in
generating molecules with desired properties.

How can SME establish SAR information with deeper
explanations
In this section, we show that SME (with its enforced attribution to
chemicallymeaningful fragments) allowsone tomoreeasily establish a
deeper understanding on why certain fragments make the molecule

more ideal for the target property. This deeper understanding is
achieved by connecting fragments and some characteristic physio-
chemical properties that is conceptually known to be relevant to the
property of interest, for instance, BBBP in this case.

Through the analysis of functional group attribution gener-
ated by SME, we can construct the desired relationship between
molecular functional groups and the BBBP as shown in above
Fig. 10a. Similarly, by constructing different prediction models of
fundamental physicochemical properties, we can construct the
desired relationship between molecular functional groups and
the fundamental physicochemical properties. Subsequently, we
then establish the relationship between BBBP and the funda-
mental physicochemical properties, providing a complementary
perspective on what molecular properties (substructure or phy-
siochemical attributions) hold the key to having the desired
properties. Four fundamental physicochemical properties include
molecular weight (MW), topological polar surface area (TPSA),
lipid solubility (LogP) and the number of hydrogen bond donor
(HBDs) calculated by RDKIT package are used as labels to con-
struct different prediction models in this case. The overall pro-
cess is shown in Fig. 10a and the detailed result can be seen in
Fig. 10b–e. The performance of fundamental physicochemical
property models can be seen in Supplementary Table 1. As shown
in Fig. 10b–e, SME does not find a definite correlation between

Fig. 8 | Some real-world structural optimization examples of hERG toxicity.
a Add a functional group with an average attribution <0 to reduce the hERG toxi-
city; b Remove a functional group with an average attribution > 0 to reduce the

hERG toxicity; c Replace a functional group with a more negative attribution to
reduce the hERG toxicity.
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BBBP and MW. Moreover, SME finds that BBBP is positively cor-
related with LogP and negatively correlated with HBDs and TPSA,
which is consistent with the results reported in previous studies.
The above results demonstrate that chemists can mine SAR
information through SME and use this valuable information to
further expose favorable physiochemical properties these mole-
cules must possess. Furthermore, converting information from
favorable molecular substructures to favorable physiochemical/
biochemical properties by SME is an abstraction that may actually
inspire further understanding of complex phenomena as done by
Mittal, A. et al.39.

Discussion
In this study, we propose an intuitive SME to explain GNN models
for molecular property predictions. Combining different well-
designed molecular fragmentation methods (BRICS sub-
structures, Murcko substructures, and functional groups), SME
provides intuitive and chemistry-compatible explanations for all
four tasks considered in this study. By analyzing the attributions
of functional groups assigned by SME across the entire dataset,

we are able to explore how functional groups affect model pre-
dictions and infer structure-activity relationships. More impor-
tantly, the attribution analysis of functional groups can also
provide guidance for structural optimization, and the experi-
mental results and real-world examples confirm the validity and
rationality of the attribution-based guidance. In addition, SME can
also help to diagnose problems affecting a model’s reliability and
provide directions to further improve the predictive model. For
example, the attribution of the isocyanate group assigned by SME
based on the consensus mutagenicity prediction model is incon-
sistent with the existing expert knowledge, and we could easily
identify the problem that the training data containing such
functional groups is insufficient and unbalanced which may cause
the model being unable to make correct predictions for mole-
cules containing this functional group. Moreover, the recombi-
nation of the BRICS fragments with the attributions assigned by
SME can be used to generate molecules with desired properties,
which provides a way to efficiently generate molecules with
desired properties that does not require training a gen-
erative model.

