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Single-neuron mechanisms of neural adap-
tation in the human temporal lobe

Thomas P. Reber 1,2 , Sina Mackay 2, Marcel Bausch 2, Marcel S. Kehl 2,
Valeri Borger3, Rainer Surges2 & Florian Mormann 2

A central function of the human brain is to adapt to new situations based on
past experience. Adaptation is reflected behaviorally by shorter reaction times
to repeating or similar stimuli, and neurophysiologically by reduced neural
activity in bulk-tissuemeasurementswith fMRI or EEG. Several potential single-
neuron mechanisms have been hypothesized to cause this reduction of
activity at the macroscopic level. We here explore these mechanisms using an
adaptation paradigm with visual stimuli bearing abstract semantic similarity.
We recorded intracranial EEG (iEEG) simultaneously with spiking activity of
single neurons in the medial temporal lobes of 25 neurosurgical patients.
Recording from 4917 single neurons, we demonstrate that reduced event-
related potentials in the macroscopic iEEG signal are associated with a shar-
pening of single-neuron tuning curves in the amygdala, but with an overall
reduction of single-neuron activity in the hippocampus, entorhinal cortex, and
parahippocampal cortex, consistent with fatiguing in these areas.

A vital capacity for an organism to survive and reproduce is to adapt
behavior based on prior experience. One of the most fundamental
forms of memory that facilitates these behavioral adaptations man-
ifests in faster and more efficient processing of repeating external
stimuli1 – a behavior that can be observed throughout the animal
kingdom, and even in organism lacking a central nervous system2. In
more complex organisms, behavioral adaptation is achieved not only
on repeated exposure to identical stimuli, but also when a feature of
novel experience merely bears resemblance to past experience at an
increasingly abstract level. Arguably unique to human is adaptation
based on similarity at the level of abstract semantics.While behavioral
adaptation to abstract semantics is at the heart of human cognition,
little is known about the neuronal mechanisms achieving this feat.

Behavioral adaptation is also referred to as priming and has been
considered a fundamental, implicit form of memory. Behavioral
adaptation is often accompanied by a reduction in neural activity for
repeated stimuli, i.e., repetition priming3, or for perceptually or con-
ceptually similar stimuli, i.e., relatedness priming. Neural activity
reduction during behavioral facilitation has been referred to as “neural
priming”, “neural adaptation” or “repetition suppression”. Neural
adaptation (NA) has more recently been framed as a correlate of

predictive signals that are ubiquitous in the brain4. NA can be observed
with coarse measures of neural activity such as fMRI, MEG, EEG, and
intracranial EEG5–7. The mechanisms at the micro-level of single neu-
rons that give rise to NA at themeso- andmacro-level (iEEG, and fMRI/
EEG), however, remain elusive3,8,9.

Psychological and computational models for semantic related-
ness priming have been formulated as early as the 1960’s10,11. Likely the
most influential models are spreading activation models that assume
semantic knowledge tobe stored in a networkwith nodes representing
individual concepts or semantic features thereof. Nearby concepts and
features in semantic space are assumed tobe connected through fewer
nodes in the network. In these models, facilitation of behavioral
responses in conceptual relatedness priming tasks is the consequence
of residual activity spreading to neighboring nodes in the network,
essentially lowering the threshold of activation in neighboring nodes.
The spreading activation model has been influential in linguistic and
behavioral cognitive research12. With a few exceptions pertaining to
neurotransmitter levels modulating the amount of spreading
activation13,14, the precise biological implementation and plausibility of
the spreading activation model have not been sufficiently addressed.
Furthermore, the spreading activationmodel does not explain howNA
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on meso- and macroscopic measures of brain activity emerges from
activity patterns in populations of single neurons.

In the context of repetition rather than relatedness priming, sev-
eral single-unitmechanisms thatmay give rise to NA at themacro-level
have been hypothesized3,8,9,15,16. One of them is referred to as shar-
pening. At the level of an individual neuron, sharpening describes a
situation in which a neuron keeps firing as strongly to its optimal sti-
mulus on repeated versus initial presentations while it reduces firing
disproportionally in response to non-optimal stimuli17,18. Apart from
this sharpening of tuning curves of individual units, sharpening at the
population level describes the situation that in repeated presentations
for the same stimulus, fewer neurons fire than during the initial
presentation19. Fatiguing is observed when neurons reduce their firing
rate proportionally to all response-eliciting stimuli without affecting
the shape of the tuning curve20–22. Both, sharpening and fatiguing
reduce activity to non-optimal stimuli and by this increase stimulus
selectivity of the population response. Increased selectivity is then
thought to be responsible for faster propagation of signals to down-
stream regions and by this essentially enable behavioral facilitation. A
shortening of periods of neuronal activity in response to repeated
versus initial presentations is referred to as facilitation23. A con-
sequence of facilitation in down-stream regions of the processing path
is a reduction in the latency with which neurons respond to a stimulus.
The neuronal facilitation model nicely explains observations of shor-
tened reaction times at the behavioral level. Despite its appeal, evi-
dence in favor for the facilitation model on the level of single-neuron
data is lacking. More recently, however, two intrancranial EEG studies
have reported evidence of earlier peak latencies in evoked activity
during priming24,25. Investigations of potential single-unit mechanisms
of NA, however, so far have been mostly confined to studies of visual
perception andobject recognition in primary sensory areas and area IT
in non-human primates17,18,21,22. As the sharpening, fatiguing and facil-
itation models have been formulated in the context of repetition
priming, it remains open whether and under what circumstances fati-
guing, facilitation or sharpening can be observed as underlying
mechanism for NA in conceptual relatedness priming humans and in
areas associated with higher cognitive functions.

