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Re-convolving the compositional landscape
of primary and recurrent glioblastoma
reveals prognostic and targetable tissue
states
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John F. Tuddenham 5, Alexander R. Goldberg 1, Athanassios Dovas1,
Matei A. Banu3, Tejaswi Sudhakar3, Erin Bush4, Andrew B. Lassman2,5,
Guy M. McKhann2,3, Brian J. A. Gill2,3, Brett Youngerman 2,3, Michael B. Sisti2,3,
Jeffrey N. Bruce 2,3, Peter A. Sims2,5, Vilas Menon 4 & Peter Canoll 1,2

Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-
neoplastic brain cells, including astrocytes, neurons and microglia/myeloid
cells. This complex mixture of cell types forms the biological context for
therapeutic response and tumor recurrence. We used single-nucleus RNA
sequencing and spatial transcriptomics to determine the cellular composition
and transcriptional states in primary and recurrent glioma and identified three
compositional ‘tissue-states’ defined by cohabitation patterns between spe-
cific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-
states correlated with radiographic, histopathologic, and prognostic features
and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was
enriched in the tissue-state defined by the cohabitation of astrocyte-like/
mesenchymal glioma cells, reactive astrocytes, and macrophages, and was
associated with recurrent GBM and shorter survival. Treating acute slices of
GBMwith a fatty acid synthesis inhibitor depleted the transcriptional signature
of this pernicious tissue-state. These findings point to therapies that target
interdependencies in the GBM microenvironment.

Glioblastoma (GBM) is themostmalignant glial tumor of the brain and
is refractory to current treatment. Although gross surgical resection of
the visible tumor is sometimes feasible, glioma cells infiltrate the brain
beyond the resection margins. While many studies have characterized
the transcriptional and genomic features of GBM cells and glioma-
associated microglia/myeloid cells, a comprehensive analysis of other
cells in the GBM microenvironment, and the patterns of cohabitation
of different cell types is lacking. Previous studies have shown that the

composition of glioma-infiltrated samples varies from cellular tumor
comprised of GBM and myeloid cells, to minimally infiltrated GBM
margin tissue composed largely of non-neoplastic brain micro-
environment cells, including neurons and glia1–3. This is the micro-
environment intowhich tumor cellsmigrate and proliferate, leading to
recurrence, and is also the target of adjuvant therapy. Thus, under-
standing the cellular milieu of the tumor microenvironment at pre-
sentation and recurrence, including both neoplastic and non-
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neoplastic cells, is vital for advancing the management of GBM. Our
goal is to determine patterns of cellular composition and transcrip-
tional states in primary and recurrent GBM, including both neoplastic
glioma cells and non-neoplastic brain cells.

Early studies used bulk RNA-sequencing approaches to under-
stand GBM states in MRI-localized samples from contrast-enhancing
(CE) and non-contrast-enhancing (NCE)margins3–6. Higher resolution
is attained using single-cell RNAseq (scRNAseq) approaches, which
are being increasingly used to understand heterogeneity in gliomas.
Several studies have employed scRNAseq from freshly resected sur-
gical samples to explore the heterogeneity of GBM2,7–12. These studies
have significantly advanced our understanding of the heterogeneity
and pathology of glioma. However, application of whole-cell
scRNAseq is faced with practical challenges related to the limita-
tions of acquiring and processing freshly resected glioma tissue and
the technical incompatibility with banked frozen glioma tissue.
Moreover, scRNAseq is limited in sampling non-neoplastic cells of
the microenvironment like neurons and astrocytes, which are major
constituents of the tumor-margins2,8–11, in part because of cell-type
survivability/selection bias during tissue dissociation. Thus, while
advances have been made in defining the genetic alterations in
glioma13,14 and the transcriptional states of glioma cells and immune
cells15–18, comprehensive analyses of cellular composition and diver-
sity of cellular phenotypes in primary and recurrent gliomas remain a
challenge.