Fig. 9 | Attribution-based molecule generation for desired properties. a The
molecules generated by recombination of BRICS fragments; b The molecules
generated by recombination of top 20% BRICS fragments; c The molecules

generated by recombination of top 20% Non-Mutag-toxic&Non-hERG-toxic BRICS
fragments.
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Just like all other explanation methods for deep learning models,
SME also possesses several limitations. First, since SME (and other
GNN-based interpretation methods) aims to explain what the GNN
model has learned from the data, it is difficult for SME to mine rea-
sonable SAR informationwhen theGNNmodel hasnot learned the true
or complete causality due to data paucity or bias. As a noteworthy
example, tautomers present a challenge in the pursuit of accurate
molecular property predictions and, accordingly, has implications for
the effectiveness of SME. Second, as chemically intuitive explanations
are enforced, intrinsically chemically meaningless patterns learned
from data artifacts may remain concealed. Lastly, the current version
of SME only supports the three substructures of BRICS, Murcko, and

functional groups, and does not allow the assessment of some other
substructures such as bioisosteres. Irrespective of these limitations
(some canbeeasily overcomesuchas the last pointmentioned above),
SME provides intuitive and insightful interpretability for chemists
based on chemically meaningful substructures. As most existing
attribution methods for molecular GNNs in chemistry are directly
borrowed from other fields and lacks the kind of chemical intuition
that SME insists by design, we believe its benefits outweigh its draw-
backs. Particularly, we demonstrate how SME help chemists in 4 key
druggability properties tasks (ESOL, Mutagenicity, hERG and BBBP). In
sum, SME is a tool with great potential to assist chemists to gain an
intuitive understanding of why a GNN model makes a certain

Fig. 10 | The SAR information of BBBP mined by SME. The source data can be
found in Supplementary Data 3. a The flow chart of using SME to mine SAR infor-
mation. The analysis of functional group attribution generated by SME are used to
construct a desired relationship between molecular functional groups and the
BBBP. By constructing different prediction models of physicochemical properties,
the relationship linking molecular functional groups and physicochemical prop-
erties can be obtained based on the functional group attribution. With the func-
tional group as a link, the relationship between BBBP and the physicochemical
properties can be established. Regression lines with the 95% confidence interval

(the blue shading) and spearman rank correlation test are used to describe the
correlation between BBBP and the physicochemical properties. The two-sided p-
value indicates the significance of the correlation. b The correlation of the average
attributions between BBBP and BBBP_MW’s functional groups; c The correlation of
the average attributions between BBBP and BBBP_LogP’s functional groups; d The
correlation of the average attributions between BBBP and BBBP_TPSA’ functional
groups; e The correlation of the average attributions between BBBP and
BBBP_HBDs’s functional groups.
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prediction, relating structural and physiochemical properties when it
is appropriate to do so, and mine SAR information for structure opti-
mization and de novo design.

Methods
Datasets
In order to verify the effectiveness of SME in explaining the predictions
from a GNN model, we conduct experiments on four different mole-
cular property datasets, concerning aqueous solubility (ESOL), muta-
genicity, hERG-related cardiotoxicity and blood-brain barrier
permeation (BBBP). We briefly give a short introduction to these four
properties.

Aqueous solubility is essential for drug candidates and is one of
the key physical properties of interest for medicinal chemists40. The
flux of drugs across the intestinal membrane is proportional to the
concentration gradient between the intestinal lumen and blood, so
drugs with poor water solubility may result in poor absorption even if
the permeation rate is high40. Therefore, accurate prediction of aqu-
eous solubility will help optimize the absorption properties of drug
candidates, and a large number of aqueous solubility prediction
models based on ML have been reported41–44. Although accurate pre-
diction of water solubility remains a difficult problem, chemists have
explored and broadly understood the effect of a large number of
functional groups on water solubility42. Hence, solubility is often used
to validate model explanation methods and it provides a good setting
for testing SME7,45.

Mutagenicity reflects the ability of a compound to induce muta-
tions inDNA.Many computational approaches havebeendeveloped in
recent years to predict the mutagenicity of compounds in the early
stage of drug development46–50. A large number of toxicophores and
detoxifying groups have been identified and reported, and hence
mutagenicity constitutes another popular setup for verifying whether
ML models capture essential structure-property relationships to sup-
port their predictions46,48,51–53.

Cardiotoxicity is another task that we consider, a highly crucial
factor in drug design. Undesired hERG-related cardiotoxicity is one of
themain reasons for drug candidate failures and drugwithdrawal from
the market54,55. And a number of hERG inhibition prediction models
have been developed in recent years46,56–58. We will use this important
property to illustrate how a chemistry-compatible explanation
method, suchas theproposedSME, not only rationalizing howamodel
makes predictions but also provides actionable insights to help us
improve the design of drug candidates. As repeatedly implied in the
introduction, a good explanationmethod shouldoffermore than just a
verification tool.