The humanMTL is a prime candidate to assess these questions as
it is a brain region that has been implicated in several of higher forms
of cognition in humans and from which single neuron and intracranial
EEG data can be recorded simultaneously in the rare occasions given
by invasive epilepsy monitoring26. Single neuron data from the human
MTL have been instrumental to further our understanding of higher
forms of cognition such as episodic and semantic memory27–30, work-
ing memory31,32, spatial navigation33,34, as well as emotion recognition
and appraisal35–37. NA in the human MTL has not only been demon-
strated on identical repetitions of visual stimuli8,38,39 but also on target
stimuli following semantically similar versus dissimilar prime
stimuli40,41. NA in the MTL following semantic priming dovetails with
the notion of a primarily semantic neuronal code of single units in
humans28,35,42–45.

The aim of the current work is to investigate the single-unit
mechanisms of NA in the humanMTL following behavioral adaptation
to highly abstract semantic information. We recorded simultaneous
iEEG and single-unit activity from the MTLs of patients undergoing
chronic epilepsymonitoring while they performed a semantic priming
experiment.

Results
Adaptation to semantics manifests in behavioral measures
Participants (n = 25) viewed 10 sequences of 100 images depicting
single objects from 10 different semantic categories and performed a
manmade/natural decision for each image (Fig. 1a). The sequences of
images were pseudorandomly arranged with the constraint that each
image was preceded by a different stimulus from either the same or

different category, leading to 5 trials per condition per sequence
(control condition; Fig. 1a). Behavioral adaptation was evidenced by
significantly faster reaction times on targets in the primed vs. control
condition overall (Md [IQR]primed = 604ms [138ms]; Md
[IQR]control = 713ms [146ms]; p = 2.94−11, Wilcoxon signed-rank test).
To exclude contributions of mere response priming, we excluded all
trials in the control condition that were primed by an image of the
different meta-category (manmade/natural). This contrast also
revealed evidence in favor of behavioral facilitation (Md
[IQR]primed = 605ms [138ms]; Md [IQR]control = 682ms [168ms];
signed-rank p = 6.96−11, Wilcoxon signed-rank test). Behavioral adap-
tation was also evident in response accuracy despite close-to-ceiling
performance on the task (Md [IQR]primed = 99.4% [1.1%]; Md
[IQR]control = 98.0% [3.0%]; p = 1.29−6, Wilcoxon signed-rank test).
Excluding effects of response priming, in contrast, resulted in no sig-
nificant effect on response accuracy (Md [IQR]primed = 99.6% [1.1%]; Md
[IQR]control = 100.0% [1.21%]; p =0.207, Wilcoxon signed-rank test).

Reduced neural activity and faster dynamics is evident in
iEEG ERPs
Behavioral adaptationwas accompaniedbyNA in grand-average event-
related potentials (ERPs) recorded on iEEG in the bilateral amygdalae,
hippocampi, and entorhinal and parahippocampal cortices (Fig. 1c).
NA evident in grand-averaged ERPs was assessed using cluster-based
permutation statistics46 and revealed significant decreases in the
positive and negative peaks of the ERPs in all anatomical regions we
recorded from (amygdala, hippocampus, entorhinal, and para-
hippocampal cortices). The ERPs for primed versus control targets
started to diverge at ~250ms post-stimulus, which coincides with the
onset of neuronal firing in responses to visual stimuli previously
reported in single-unit studies of the human MTL47, 48.

A prerequisite to test single unitmechanisms of neural adaptation
is that prime and target stimuli recruit similar neuronal populations.
That this is the case in our data is indicated by higher representational
similarity in population responses for primed as compared to control
stimuli (Supplementary Fig. 4).