In this work, we circumvent these limitations of scRNAseq by
using single-nucleus RNA-sequencing (snRNAseq), allowing us to
analyze frozen tissue, and inclusively sample cells of the micro-
environment from primary and recurrent glioma. We sample glioma-
infiltrated tissue from cellular tumor to minimally infiltrated sur-
rounding brain tissue at the single-cell level. Transcriptional analysis of
copy-number variations (CNVs) provided a metric to distinguish neo-
plastic (CNVpos) and non-neoplastic (CNVneg) nuclei, and unbiased
clustering reveals that primary and recurrent tumors harbor CNVpos
glioma cells with similar transcriptional states. Conversely, the
microenvironment of primary and recurrent glioma displays distinct
cell-type-specific states and different compositional landscapes.
Leveraging information from the snRNAseq-derived compositional
make-up of glioma-infiltrated samples defines three generalizable
“tissue-states” with each tissue-state showing enrichment for specific
gene signatures that can be identified in bulk RNAseq samples.We also
examine these compositional patterns using spatial transcriptomics,
which reveals colocalization of specific neoplastic and non-neoplastic
cell types. We demonstrate that tissue-states are prognostically rele-
vant and display metabolic dependencies that can be pharmacologi-
cally targeted.

Results
Transcriptional analysis of the glioma microenvironment
reveals prognostically significant subpopulations of non-
neoplastic astrocytes
Given the importance of glioma microenvironment in tumor pro-
gression, we decided to investigate the implications of microenviron-
mental states on the prognosis of GBM. To achieve this, we first
identified neoplastic and non-neoplastic nuclei based on chromoso-
mal copy-number variation (CNV) inference (Supplementary results).
Based on the repertoire of transcriptional states of glioma cells that
have been previously described2,7–10,12, we confirmed that our CNV-
positive (CNVpos) neoplastic nuclei from primary and post-treatment
recurrenceGBM recapitulate known transcriptional states.We provide
this data in the supplementary results including discussion of glioma
states in primary and recurrent glioma (Supplementary Figs. 1, 3), CNV
analysis of primary and recurrent glioma samples (Supplementary
Figs. 2, 4), localization studies of glioma states in the tissue (Supple-
mentary Fig. 5), and details on other low-grade glioma and epilepsy

samples included in this study (Supplementary Figs. 6, 7). We focused
on the non-neoplastic CNV-negative (CNVneg) nuclei of the glioma
microenvironment and combined in our analysis nuclei from primary
and recurrent glioma, as well as nuclei from low-grade glioma (LGG)
and epilepsy, to include a spectrum of neurological diseases with
alterations to non-neoplastic cells in the brain microenvironment. The
clinical data on the samples, QC metrics, and number of nuclei per
lineage/cluster is provided in Supplementary Dataset 1. Our CNVneg
nuclei datasets included 16831nuclei: 6929 fromprimaryglioma, 6008
from post-treatment recurrent glioma, 2875 from epilepsy, and 1019
from LGG. We projected these nuclei in UMAP space and assigned cell
lineages as shown in Fig. 1a. The expression of a select number of
marker genes per lineage is shown in Fig. 1b. We present the results on
myeloid lineage nuclei in the supplementary results (Supplementary
Fig. 9), which demonstrates that monocyte-derived tumor-associated
macrophages (TAMs) were enriched in recurrent glioma, while
microglia-derived TAMs were enriched in primary glioma, consistent
with a previous report15.