BBBP is another classic problem in computational chemistry.
Since brain drugs need to penetrate the blood-brain barrier, the
BBB permeability has been investigated in detail and many BBBP
prediction models have been developed in recent years59–61. In this
study, we consider BBBP datasets as an example to illustrate how
one can further push the interpretationmethod discussed so far to
generate a deeper explanation. As discussed later, not only will we
highlight important fragments responsible for a molecule’s BBBP,
but also provide a rationale on how the responsible fragment
determines some critical physiochemical properties of a molecule
that subsequently affects its BBBP.

The detail on these four datasets is summarized in Supplementary
Table 2 and further detail on the data curation can be found in Sup-
plementary Table 3. In addition, the canonical SMILES of the com-
pounds for analysis are shown in Supplementary Table 4.

Substructure mask explanation
Under many real-world settings for molecular property predictions, a
commonpractice is to integrate the predictions frommultiplemodels.
Thus, in this study, we first build 10 relational graph convolution

networks (RGCN) models based on different random seeds for initi-
alization and then construct the consensusmodel by integrating the 10
RGCNmodels. The mean of the ten individual predictions will be used
as the output of the final consensus model.

In recent years, GNN has attracted increasing attention in mole-
cularpropertypredictionsdue to its strongpredictivepower ongraph-
structured data. All GNN variants, such as graph convolution neural
networks (GCN)62, graph attention networks (GAT)63, attentive FP64,
and directed message-passing neural networks (D-MPNN)3, can be
regarded as the special cases of differentiable message-passing fra-
meworks. RGCN is an extension of the standard GCN by introducing
edge features to enrich themessages used to update the hidden states
in the network and has achieved excellent performance in link pre-
dictions and entity classification65. The propagation rule for each node
v is calculated via

hðl + 1Þ
υ = σ

X
rϵR

X
uϵNr

υ

W ðlÞ
r hðlÞ

u +W ðlÞ
0 hðlÞ

υ

0
@

1
A ð1Þ

where h l + 1ð Þ
ν is the state vector of target node ν after l + 1 iterations, Nr

v
denotes the neighbors of node ν under the relation (edge) rϵR and R
denotes the set of edge types. The neighbors of node ν refers to the
nodes directly connected to node ν. σð Þ is an element-wise activation
function, and ReLUð Þ is adopted in this study. W lð Þ

r is the weight for
neighbor node u connecting to node v by an edge attributed with the
relation rϵR, andW lð Þ

0 is the weight for target node v. As shown above,
the edge information is explicitly incorporated into a RGCN under the
relation rϵR. The weight W lð Þ

r is a linear combination of the basis
transformation. The initial node and edge representation canbe found
in Supplementary Table 5. The initial node (atom) and edge (bond)
information used in RGCN.

By aggregating the information fromeachnode through attention
pooling, the embedding of a molecule can be obtained, and the
molecular properties can be predicted by feeding the molecular
embedding through three fully connected (FC) layers. The attention
pooling is defined as follows:

ωv = sigmoidðW �hv +biasÞ ð2Þ

molecular embedding=
XN
v= 1

ðωv�hvÞ ð3Þ

where W and bias are the trainable matrixes of the linear transfor-
mations in model training, N is the number of nodes for a molecular
graph, sigmoidð Þ is an activation function that limits the attention
weight ωv of each node to between 0 and 1, ωv is the attention weight
of node v, and hv is the general feature of node v.

The key idea of perturbation-basedmethods is to generate masks
to hide certain atoms/bonds/fragments from a GNNmodel in order to
find which substructures may dramatically influence a model’s pre-
diction when they are absent in the input. However, the lack of che-
mical knowledge of the mask unit is prone to outputting confusing
patterns of crucial molecular substructures that are difficult to be
understood by chemists. Therefore, in this study, we adopt some
commonways of splitting compounds in computational chemistry and
used well-defined substructures as mask units.