To assess evidence of facilitation at the iEEG level, we also asses-
sed differences in peak latencies for the primed and control condition.
According to the first two prominent peaks in the grand average ERPs
(Fig. 2C), we determined negative peak latency in anearly timewindow
(200–400ms), and positive peaks in a later time window
(400–750ms) for each session and each of the four MTL regions. In
the early time window, significantly earlier negative peaks in
the primed vs. control condition were evident in the amygdala
(Md[iqr]primed = 267[38] ms, Md[iqr]control = 283[31] ms, p <0.001, Wil-
coxon signed-rank test), entorhinal cortex (Md[iqr]primed = 263[31] ms,
Md[iqr]control = 267[36], p <0.001), and parahippocampal cortex
(Md[iqr]primed = 237[45] ms, Md[iqr]control = 253[84], p < 0.001). In the
later time window, no significant reductions in peak latency for the
primed vs. control condition were found (see Supplementary Table 1
for a full list of statistical comparisons).

Sharpening and fatiguing is evident in single unit activity
To assess single-unit mechanisms of NA, we recorded spiking activity
from 4917 units in the MTL. At the neuronal level, sharpening is evident
as greater attenuation in spiking for non-optimal than optimal stimuli.
Fatiguing, in contrast, is characterized by greater attenuation for opti-
mal than non-optimal stimuli. To decide between the two mechanisms,
we selected units responding to multiple stimuli (4 or more; n= 211, 136
single units, 75 multi units, see Supplementary Fig. 1a/b for analyses for
2/3 or more responsive stimuli, respectively. See Supplementary Fig. 7
for an analyses using non-normalized firing rates in Hz as dependent
measure). For each unit, stimuli were ordered according to the firing
rate they elicited during the response period (0–1 s, collapsed over
primed and control condition). Curves were normalized per unit to the
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firing rate during presentation of themost response-eliciting stimulus in
the control condition. Primed and control condition were contrasted
with signed-rank tests at each of the first four ranks (Fig. 2b). The ranks
correspond to the above ordering of stimuli according to the average
strength with which made the neuron fire.

In all regions we recorded from, units fired with variable strength
to different stimuli, consistent with the idea of a “semantic tuning
curve”28 rather than an “all-or-nothing” coding of stimulus identity45.

In amygdala units, we found a pattern consistent with a shar-
pening of the tuning in the primed versus control condition (Fig. 2b,
left panel). In particular, no significant difference in firing rates
between primed and control condition was found for the most
response-eliciting stimuli (p =0.67). Attenuation of spiking for primed
vs. control condition was evident at response-eliciting stimuli on ranks
2 and 3, and attenuationwas stronger in rank 2when compared to rank
1 (all p <0.01, Fig. 2b).

Fig. 1 | Design, ERPs, and behavioral data. A Participants performed a manmade
vs. natural decision on images presented in a sequence that was arranged such that
half of the images were preceded by the same/different category (primed/control
condition). B Behavioral priming is observed in significant differences in mean
reaction time differences (RT) between primed and control targets. Sample size
n = 59 sessions. P-values are derived from an uncorrected Wilcoxon Signed Ranks
test. The left plot includes all trials (p = 2.94 × 10−11, Z = 4), whereas the right plot
only includes control targets that were preceded by prime stimuli affording the
same behavioral response (p =6.96 × 10−11, Z = 21; manmade/natural meta-cate-
gory), excluding mere response priming. Center line in boxplots denote the med-
ian. Box limits denote the upper and lower quartiles. Whiskers denote the
median ± 1.5x interquartile range anddata points exceeding thewhiskers are shown
as red crosses. Source data are provided as Source Data file (SourceData.xlsx).
C Grand-average ERPs of the most medial contacts of intracranial electrodes were
computed for the amygdala (AM), entorhinal cortex (EC), hippocampus (HC), and
parahippocampal cortex (PHC). Grand average ERPs as depicted were calculated
from individual ERPs derived per experimental session, averaging over electrodes
in anatomical regions across the two hemispheres. As implantation schemes varied
between participants, sample sizes for calculating grand average ERPs vary
between anatomical regions (n = 59 sessions for AM, n = 57 sessions in HC,
n = 49 sessions in EC, n = 52 sessions in PHC). Colored bars depict the uncorrected
p-values of two-tailed t-tests performedat each sample point. Shaded colored areas