We focused on astrocytes, which are key elements of the glioma
microenvironment and are not well represented in glioma single-cell
RNAseq datasets2,7–12,19. A recent paper implicated GBM-associated
astrocytes in promoting an immunosuppressive microenvironment20.
Moreover, the distinction between tumor-astrocytes and reactive
astrocytes is of major diagnostic importance in neuropathology.
Thus, we analyzed astrocytes (707 nuclei—284 from primary glioma,
254 from recurrent glioma, 45 from LGG, and 121 from epilepsy) in
isolation from other cell types, performed linear dimensionality
reduction, and clustered them into three states; Ast1—protoplasmic
astrocytes, Ast2—reactive astrocytes with expression of oligoden-
droglial and neuronal genes, and Ast3—reactive astrocytes with
inflammatory gene expression (Fig. 2a, and Supplementary Data-
set 4). The astrocytes are projected by disease condition in Fig. 2b.
Clustering of astrocytes was based on the enrichment of three gen-
esets with pre-defined genes relevant to astrocyte function (Sup-
plementary Dataset 4 and Fig. 2c, d). Expression of select markers of
these astrocytes states (clusters) is shown in Fig. 2c. Since astrocytes
and glioma shared gene signatures (for example, CLU and LGALS3
expression), we performed differential gene expression analysis
between primary and recurrent glioma non-neoplastic astrocytes
and all CNVpos glioma nuclei and identified 1620 genes that were
higher in astrocytes compared to glioma and 3380 that were higher
in glioma compared to astrocytes. Examples of genes higher in non-
neoplastic astrocyte include genes associated with Alzheimer’s dis-
ease (CLU, APOE)21,22, metallothionein genes (MT1H, MT1G, MT1M,
MT1F, MT1E, MT1X, MT2A, and MT3—increased in reactive
astrocytes23), Synuclein genes (SNCA, SNCB, and SNCG),WIF1, CHI3L2
(associated with poor prognosis in glioma24), ALDOC, ALDOA, AQP4,
carbonic anhydrases CA2 and CA11, and CXCL14, a cytokine impli-
cated in promoting glioma invasion25 (Supplementary Dataset 4).
Conversely, genes higher in CNVpos glioma include EGFR, PTPRZ1,
NOVA1, CD24, Nestin (NES), SOX5, and SOX4. We used KEGG pathway
enrichment analysis to query the function of these genes (Fig. 3).
Further analysis of the differentially expressed genes showed that
several KEGG pathways were enriched in genes higher in non-
neoplastic astrocytes (Fig. 3a), with some relating to neurodegen-
eration such as Parkinson disease, and prion disease. Notably, these
signatures are highly enriched in oxidative phosphorylation genes
(Supplementary Dataset 4), which are dysregulated in neurodegen-
erative diseases26. Moreover, other metabolic pathways enriched in
astrocyte DEGs included metabolism of fatty acids, glycolysis, TCA
cycle, and ferroptosis. Conversely, KEGG pathways increased in
CNVpos tumor-astrocytes were largely related to DNA replication,
cancer-related pathways including ErbB and MAPK signaling, DNA
replication and mismatch repair (Fig. 3b and Supplementary
Dataset 4).

Article https://doi.org/10.1038/s41467-023-38186-1

Nature Communications |         (2023) 14:2586 2



snRNAseq and spatial transcriptomics reveals patterns of
cohabitation between neoplastic and non-neoplastic cell types
Given the heterogeneity of cellular states of glioma and non-neoplastic
cells in the glioma microenvironment, we hypothesized that the tran-
scriptional landscape of GBM is determined by patterns of cohabita-
tion of specific types and transcriptional states of neoplastic and non-
neoplastic cells. To test this hypothesis, we first asked if specific
glioma, or brain microenvironment lineages were differentially abun-
dant or depleted across primary and recurrent glioma using a regres-
sion model27 to test for differential abundance (Fig. 4a). The results
showed that for CNVpos cells, gl_Mes2 were significantly more abun-
dant in recurrent glioma, while gl_PN1 were more abundant in primary
glioma, (Benjamini–Hochberg adjusted p-values (q-value) 3.99e-2 and
1.318e-5, respectively). For the CNVneg cells in the glioma micro-
environment, OPCs were significantly more abundant in primary
glioma (q-value 1.085e-03). These results show that patterns of cellular
composition vary in primary and recurrent glioma, and likely con-
tribute to determining the transcriptional landscape of glioma.

To uncover patterns of ‘tissue-states” with correlated cell states/
lineages, we took advantage of the relatively unbiased sampling of
cellular composition in the brain tumor microenvironment provided
by snRNAseq. We approximated the cellular composition of each