As shown in Fig. 11d, BRICS, Murcko scaffolds and functional
groups are used to generate different substructures to explain a
molecular GNN model from different perspectives. As to BRICS,
compounds are decomposed into the BRICS substructures based on a
set of 16 bond types characterized with different chemical
environments25. BRICS incorporates more elaborate medicinal chem-
istry concepts, and, for example, models explicit isosteric
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replacements for cyclic and acyclic cases. In addition, BRICS sub-
structures can be assembled to form novel molecules by following a
set of complementary rules. Molecular scaffold is another widely
applied concept in medicinal chemistry and is mostly used to repre-
sent the core structures of bioactive compounds. A representative
definition for scaffold is the Murcko framework proposed by Bemis
andMurcko. Everymolecule canbe fragmented into aMurcko scaffold
and the associated side chains27. Furthermore, the practice of analyz-
ing molecules in terms of well-defined functional groups is also
omnipresent in everybranchof organic chemistry. In this study,weuse
33 common functional groups collected in RDKit. Equipped with these
three fragmentation methods, we should be able to take apart any
organic molecule in terms of chemically meaningful substructures for
any prediction task in medicinal chemistry and drug discovery.

Let us now elaborate on how the perturbation-based method
works in detail. As mentioned earlier, the key idea is to identify a
substructure (when missing from the input, e.g., see the masked car-
boxylic acid shown in Fig. 11a) that could dramatically influence a
GNN’s prediction. Since a GNN predicts molecular properties by
feeding amolecular embedding to a properly trained FC layer, we need
to give a masked molecule a proper embedding. To this end, we con-
sider the following definition:

molecular embeddingmask =
XN
v= 1

ðωv�hv�maskvÞ ð4Þ

maskv =
1, if node v is notmask

0, if node v ismask

�
ð5Þ

where N is the number of nodes, ωv is the attention weight of node v,
and hv is the general feature of node v.

In this study, we refer to the extent of the influence of a
masked substructure on the overall prediction as the attribution.
The attribution for each substructure may be determined as fol-
lows. Two GNN predictions before and after applying sub-
structure masks onto a molecular graph are performed, and the
difference between the predicted values is simply taken as the
attribution:

Y =
Xm
i

Y i ð6Þ

Ysub =
Xm
i

Y i,sub ð7Þ

Attributionsub = Y � Y sub ð8Þ

where sub is the mask substructure, m is the number of the RGCN
models and 10 is used in this study, and i is the ith RGCN model.

For a more intuitive visualization of interpretation analysis, we
normalize the attribution scores of molecular substructures to Attri-
bution_N with values ranging between 0 and 1.

After message passing, a node’s hidden state gets updated by the
information conveyed by adjacent atoms/bonds. Therefore, when we
mask a node, it is not just about masking an atom but about masking
the chemical environment centered on that atom. And the chemical
environment contains information of adjacent atoms, while the
information of the adjacent atoms weakens as the path to the central
atom grows. Therefore, masking a node can be considered as masking
themain information of the central atom, and alsomasking part of the
information of the adjacent atoms/bonds. For ease of understanding,

Fig. 11 | The architecture of the consensus models and substructure mask
explanation methods. a The architecture of the RGCN sub-models; b The con-
sensusmodel used formolecular property prediction; c The attribution calculation

based on substructure mask explanation; d BRICS substructures, Murcko sub-
structures, functional groups and the combination of Murcko substructures.
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in this article, themasking of a node is simply depicted asmasking just
the node itself.