denote the standard error of the mean. Gray bars with an asterisk on top denote
significant differences according to a two-sided cluster-based permutation test46.
More detail on significant clusters is given in the following. AM primed > control
from 244ms to 435ms, clustersize = 49, sum of t-value s = 324.95, p < 0.001;
primed < control from 502ms to 678ms, clustersize = 45, sum of t-value
s = −271.5, p < 0.001; from 1276ms to 1331ms, clustersize = 14, sum of
t-value s = −63.208, p < 0.001; from 1335ms to 1351ms, clustersize = 4, sum of
t-value s = −16.601, p < 0.001; from 1355ms to 1370ms, clustersize = 4, sum
of t-value s = −14.708, p = 0.002; HC primed > control from 259ms to 353ms,
clustersize = 24, sum of t-value s = 150.24, p < 0.001; from 494ms to 514ms,
clustersize = 5, sum of t-value s = 17.576, p <0.001; primed < control from 834ms
to 1171ms, clustersize = 86, sum of t-value s = −382.66, p < 0.001; from 1237ms to
1241ms, clustersize = 1, sum of t-value s = −3.6714, p = 0.002; EC primed > control
from 240ms to 428ms, clustersize = 48, sum of t-value s = 261.15, p <0.001;
primed <control from 506ms to 643ms, clustersize = 35, sumof t-value s = −181.6,
p < 0.001; from 654ms to 662ms, clustersize = 2, sum of t-value s = −7.599,
p < 0.001; from 1280ms to 1288ms, clustersize = 2, sum of t-value s = −7.8629,
p < 0.001; from 1292ms to 1308ms, clustersize = 4, sum of t-value s = −16.11,
p < 0.001; PHC primed > control from 259ms to 412ms, clustersize = 39, sum of
t-value s = 210.88, p <0.001; primed <control from 490ms to 623ms, clus-
tersize = 34, sum of t-value s = −182.86, p < 0.001; Source data are provided as
Source Data file (SourceData.xlsx).
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In other regions of the MTL we recorded from, the pattern was
consistent with fatiguing (Fig. 2b, right panel). Here, pairwise com-
parisons between primed and control condition were significant at
ranks 1 and 2, while no pairwise comparison of attenuations between
ranks reached significance.

To formally assess that response profiles were significantly dif-
ferent between anatomical regions, we used a 2 × 4 × 2 mixed ANOVA
with neurons as units of observation, the within factors Condition
(primed, control), Stimulus Rank (1, 2, 3, 4), and Anatomical Region
(AM, other MTL regions), and Z-scored firing rates as dependent
measure. Since we ranked stimuli based on their firing rate, we found
significant contrasts for Rank by design. The largest effect was found
for the linear contrast of Rank (F = 450.426, p <0.001, ηp

2 = 0.683). As
expected, we also found a significant main effect of Condition
(F = 24.107, p <0.001, ηp

2 = 0.103). Furthermore, we found significant
quadratic interaction contrasts for Rank ×Condition (F = 12.684,
p <0.001, ηp

2 = 0.057), and Rank × Condition × Region (F = 4.864,
p =0.029, ηp

2 = 0.023; see Supplementary Table 2 for a complete list of
within-subject contrasts). The significant three-way interaction sup-
ports the conclusion that responseprofiles differ significantly between
AM and other regions of the MTL.

To assess the relationship between single unit evidence for shar-
pening and fatiguing behavior, we correlated firing rate differences
between primed and control stimuli on ranks 2 and 3 with behavioral

reduction in reaction latencies to primed versus control stimuli (Sup-
plementary Fig. 2). These correlations were insignificant. Furthermore,
correlations of the reduction in iEEG signals to primed versus control
condition stimuli were uncorrelated with behavioral reaction latency
differences (Supplementary Fig. 3). We also correlated reduction of
iEEG in with the differences in single unit firing rates between primed
andcontrol stimuli on rank 1 (as ameasure of fatiguing) and rank2 (as a
measure of sharpening). No significant correlations were observed in
these analyses either (Supplementary Fig. 6).

No evidence for facilitation, i.e., the shortening of firing-duration
in primed vs. control condition was seen in any of the anatomical
regions. Here, we analyzed spike trains in units with a baseline-firing
above 2Hz using a burst detection algorithm to determine firing onset
and offset. Comparing the duration of firing between primed and
control condition did not reveal significant differences (Fig. 2c).
Remarkably, neuronal response onset latencies also did not reflect the
behavioral differences in reaction time (Fig. 2d), indicating that these
might be caused by facilitation elsewhere in the brain.

To assess whether there is support for the spreading activation
model in our data, we compared pre-stimulus activity of units
responding to at leastoneof the stimuli (301 units in the amygdala, and
484 in other MTL regions). The spreading activation model makes no
explicit statement about underlying biological mechanisms. One pos-
sible prediction might be higher pre-stimulus activity prior to the

Fig. 2 | Sharpening in single-unit responses to multiple stimuli. A The panel
depicts data from one unit. The left two columns depict raster-plots to the 16 sti-
muli eliciting the strongest responses, separately for the primed and control con-
dition, sorted from top to bottom according to response strength in the control
condition. The column on the right depicts the average firing rate during the
response-period [0–1 s], normalized to the baseline [−0.5–0 s] as a Z-score. Source
data are providedasSourceDatafile (SourceData.xlsx).BAverages of all curves inA
from the 211 units responding to 4ormore response-eliciting stimuli. A paired t-test
of primed vs. control tuning curves was performed for each rank on the x-axis, and
the resulting p-values printed in bold if significant at α <0.05.More information on
the results of t-tests is given in the following. Sample size n = 88 units in the
amygdala (AM). Rank 1 primed vs. control: t(87) = 0.43, CI = [−0.044 0.069],
p =0.67; rank 2 primed vs. control: t(87) = −3.3, CI = [−0.17−0.043], p =0.0013; rank
3 primed vs. control: t(87) = −2.9, CI = [−0.13 −0.023], p =0.0054; rank 4 primed vs.
control: t(87)=0.057, CI = [−0.048 0.051], p =0.95. Sample size n = 123 units in the
hippocampus, entorhinal and parahippocampal cortex (HC, EC, PHC). Rank 1
primed vs. control: t(122) = −2.4, CI = [−0.097 −0.0093], p =0.018; rank 2 primed vs.
control: t(122) = −3.5, CI = [−0.11 −0.03], p =0.00075; rank 3 primed vs. control:

t(122) = −1.8, CI = [−0.074 0.0026], p =0.067; rank 4 primed vs. control:
t(122) = −0.33, CI = [−0.045 0.032], p =0.74. Firing rates (FR) for stimuli presented
in the primed and control condition in a unit were normalized to the maximum
firing ratemeasured in the control condition (rank 1 stimulus, FRmax). Shaded blue
and red areas depict the standard error of the mean. Source data are provided as
Source Data file (SourceData.xlsx). CDuration of neuronal responses in the primed
and control condition. Sample sizes (n) indicate the number of units. Center line in
boxplots denote the median. Box limits denote the upper and lower quartiles.
Whiskers denote themedian ± the 1.5 times the interquartile range. Source data are
provided asSourceDatafile (SourceData.xlsx).DResponse latencywasdetermined
using the same Poisson-burst detection algorithm as in C for units with a baseline
firing rate >2Hz. For all other units, response onset was determined using the
timestampof the first spike emitted in a time-window ranging from 100 to 1000ms
after stimulus onset. Sample sizes (n) indicate the number of units. Center line in
boxplots denote the median. Box limits denote the upper and lower quartiles.
Whiskers denote themedian ± the 1.5 times the interquartile range. Source data are
provided as SourceData file (SourceData.xlsx). AMamygdala, HChippocampus, EC
entorhinal cortex, PHC parahippocampal cortex.
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presentation of the response-eliciting stimulus under the primed
condition as compared to the control condition. A paired t-test of Z-
scored firing rates in the time window ranging from −500ms to sti-
mulus onset (0ms) in the amygdala was not significant;
M(SD)primed = 0.094(0.48), M(SD)control = 0.061(0.45); t300 = 0.846,
p =0.398. The analog analysis for units in other MTL regions did also
not show significant effects; M(SD)primed = 0.064(0.47), M(SD)con-
trol = 0.027(0.45); t484 = 1.22, p =0.223 (Supplementary Fig. 5, Supple-
mentary Fig. 8 for the same analyses with raw firing rates as dependent
measure). Spreading activation might also manifest in a higher intra-
cranial EEGpotential pre-stimulus for the primed vs. control condition.
No such effect could be observed in any of the regions we recorded
from (Fig. 1C).

Discussion
Adaptation to information repeating on a highly abstract, semantic
level is a feat that is arguably exclusive to human cognition. Three
hypotheticalmechanisms enabling neural adaptation observed in bulk
tissue studies have been proposed at the neuronal level, namely,
sharpening, fatiguing, and facilitation. We conducted a semantic
priming paradigm with neurosurgical patients implanted with elec-
trodes for the simultaneous recording of iEEG and single-unit activity.
We replicated behavioral adaptation at the level of reaction times and
NA in bulk-tissue iEEG recordings. Furthermore, evidence suggests
that iEEG ERPs are also compressed in time as consequence of adap-
tation. We did not find evidence for spreading activation as a pre-
paratorymechanism in neither iEEG nor in single unit activity. Patterns
of single-unit activitywere consistentwith the sharpeningmodel in the
amygdala and the fatiguing model in other MTL regions. No evidence
for the facilitation model was observed on the level of single units.

Our results hence demonstrate that both fatiguing and sharpen-
ing elicits NA observed in coarse measures of neural activity. It is
conceivable that observed fatiguing in a downstream region is the
consequenceof sharpening in an upstreamregion, or thatmechanisms
of NA could differ between anatomical regions. Furthermore, the
cognitive task and the kind of information that is repeated to elicit NA
are additional factors that could determinewhether neurons in a given
brain region display sharpening or fatiguing. Sharpening can be seen a
mechanism of reducing noise in neural representations and could be
the consequence of top-down gating of relevant information16. Shar-
pening has also been observed in nonhuman-primate studies as a
correlate of long-term memory. Sharpening of single neuron IT
responses, e.g., have been reported when long-term explicit learning
or increased familiarity to visual stimuli is involved17,18. Sharpening has
also been observed following several days of practice in a delayed
match to sample task using degraded visual stimuli in the prefrontal
cortex of monkeys49. Our results add that sharpening can also be
observed for short-term repetition of information at an abstract,
semantic level in thehumanamygdala.Wecanonly speculate as towhy
the amygdala appears to implement a different single-neuron
mechanism of NA than other regions we recorded from, which show
patterns consistent with fatiguing. Part of the reasonmight be that the
amygdala is receiving inputs from these other regions showing
fatiguing-like patterns of activity. Fatiguing in combination with a
gating mechanism upstream could result in non-linear attenuation of
activity in response to non-optimal stimuli in the primed as compared
to the control condition further downstream in the amygdala.