surgical sample by recombining the cells from all the distinct cell
populations, as identified by snRNAseq, to create a compositional
matrix containing the abundance of all cell types across all samples
(Supplementary Dataset 1). The cellular composition matrix includes
three astrocytic clusters (Ast1-3), five immune-cell states (Myel1,
moTAM, mgTAM, prTAM, and T cells—see supplementary results and
methods), neurons, oligodendrocytes, endothelial cells, OPCs, and
glioma cells. We then used principal component analysis of the
resulting cellular compositionmatrix and identified the compositional
features that account for the variance across the samples (Fig. 4b). We
used the glioma states as supplementary quantitative variables28—the
coordinates of which can be predicted from the other variables input
into the PCA analysis. The results showed that the relative abundance
of CNVpos glioma cells vs. CNVneg non-neoplastic cells (neurons,
oligodendrocytes, OPCs) is the major feature of the first principal
component, and the abundance of reactive astrocytes (Ast3),
macrophage-like myeloid cells (moTAM), and T cells is the major fea-
ture of the second principal component. Notably, the abundance of a
specific subpopulation of astrocyte-like/mesenchymal glioma cells
(gl_Mes2) was also highly correlated with the second principal com-
ponent (PC2). These findings indicate that specific subpopulations of
neoplastic and non-neoplastic cells tend to co-inhabit glioma samples.

Fig. 1 | snRNAseq identifies non-neoplastic nuclei in the tumor microenviron-
ment. a Uniform-manifold approximation and projection (UMAP) graphs showing
putative non-neoplastic (CNVneg) nuclei from primary glioma, recurrent glioma,
low-grade glioma (LGG)—and epilepsy (see supplementary data for the analysis of
LGG and epilepsy cases). The nuclei are color-coded by lineage (oligodendrocytes,

oligodendrocyte-precursor cells (OPC), neurons, astrocytes, myeloid cells, and
endothelial cells). b Dot plots showing normalized expression of select lineage
genes (rows) in the lineages from a (columns). The size of each circle corresponds
to the proportion of each lineage that expresses a given gene.
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To assess if the cohabitation of cell types and transcriptional states is
prognostically relevant, we used the IDH-WT GBM TCGA and CGGA
survival datasets and performed a log-rank test on samples with
positive vs. negative PC2 signature enrichment and found that positive
enrichment is significantly associated with poor survival (Fig. 4c).
These data show that glioma-infiltrated tissue shows patterns of cel-
lular composition driven by cohabitation of specific cell-types and
transcriptional states and reveal prognostically relevant gene sig-
natures that span across both neoplastic and non-neoplastic cell types.

To further characterize the cohabitation of specific cell types and
transcriptional states in GBM, we analyzed nine samples of IDH-WT
GBM infiltrated brain tissue using spatial transcriptomics (ST-Supple-
mentary Dataset 1, Fig. 5a, b and Supplementary Figs. 10, 11). We
deconvolved the ST data using RCTD29 and analyzed the spatial rela-
tionships between cell types. To improve the accuracy of deconvolu-
tion results, we incorporated snRNAseq from the same tissue samples
used to generate the ST data when possible (Validation snRNAseq
dataset—see supplementary information and Supplementary Fig. 8).

Fig. 2 | snRNAseq identifies three transcriptionally distinct astrocytes states in
the glioma microenvironment. a Three-dimensional tSNE plots showing all
astrocyte nuclei color-coded by astrocyte state (Ast1—protoplasmic astrocytes,
Ast2—reactive astrocytes with misexpression of non-astrocyte lineage genes, and
Ast3—reactive astrocytes with expression of inflammatory genes. b Three-

dimensional tSNE plots showing all astrocyte nuclei color-coded by disease con-
dition. c Gene expression dot plots showing select gene marker expression for the
astrocyte states. d tSNE plots showing the enrichment of gene signatures used for
astrocyte clustering in astrocyte nuclei.
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We determined the proportion of our 18 cell types present in each of
the 9017 transcriptomic capture spots that comprised our ST experi-
ments and quantified the relationship between different cell types
using spatial cross-correlation. Spatial cross-correlation quantifies the
correlation between the proportion of cell type A in any given spot and
the proportionof cell typeB in that spot’s neighbors. By evaluating this
metric for every spot, between all pairwise comparisons of cell types,
we were able to quantitatively assess the geographic relationship
between cell types and determine which global patterns of cohabita-
tion were statistically significant (Fig. 5b). Clustering of the spatial
cross-correlations showed threemain clusters: 1—showingpositive and
statistically significant cross-correlations between non-neoplastic cell
types such as neurons, oligodendrocytes, non-reactive astrocytes
(Ast1, Ast2), and OPCs; 2—showing statistically significant spatial cor-
relations between gl_Mes2, reactive astrocytes (Ast3), moTAM, and T-
cells; and 3—showing statistically significant spatial correlations
between endothelial cells and several CNVpos glioma cell subtypes.
Interestingly, gl_PN2 and gl_Mes2 were significantly spatially cross-
correlated, and our independent validation dataset analyzed by RNA-
scope for gl_Mes2 and gl_PN2 markers (Supplementary Fig. 5) shows
both are significantly more abundant in cortical regions. These find-
ings provide additional evidence to support cohabitation of these
cell types.