Combination of the BRICS and Murcko substructures
Chemical substructures often do not exhibit biological activity by
themselves alone, while the manifestation of biological activity emer-
ges when certain chemical substructures in a compound interact
together. For example, a single amino group does not pose a risk of
mutagenicity, but it becomes a genotoxic group with a high risk of
mutagenicity when it is attached to a benzene ring. For the sac of
ensuring calculation efficiency, SME does not adopt Shapley values to
fairly assign attribute values to different substructures, but only cal-
culates attribute values based on the changes between predicted
values, which may overlook contribution by some substructures. In
order to solve the above problems, we adopt a compensation strategy:
find the most positive/negative substructures through the combina-
tion of substructures to avoid overlooking some important sub-
structures, and thus explore the SAR more comprehensively. We
randomly combined andmasked the BRICS substructures andMurcko
substructures of a molecule, and calculated the attribution for each
substructure combination. Some representative combinations of the
Murcko substructures ofAspirin areprovided in Fig. 1d, and there are 7
combinations base on 3 substructures. As the number of fragments
increases, the number of possible substructure combinations increa-
ses exponentially and leads to extremely large cost. Hence, we adopt a
suboptimal solution in this study that amaximumof 100 combinations
of BRICS substructures and 100 combinations of Murcko fragments
are analyzed per molecule. The current combination method is a
simple random combination, and advanced algorithms such as Monte
Carlo tree searchwill be adopted to explore the attribution of different
fragment combinations more efficiently in the future.

Model construction and evaluation
Each dataset is randomly split into the training set, validation set, and
test set by a ratio of 8:1:1. First, we conduct the hyperparameter opti-
mization based on the predictive performance on the validation set.
And the Tree Parzen Estimator (TPE) algorithm in Hyperopt (version
0.2.7) is used for the hyperparameter optimization in this study. The
optimized hyperparameters are then used to build the RGCN sub-
models with different random seeds, and the ten sub-models are
integrated to build the consensus model. The model construction is
implemented using python (3.7) with dgl-cuda11.0(0.7.1), hyperopt
(0.2.7) and pytorch (1.11.0). The data processing and metrics calcula-
tion are implemented using python (3.7) with scikit-learn (1.0.2),
numpy (1.21.5) and pandas (1.3.5). The detailed information about the
hyperparameters is listed in Supplementary Table 6. The regression
tasks are evaluated by the squared determination coefficient (R²), and
the classification tasks are evaluated by the area under the receiver
operating characteristic curve (ROC-AUC).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ESOL, Mutagenicity, hERG and BBBP datasets used in this study
and the data generated in this study are available at https://doi.org/10.
5281/zenodo.770709366. Supplementary Data, including Supplemen-
tary Data 1, Supplementary Data 2, and Supplementary Data 3, is pro-
vided alongside this paper.

Code availability
The Supplementary Data and codes of SME are available at https://doi.
org/10.5281/zenodo.770709366.

References
1. Feinberg, E. N. et al. PotentialNet formolecular property prediction.

ACS Cent. Sci. 4, 1520–1530 (2018).
2. Wieder,O. et al. A compact reviewofmolecular propertyprediction

with graph neural networks. Drug Discov. Today.: Technol. 37,
1–12 (2020).

3. Yang, K. et al. Analyzing learned molecular representations for
property prediction. J. Chem. Inf. Modeling 59, 3370–3388 (2019).

4. Gawehn, E., Hiss, J. A. & Schneider, G. Deep learning in drug dis-
covery. Mol. Inform. 35, 3–14 (2016).

5. Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49,
3525–3564 (2020).

6. Rudin, C. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nat.
Mach. Intell. 1, 206–215 (2019).

7. Wellawatte, G. P., Seshadri, A. & White, A. D. Model agnostic gen-
erationof counterfactual explanations formolecules.Chem. Sci. 13,
3697–3705 (2022).

8. Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with
explainable artificial intelligence. Nat. Mach. Intell. 2,
573–584 (2020).

9. Gupta, M., Lee, H. J., Barden, C. J. & Weaver, D. F. The blood–brain
barrier (BBB) score. J. Medicinal Chem. 62, 9824–9836 (2019).

10. Rankovic, Z. CNS physicochemical property space shaped by a
diverse set of molecules with experimentally determined exposure
in the mouse brain: miniperspective. J. Medicinal Chem. 60,
5943–5954 (2017).

11. Leeson, P. D. & Young, R.J. Molecular property design: does
everyone get it?). ACS Publications (2015).

12. Polishchuk, P. Interpretation of quantitative structure–activity rela-
tionship models: past, present, and future. J. Chem. Inf. Modeling
57, 2618–2639 (2017).