While it may seem surprising that the amygdala exhibits NA in a
conceptual relatedness-priming paradigm, the human single unit lit-
erature has long described neurons in the amygdala responding to
broad and abstract semantic categories such as images of animals,
faces or cars42. Likewise, most studies demonstrating units in the
human MTL that respond selectively to the semantic content of a sti-
mulus irrespective of presentationmodality (e.g., the picture aswell as
the written and spoken name of an object or a person) found these

types of neurons as frequently in the amygdala as in other MTL
regions43,50,51. This might be due to the fact that these so-called “con-
cept cells”27 have mostly been viewed in the light of their potential
functional role in declarativememory formationwhere the anatomical
focus was more on the hippocampus and entorhinal cortex, rather
than the amygdala. Investigations of the role of concept cells in the
context of functions traditionally associated with the amygdala are
scarce35,52 and may be complicated by the fact that the amygdala in
itself is highly heterogenous structure associated with a wide range of
functions mostly related to emotions53. Thus, we can only speculate
that the amygdala benefits from using an abstract semantic code for
efficient assessment of external stimuli with regard to their emotional
relevance.

Fatiguing, on the other hand, has been observed in primate IT in
paradigms entailing short-term repetitions of identical stimuli21,22, or
back-to-back presentations of similar vs. dissimilar shapes20. One pre-
vious human study investigating effects of repetition on single unit
activity reported a reduction of neural activity from the first to fol-
lowing presentations of the identical response-eliciting stimuli that
were separated by several minutes38. This study, however, did not
distinguish between more and less response-eliciting stimuli and
hence could not rule out the possibility that patterns consistent with
sharpening were also present. Our results hence critically extend this
previous work by showing that fatiguing also results when repetition
concerns categorical, semantic information in back-to-back
presentations.

Our result of earlier negative peaks in iEEG potentials for the
primed vs. control condition are in line with previous studies that
found similar evidence for facilitation in intracranial EEG24,25. This
finding stands in contrast to the lack of evidence for shorter or earlier
bouts of activity for primed versus control stimuli in single-unit activity
in our data. It is important to keep in mind that especially lower-
frequency components of the iEEG signal can also reflect computa-
tions happening upstream and should therefore rather be regarded as
the input signal into a region. Single-unit activity, on the other hand, is
the direct consequence of local computations. It is therefore con-
ceivable that facilitation at this mesoscopic iEEG scale is the result of
sharpening and/or fatiguing at the level of microscopic single-unit
activity, either in the same regionor in upstream regions. In the case of
sharpening, this could mean that a smaller population of neurons
representing a stimulus more efficiently could result in faster propa-
gation of signals to downstream regions19. Sharpening at the single-
unit level could thus be regarded as a factor contributing to facilitation
such that local networks dynamics settlemore quickly into anattractor
state54. These faster local dynamics could then become observable
only on coarsermeasures such as iEEG, scalp EEG or fMRI. Especially in
fMRI, however, faster dynamics (facilitation) are difficult to distinguish
from reduced overall activity (fatiguing) or sharpening of representa-
tions due to the large temporal integrationwindowof the BOLD signal.

It is noteworthy that the neuronal models for NA (sharpening,
facilitation, and fatiguing) were initially formulated in the context of
repetition of identical stimuli. In this context, the fatiguing model
can only produce fatiguing of neural responses, but it can produce
either fatiguing- or sharpening-like effects in (semantic) relatedness
priming. If there is little to modest overlap in the neural repre-
sentations of two related stimuli, then short-term adaptation can
reduce the magnitude of the intermediate responses without
affecting the peak response much. The more overlap between the
first and second stimuli, the more “fatigue-like” the effects can be
observed. Our current data set is too limited in the number of trials
eliciting neuronal responses to be further subdivided in the ones
with high vs. low overlap other than already inherent in our experi-
mental manipulation. Future studies could parametrically vary the
overlap of neuronal populations recruited by prime and target sti-
muli to further investigate this question.
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NA was observed in intracranial EEG while underlying single-unit
mechanisms could investigated at the same time. Previous studies of
NA in the human MTL were performed with fMRI, and revealed NA in
the context of higher forms of cognition such emotion recognition55,
episodic memory39, and semantic processing41. There are studies
assessing models of sharpening, facilitation and fatiguing with fMRI,
reporting evidence for facilitation and sharpening, depending on
cortical region and task8,56. These studies investigated NA in the con-
text of face and object perception, and phenomena modeled in these
fMRI studies are confined to cortical regions exhibiting macroscopic
topographic organization such as neocortical regions involved in the
storage of semantic knowledge57. Macroscopic topographic organiza-
tion, however, is a feature that is not present in the humanMTL such as
e.g. the hippocampus or the amygdala58,59. Our results hence extend
these findings with evidence for fatiguing and sharpening in regions of
higher-order cognition that are lacking macroscopic topographical
organization.