Re-convolution of snRNAseq identifies three tissue states based
on cellular composition of glioma and its microenvironment
Drivenby the abovefindings, weclustered the snRNAseq samples from
our discovery dataset into 3 distinct “tissue-states” based on the
approximated cellular compositions described above; tissue-state A
samples are predominantly composed of non-neoplastic brain cells,
including neurons oligodendrocytes, and OPCs, tissue-state B samples
are enriched in reactive astrocytes, myeloid/macrophages, and T-cells,
and tissue-state C samples are predominantly composed of CNVpos
glioma cells (Fig. 6a, b). Based on the results of our compositional
clusters/tissue states, we are able to assign tissue states to the external

validation set based on k-means classification (validation set—Supple-
mentary Fig. 8h). To generate a gene signature for each tissue state, we
combined the snRNAseq for all nuclei in each sample and performed
differential gene expression analysis between tissue-state clusters,
using the pseudobulk expression profile of each sample as a biological
replicate. This analysis identified the top-differentially expressed
genes unique to each tissue state (Supplementary Dataset 7). To assess
the generalizability of the three tissue-states, we performed single-
sample GSEA analysis for the tissue state gene signatures using a
dataset of bulk RNAseq analysis performed on 91 primary and recur-
rent MRI-localized samples from 39 patients. We found that these
samples separated into 3 compositional clusters based on their
enrichment score for snRNAseq-defined “tissue-states” (Fig. 6c). We
refer to the compositional clusters and tissue-states interchangeably
henceforth. Further analysis revealed that these tissue-state gene sig-
natures are enriched for specific biologically relevant functional
ontologies. For example, tissue-state A is enriched for genes involved
in synaptic transmission, tissue-state B is enriched for genes associated
with inflammation, and tissue state C is associated with cell prolifera-
tion (Fig. 6d). These three tissue-states are further demonstrated by
projecting the RNA-expression levels for canonical markers of the
predominant cell types for each tissue-state in Fig. 6e showingRBFOX3
(neuronal marker) in tissue-state A, CD68 (myeloid marker) in tissue-
state B, and MKI67 (proliferation marker) in tissue-state C. SOX2 (a
pan-glioma marker) was widely distributed across the samples, indi-
cating variable degrees of tumor infiltration across samples in all three
tissue-states (Fig. 6e). To further validate these findings, we quantified
total cellularity and the IHC labeling indices SOX2, NeuN, CD68, and
Ki67 in 45 recurrent and primary glioma samples (Fig. 6f) and found
that total cellularitywas highest in cluster C,which alsohad the highest
abundance of SOX2+ and Ki67+ cells, while cluster A had the highest
abundance of NeuN+ cells, and Cluster B had the highest abundanceof
CD68 + cells. While Clusters A and B resemble normal and reactive
brain tissue, the SOX2 and Ki67 labeling indices indicate that these
clusters comprise samples with variable levels of glioma infiltration.
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To substantiate the clinical relevance of investigating glioma
tissue in terms of tissue states, we investigated whether the enrich-
ment of tissue state signatures correlated with survival in the TCGA-
CGGA IDH-WT glioblastoma dataset. Given that tissue state B was
enriched for the gene signatures of Ast3, moTAM, and T-cells
(Fig. 7a), and considering our findings in Fig. 4b, c, we expected it to
be associated with increased risk of death in survival cohorts. As
expected, enrichment of Cluster B gene signature in the IDH-WT