13. Henderson, R., Clevert, D.-A., & Montanari, F. Improving molecular
graph neural network explainability with orthonormalization and
induced sparsity. In: International Conference onMachine Learning)
PMLR (2021).

14. Yuan, H., Yu, H., Gui, S. & Ji, S. Explainability in graph neural net-
works: A taxonomic survey. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2022).

15. Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. Gnnexplai-
ner: generating explanations for graph neural networks. Advances
in neural information processing systems 32, (2019).

16. Luo, D. et al. Parameterizedexplainer for graphneural network.Adv.
neural Inf. Process. Syst. 33, 19620–19631 (2020).

17. Vu, M. & Thai, M. T. Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks. Adv. neural Inf. Process.
Syst. 33, 12225–12235 (2020).

18. Baldassarre, F. & Azizpour, H. Explainability techniques for graph
convolutional networks. arXiv preprint arXiv:190513686 (2019).

19. Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S. On explainability of graph
neural networks via subgraph explorations. In: International Con-
ference on Machine Learning) PMLR (2021).

20. Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H.
Explainability methods for graph convolutional neural networks. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition) (2019).

21. Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C. & Hennig, L.
Layerwise Relevance Visualization in Convolutional Text Graph
Classifiers. In: Proceedings of the Thirteenth Workshop on Graph-
Based Methods for Natural Language Processing (TextGraphs-13)).
58–62 (2019).

22. Schnake, T. et al. Higher-order explanations of graph neural net-
works via relevant walks. In: IEEE transactions on pattern analysis
and machine intelligence 44, 7581–7596 (2021).

Article https://doi.org/10.1038/s41467-023-38192-3

Nature Communications |         (2023) 14:2585 13

https://doi.org/10.5281/zenodo.7707093
https://doi.org/10.5281/zenodo.7707093
https://doi.org/10.5281/zenodo.7707093
https://doi.org/10.5281/zenodo.7707093


23. Huang, Q., Yamada, M., Tian, Y., Singh, D. & Chang, Y. Graphlime:
Local interpretable model explanations for graph neural networks.
IEEE Transactions on Knowledge and Data Engineering, 1–6
(2022).

24. Yuan, H., Tang, J., Hu, X. & Ji, S. Xgnn: Towards model-level
explanations of graph neural networks. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining) (2020).

25. Degen, J., Wegscheid-Gerlach, C., Zaliani, A. & Rarey, M. On the Art
of Compiling and Using’Drug‐Like’Chemical Fragment Spaces.
ChemMedChem: Chem. Enabling Drug Discov. 3,
1503–1507 (2008).

26. Hu, Y., Stumpfe, D. & Bajorath, Jr. Computational exploration of
molecular scaffolds in medicinal chemistry: Miniperspective. J.
Medicinal Chem. 59, 4062–4076 (2016).

27. Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1.
Molecular frameworks. J. Medicinal Chem. 39, 2887–2893
(1996).

28. Nigam, A., Pollice, R., Krenn, M., dos Passos Gomes, G. & Aspuru-
Guzik, A. Beyond generative models: superfast traversal, optimi-
zation, novelty, exploration and discovery (STONED) algorithm for
molecules using SELFIES. Chem. Sci. 12, 7079–7090 (2021).

29. Gandhi, H. A. & White A. D. Explaining molecular properties with
natural language. (2022).

30. Jamieson, C., Moir, E. M., Rankovic, Z. & Wishart, G. Medicinal
chemistry of hERG optimizations: highlights and hang-ups. J.
Medicinal Chem. 49, 5029–5046 (2006).

31. Garrido, A., Lepailleur, A., Mignani, S. M., Dallemagne, P. & Rochais,
C. hERG toxicity assessment: Useful guidelines for drugdesign.Eur.
J. Medicinal Chem. 195, 112290 (2020).

32. Kalyaanamoorthy, S. & Barakat, K. H. Development of safe drugs:
the hERG challenge. Medicinal Res. Rev. 38, 525–555 (2018).

33. Zhou, S., Wang, J. & Liu, H. Lead compound optimization strategy
(5)–reducing the hERG cardiac toxicity in drug development. Yao
xue xue bao= Acta Pharmaceutica Sin. 51, 1530–1539 (2016).