Single-unit studies in nonhuman primates, in contrast, mainly
investigated lower-level perceptual processes and recorded single-unit
activity only17,18,21,22. Connecting findings from non-human single-unit
studies with human fMRI studies has been difficult as different species,
tasks and anatomical regions were investigated. Having data on both
the micro- and the meso-scale simultaneously hence critically extends
previouswork aswe reportNAon themeso-scale togetherwithdata on
the micro-scale in the same anatomical regions of the same subjects
performing the same task.

The dominating psychological model for semantic-relatedness
priming is the spreading activation model10. In our data we do not
find evidence in favor of this model as neither iEEG nor single-unit
activity was increased pre-stimulus in the primed vs. the control
condition. As the spreading activation model leaves the biological
implementation open, it is conceivable that the measures we record
are insensitive to residual activity spreading through the network.
For example, spreading activation could result in subthreshold
activity, i.e., excitatory or inhibitory postsynaptic potentials (E/
IPSPs). More recent computational models explain NA and beha-
vioral facilitation in terms of, e.g., predictive coding4 and Bayesian
surprise60. While most of these models of high-level abstract cog-
nition such as sentence understanding usually remain vague with
respect to their precise biological implementation, the latter sen-
tence gestalt model60 suggests that as semantic knowledge and
expectations are updated by repeated exposures of semantic rela-
tionships to the network, a shift of labor from unit activity to
synaptic connections may be responsible for overall reduced spik-
ing activity for less surprising (primed) stimuli. Both the measure-
ment of EPSPs and IPSPS for the spreading activation model, as well
as measurements of synaptic strength unfortunately still go beyond
what is currently possible to assess in human intracranial in-vivo
electrophysiology.

Finally, our results speak to the debate whether single units in the
humanMTL fire in a binary, all-or-none fashion to semantic concepts45,
or whether these units display graded responses to multiple stimuli,
resembling classical tuning curves observed in perceptual domains61.
Consistent with the latter idea of tuning curves along semantic
dimensions28, we found units responding with graded intensities to
different stimuli (see Fig. 2A), also of the same semantic category28.
Previous studies interpreting responses as binary to one or more
concepts, thus corresponding to a boxcar-shaped tuning curve,
assessed tuning only for heterogenous sets of visual stimuli optimized
for identifying as many units as possible responding to one of the
stimuli in the set43,45,62. The stimulus set in this and a previous study28

entailed images that can systematically be grouped into rather narrow
semantic categories such as “insects” or “clothes”, making detection of
rather narrow semantic tuning to different members of a semantic
category more feasible.

Methods
Participants
Participants were 25 neurosurgical patients (9 female; 19–62 years of
age, M = 38, SD = 13) implanted with depth electrodes for chronic sei-
zure monitoring to identify seizure onset zones for later surgical
removal. The length of stay on the epilepsy monitoring unit was
~7–10 days during which multiple cognitive experiments were con-
ducted. The study was approved by the Medical Institutional Review
Board of the University Bonn. Each patient gave informed written
consent. No compensation for participation was paid.

Statistical tests
All statistical tests are two-tailed. Unless stated otherwise, statistical
tests rendering an α value below 0.05 are considered significant.

Task and stimuli
Stimulus material consisted of 100 images from 5 manmade and 5
natural categories of 10 exemplars each. One session was subdivided
into ten runs. In each of the ten runs, all 100 images were presented
once as target, and one image was presented once additionally in the
beginning of the run to serve as prime for the first stimulus in the
sequence of 100. This very first presentation was discarded from
analyses, resulting in 10 presentations of each of the 100 images as
target in total. The sequences were pseudorandomly arranged such
that in 5 presentations, the image was preceded by an image of the
same category (primed condition) and 5 times preceded by an image
of a different category.

A trial started with the presentation of a blank screen for
200–400ms (random jitter), followedby a fixation dot (300ms). Then
the image was displayed on screen until the subject pressed either the
left or right arrow button to indicate whether the depicted object is
something manmade or natural, respectively.

Analysis of behavioral priming
Reaction timesof individual trials shorter than themean reaction times
of a session (M) −2.5 times the standard deviation (SD), or longer than
theM+ 2.5 SD were excluded from further analyses.We then averaged
reaction times across trials of each condition/participant combination
and performed a signed-rank test for the contrast primed vs. control
condition, treating values from the same participant as pairs.