TCGA and CGGA datasets was associated with a significant increase
in the hazard of death in cox proportional hazard regression model,
with covariates controlled for including age, sex, and MGMT
methylation status (Fig. 7b). In contrast, no significant association
with survival was seen for the gene signatures of the individual cell
types that compose tissue state B, including gl_Mes2, Ast3, T-cells,
and moTAMs (Fig. 7b). To further assess the contribution of Ast3 in
this relationship, we adjusted the Cox proportional hazardmodel by
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percentage of nuclei per each tissue state. Immune-cell states are: mgTAMs
(microglia-derived Tumor-associated macrophages), moTAM (monocyte-derived
TAMs), prTAM (proliferative TAM), Myel1 (baseline myeloid cells), and T cells.
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Individual glioma states were not used in PCA calculation, rather they were used
as supplementary quantitative variables and their coordinates were predicted from
the PCA analysis—see methods. c Kaplan–Meier survival plot graphing survival
(days) in the combined TCGA and CGGA RNAseq datasets. The samples were
classified based on positive or negative enrichment for the PC2 gene signature.
Statistical significance was computed using the log-rank test.

Article https://doi.org/10.1038/s41467-023-38186-1

Nature Communications |         (2023) 14:2586 6



regressing out enrichment for the Ast3 signature and found that
tissue state B was no longer significantly associated with an
increased hazard of death. To further establish the clinical relevance
of taking a tissue state approach in investigating glioblastoma tran-
scriptomics, we asked if tissue state B was differentially enriched in
primary vs. recurrent glioblastoma status. This question was espe-
cially relevant given that compositional cluster B was largely com-
posed of recurrent glioma samples (Fig. 6a). We thus asked if that
signature is positively enriched in RNAseq profiles from previously
published paired primary and recurrent glioblastoma samples30

(Fig. 7c). The results showed significant enrichment in tissue state B
signatures in the recurrent GBM samples. Together, the results show

that tissue state B signature is prognostic and enriched during GBM
recurrence.

Glioma-associated tissue states are targetable and associated
with distinct metabolic states
Given the distinct cohabitation patterns that drive tissue states, we
hypothesized that these patterns of cellular cohabitation are asso-
ciated with metabolic dependencies. To test this hypothesis, we
investigatedwhethermetabolic pathways are differentially enriched in
genes differentially expressed between bulk RNAseq samples of the
three tissue states. Unbiased analysis of enrichment of KEGG pathways
in genes differentially expressed between compositional clusters/tis-
sue-states revealed that they exhibit enrichment of multiple unique
and specificpathways (Fig. 8a). Interestingly, several of the tissue state-
enriched pathways were metabolic pathways. Tissue-state A showed
highest enrichment for neurotransmitter metabolism, oxidative
phosphorylation and glutamate metabolism, tissue-state C was most
enriched for pyrimidine, folate, and purine metabolism, and tissue-
state B showed highest enrichment of fatty acid and lipid metabolism
(Fig. 8b). We focused on fatty acid biosynthesis genes, a tissue state B
enriched pathway, and projected the average normalized expression
per lineage as a heatmap in Fig. 8c.We found that genes in thispathway
were distributed across multiple cell types, suggesting that the meta-
bolic status of a tissue canhavedistinct, but functionally related effects
ondifferent cell types in that tissue. Notably, FASN, the gene coding for
fatty acid synthase (FAS), a rate-limiting enzyme in fatty acid
synthesis31, was most highly expressed in astrocytes and glioma cells
(Fig. 8c). FAS inhibition has been shown to kill glioma cells32, however,
the impact of FAS blockade on the glioma microenvironment is yet to
be fully explored. Defining the effects of FAS blockade on the glioma
microenvironment is important because fatty acid metabolism is a
physiologic pathway that involves interactions between multiple cell
types that reside in the same habitat. In non-neoplastic brain tissue,
fatty acids are synthesized by astrocytes and are distributed to other
cells including neurons and oligodendrocytes31, where they drive
physiologic and cellular functions like neuronal maturation, mem-
brane synthesis33, and neuroprotection34. We thus hypothesized
blocking fatty acid synthesis pathway would interfere with the cells
that make up tissue state B and/or their interactions, and therefore
would lead to depletion of tissue state B signature in glioblastoma
infiltrated brain. To test this hypothesis, we treated astrocytes and
explants of human IDH-WT glioblastoma with the FAS inhibitor Cer-
ulenin (5mg/ml) and measured gene expression using the PLATE-seq
RNAseq (Fig. 9a). Astrocytes treated with Cerulenin exhibited numer-
ous differentially expressed genes compared with DMSO controls
(Supplementary Dataset 6, Fig. 9b). Genes increased in treated astro-
cytes were enriched in KEGG and Reactome pathways involved in
mTOR signaling, ferroptosis, and unfolded protein response, while
those decreased in treated astrocytes were enriched in pathways
involved in cell cycling (Fig. 9c).We then treated IDH-WT glioblastoma
explants with DMSO or Cerulenin (Supplementary Dataset 6) and
measured gene expression (Fig. 9d). We found that genes increased in
Cerulenin treated astrocytes were significantly enriched in Cerulenin
treated IDH-WT glioblastoma explants, and that the tissue state B
signature was depleted (negatively enriched). It is important to note
that the tissue state B gene signature used in this enrichment analysis
does not contain any genes that are part of the fatty acid synthesis
pathway gene ontology (Supplementary Dataset 7). Overall, these
results demonstrate that tissue-states exhibit enrichment ofmetabolic
pathways, which can be targeted leveraging compositional informa-
tion and metabolic dependencies.