34. Vaz, R. J. et al. Design of bivalent ligands using hydrogen bond
linkers: synthesis and evaluation of inhibitors for human β-tryptase.
Bioorg. Medicinal Chem. Lett. 14, 6053–6056 (2004).

35. Hankosky, E. R. et al. Fluoroethoxy-1, 4-diphenethylpiperidine and
piperazine derivatives: Potent and selective inhibitors of [3H]
dopamineuptake at the vesicularmonoamine transporter-2.Bioorg.
Medicinal Chem. Lett. 27, 5467–5472 (2017).

36. Shu, M. et al. Antagonists of human CCR5 receptor containing 4-
(pyrazolyl) piperidine side chains. Part 3: SAR studies on the ben-
zylpyrazole segment. Bioorg. Medicinal Chem. Lett. 14,
947–952 (2004).

37. McCauley, J. A. et al. NR2B-selective N-methyl-D-aspartate
antagonists: synthesis and evaluation of 5-substituted benzimida-
zoles. J. Medicinal Chem. 47, 2089–2096 (2004).

38. Rao, J., Zheng, S., Lu, Y. & Yang, Y. Quantitative evaluation of
explainable graph neural networks for molecular property predic-
tion. Patterns 3, 100628 (2022).

39. Mittal, A. et al. Artificial intelligence uncovers carcinogenic human
metabolites. Nat. Chem. Biol. 18, 1204–1213 (2022).

40. Ishikawa, M. & Hashimoto, Y. Improvement in aqueous solubility in
small molecule drug discovery programs by disruption of mole-
cular planarity and symmetry. J. Medicinal Chem. 54,
1539–1554 (2011).

41. Delaney, J. S. ESOL: estimating aqueous solubility directly from
molecular structure. J. Chem. Inf. computer Sci. 44,
1000–1005 (2004).

42. Wang, J. & Hou, T. Recent advances on aqueous solubility predic-
tion. Combinatorial Chem. high. throughput Screen. 14,
328–338 (2011).

43. Tang, B. et al. A self-attention based message passing neural net-
work for predictingmolecular lipophilicity andaqueous solubility. J.
Cheminformatics 12, 1–9 (2020).

44. Lusci, A., Pollastri, G. & Baldi, P. Deep architectures and deep
learning in chemoinformatics: the prediction of aqueous solubility
for drug-like molecules. J. Chem. Inf. Modeling 53,
1563–1575 (2013).

45. Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance
and enhancement techniques. International Scholarly Research
Notices 2012 (2012).

46. Wu, Z. et al. Mining toxicity information from large amounts of
toxicity data. J. Medicinal Chem. 64, 6924–6936 (2021).

47. Bakhtyari, N. G., Raitano, G., Benfenati, E., Martin, T. & Young, D.
Comparison of in silico models for prediction of mutagenicity. J.
Environ. Sci. Health, Part C. 31, 45–66 (2013).

48. Xu, C. et al. In silico prediction of chemical Ames mutagenicity. J.
Chem. Inf. Modeling 52, 2840–2847 (2012).

49. Hansen, K. et al. Benchmark data set for in silico prediction of Ames
mutagenicity. J. Chem. Inf. Modeling 49, 2077–2081 (2009).

50. Polishchuk, P. G., Kuz’min, V. E., Artemenko, A. G. & Muratov, E. N.
Universal approach for structural interpretation of QSAR/QSPR
models. Mol. Inform. 32, 843–853 (2013).

51. Kazius, J., McGuire, R. & Bursi, R. Derivation and validation of tox-
icophores for mutagenicity prediction. J. medicinal Chem. 48,
312–320 (2005).

52. Benigni, R., Bossa, C., Tcheremenskaia,O. &Worth, A. Development
of structural alerts for the in vivo micronucleus assay in rodents.
EUR 23844 EN, 1-43 (2009).

53. Shamovsky, I. et al. Mechanism-based insights into removing the
mutagenicity of aromatic amines by small structural alterations. J.
Medicinal Chem. 64, 8545–8563 (2021).