Electrophysiological recordings
Data was recorded from Behnke–Fried depth electrodes (AdTech,
Racine, WI) equipped with eight macro-contacts (iEEG), and a bundle
of nine microwires for single unit recordings that were inserted in the
shaft of the implant and protruded ~4mmfrom its tip into the targeted
brain region. A bundle of microwires consisted of eight high-
impedance recording electrodes and one low-impedance reference.
Signals from micro and macro contacts were amplified and recorded
by a Neuralynx ATLAS system (Bozeman, MT). The sampling rate was
2 kHz for the macro and 32 kHz for the micro channels. All microwire
signals were referenced against one or multiple of the low-impedance
referencemicrowires, depending on signal quality. Onemacro-contact
was chosen as common reference for all macro-recording channels
based on clinical considerations. Macro recordings were then re-
referenced offline to linked mastoid electrodes.

iEEG analysis
Data recorded from the most medial contact was chosen for iEEG
analysis as this contact lies closest to microwire recordings. After off-
line re-referencing to linked-mastoids, data frommacro contacts were
downsampled to 256Hz and then bandpass-filtered between 0.1 and
80Hz. Data was segmented from −1 to 2 seconds relative to stimulus
onset, and baseline corrected by subtracting the mean signal from
−200 to 0 in a segment from every data point in that segment. To
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exclude segments containing non-neural artefacts, we computed for
each segment the ratio of the maximum of the absolute signal in each
segment to the median of all absolute maxima across segments. Seg-
ments in which this ratio exceeded 2.5 were excluded from further
analyses. Similarly, to estimate the noise floor in an individual segment
of data, we calculated the median of the absolute values of all samples
in a segment. We then took the median of the distribution of these
medians across all segments. Finally, we divided individual medians by
the median of all medians. Segments in which this ratio exceeded 2.5
were excluded from further analyses. Event-related potentials were
then computed by averaging segments per experimental condition
(primed vs. control), and by averaging across recording sites.

Cluster-based permutation statistics
To test for significant differences in grand-average ERPs, we used a
cluster-based label shuffling procedure introduced by Maris &
Oostenveld46. Briefly, a t-test was conducted at each sample point
between individual traces going into the grand-average of the primed
and control condition. The tests were conducted once with correct
labels assigned to the iEEG traces, and 1000 times with random
assignment of labels to the traces. Clusters were defined as con-
secutive sample-points at which the t-test exceeded a cluster α level of
0.001. To determinewhether a cluster reached significance, the sumof
t-value s in a cluster resulting from correct assignment of the labels to
the data had to exceed the 99th percentile or fall below the first per-
centile of the distribution of sums of t-values resulting from label-
shuffled data.

Spike sorting
The software packages wave_clus63 and Combinato64 were used to
sort action potentials. Wave_clus was used in the first 33 sessions, and
Combinato for the following 26 sessions because we switched to
using Combinato for reasons unrelated to this work. Spike sorting
was manually optimized immediately after recording because the
paradigmwas also used to screen for response-eliciting stimuli in the
morning of a day of testing for ensuing experiments. In total, we
recorded from 4917 units of which 2009 were classified as single
units (SU, 41%). In all, 1392 units were recorded in the amygdala (656
SU), 1863 units (706 SU) in the hippocampus, 828 (228 SU) in the
entorhinal cortex, and 831 units (319 SU) in the parahippocampal
cortex.

Normalization of firing rates
All statistics on unit activity were conducted with normalized firing
rates. Raw firing rates of unit activity during the activation period
(100–1000ms post-stimulus) were normalized using a z-score with
respect to the mean and the standard deviation of the distribution of
firing rates of all 1000 trials collapsed over condition (primed, control)
during a pre-stimulus baseline period ranging from −500 to 0ms.

Binwise rank-sum criterion
The criterion to identify stimuli eliciting a significant response has
previously been used47. Spikes were counted in 19 overlapping 100ms
bins ([0:100:1000], and [50:100:950] ms after stimulus onset), and a
rank-sum test was performed on each bin between the distribution of
spike rates in this bin over the 10 trials (collapsed over primed and
control condition) in which the stimulus was shown and the distribu-
tion of spike rates during the baseline (−500 to 0ms) of all 1000 trials.
The Simes procedure was used to correct for multiple (19) compar-
isons. A stimulus was considered as response-eliciting, if (a) one or
more of the 19 rank-sum tests were significant at the level of α =0.001,
(b) response-period firing (0 to 1000ms) was higher than baseline (0
to −500ms), and (c) one or more spikes were fired in the response-
period in at least half of the trials in which the stimulus was presented.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Relevant data are available here: https://github.com/rebrowski/
neuralAdapatationInMTL. Source data presented in the figures are
also provided with this paper.

Code availability
Custom code to analyze the data is available here: https://github.com/
rebrowski/neuralAdapatationInMTL.
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