54. Wang, S., Li, Y., Xu, L., Li, D. & Hou, T. Recent developments in
computational prediction of HERG blockage. Curr. Top. Medicinal
Chem. 13, 1317–1326 (2013).

55. Laverty, H. et al. How can we improve our understanding of cardi-
ovascular safety liabilities to develop safer medicines? Br. J. Phar-
macol. 163, 675–693 (2011).

56. Jing, Y., Easter, A., Peters, D., Kim, N. & Enyedy, I. J. In silico pre-
diction of hERG inhibition. Future Medicinal Chem. 7,
571–586 (2015).

57. Braga, R.C. et al. Pred‐hERG: a novelweb‐accessible computational
tool for predicting cardiac toxicity. Mol. Inform. 34, 698–701
(2015).

58. Ryu, J. Y., Lee,M. Y., Lee, J. H., Lee, B. H. &Oh, K.-S.DeepHIT: a deep
learning framework for prediction of hERG-induced cardiotoxicity.
Bioinformatics 36, 3049–3055 (2020).

59. Tong, X. et al. Blood–brain barrier penetration prediction enhanced
by uncertainty estimation. J. Cheminformatics 14, 1–15 (2022).

60. Sakiyama, H., Fukuda, M. & Okuno, T. Prediction of blood-brain
barrier penetration (bbbp) based on molecular descriptors of the
free-form and in-blood-form datasets. Molecules 26, 7428 (2021).

61. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine
learning. Chem. Sci. 9, 513–530 (2018).

62. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Mole-
cular graph convolutions: moving beyond fingerprints. J.
Computer-aided Mol. Des. 30, 595–608 (2016).

63. Veličković, P. et al. Graph Attention Networks. In: International
Conference on Learning Representations (2018).

64. Xiong, Z. et al. Pushing the boundaries of molecular representation
for drugdiscoverywith thegraphattentionmechanism. J.Medicinal
Chem. 63, 8749–8760 (2019).

65. Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, Rvd., Titov, I., & Well-
ing,M.Modeling relational datawith graphconvolutional networks.
In: European semantic web conference) Springer (2018).

Article https://doi.org/10.1038/s41467-023-38192-3

Nature Communications |         (2023) 14:2585 14



66. Zhenxing,Wu. et al. Chemistry-intuitive explanation of graphneural
networks for molecular property prediction with substructure
masking. Substructure-Mask-Explanation. https://doi.org/10.5281/
zenodo.7707093 (2022).

Acknowledgements
This study was financially supported by National Key R&D Program of
China (2021YFF1201400), National Natural Science Foundation of China
(22220102001), and Natural Science Foundation of Zhejiang Province of
China (LD22H300001).

Author contributions
T.H., C.Y.H., D.C., andZ.W. designed the research study. Z.W. developed
the method and wrote the code. Z.W., J.W., H.D., D.J., Y.K., D.L. P.P., and
Y.D. performed the analysis. Z.W., T.H., C.Y.H., and D.C wrote the paper.
All authors read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38192-3.

Correspondence and requests for materials should be addressed to
Dongsheng Cao, Chang-Yu Hsieh or Tingjun Hou.

Peer review information Nature Communications thanks Gunnar
Mathiason and the anonymous reviewers for their contribution to the
peer review of this work. A peer review report is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-38192-3

Nature Communications |         (2023) 14:2585 15

https://doi.org/10.5281/zenodo.7707093
https://doi.org/10.5281/zenodo.7707093
https://doi.org/10.1038/s41467-023-38192-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
	Results
	SME attribution visualization of Aqueous solubility
	Functional group attribution analysis and structure optimization of aqueous solubility
	SME attribution visualization of mutagenicity
	The combination can compensate for the flaws of SME in the classification problem
	Functional group attribution analysis and structure optimization of Mutagenicity
	SME can reveal the hERG optimization strategies
	Examples of structural optimization for hERG toxicity in the real world
	Attribution-based molecular generation for desired properties
	How can SME establish SAR information with deeper explanations

	Discussion
	Methods
	Datasets
	Substructure mask explanation
	Combination of the BRICS and Murcko substructures
	Model construction and evaluation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