Discussion
In this work, we investigated the landscape of cellular composition and
transcriptional states of neoplastic and non-neoplastic cell types in

Fig. 5 | Spatial transcriptomics identifies significant spatial relationships
between cell types in GBM. a Representative plots showing deconvolved pro-
portions of select cell types and glioma states across an ST sample. Each subplot is
range scaled for the proportion of that cell type in the sample to show the relative
spatial distribution of that cell type. b Heatmap showing the average spatial cross-
correlation between all cell types at a radius of 900 µm surrounding spatial tran-
scriptomic spots across all nine ST experiments. The diagonal of the matrix, which
shows the spatial cross-correlation between a cell type and itself, is an indication of
the degree of spatial autocorrelation in that cell type and is not necessarily equal to
one. Spatial cross-correlation relationships were tested for significance using per-
mutation (see methods), and non-significant relationships are denoted with an X.
Hierarchical clustering of the distance matrix derived from the cross-correlation
matrix produced three clusters.
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primary and post-treatment recurrent IDH-WT GBM using snRNAseq
and spatial transcriptomics. Understanding heterogeneity in GBM is
important for guiding treatment and meeting the challenge of recur-
rence. Recent studies revealed a diversity of glioma states that
resemble cell lineages found during development and
adulthood2,9–12,19. Our study provides a comprehensive analysis of the
GBM microenvironment, including non-neoplastic cell types that are

sparsely represented in datasets from prior studies using scRNAseq.
Using a compositional approach rooted in relatively unbiased sam-
pling of different GBM microenvironment cell types, we discovered
that specific cell types/transcriptional states colocalize in “tissue-
states”. Leveraging insight into correlated cellular states and lineages
that co-inhabit tissue samples, we identified gene signatures that
classify primary and recurrent GBM tissue into three tissue states: (A)
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normal brain, (B) reactive/inflammatory tissue, and (C) cellular/pro-
liferative tumor. The tissue states exhibited variable levels of infiltra-
tion by glioma cells. We stress that the tissue states we identified do
not encompass the entirety of heterogeneity of possible tissue states,
and discovery of other tissue states, for example in the context of
different treatment scenarios, is highly probable. Also, while snRNAseq
provides us insight into cell types that are underrepresented in
scRNAseq, snRNAseq exhibits limitations in the ability to identify
particular cell states, as has been shown for myeloid cells35. Future
studies using complementary analysis of scRNAseq and snRNAseq can
further elucidate the contribution of particular myeloid activation
states to our compositional patterns. That said, the patterns of coha-
bitation in the tissue state model are further supported by deconvo-
lution of spatial transcriptomics data, which highlights the differential
distribution of specific neoplastic and non-neoplastic cell types.

Spatial cross-correlation analysis of our spatial transcriptomics
data shows that transcriptionally distinct cell types exhibit significant
patterns of colocalization. The patterns we observed using a neigh-
borhood of 900 uM were similar to the tissue state patterns we iden-
tified using principal component analysis, demonstrating that these
cell composition patterns can be observed usingmultiple approaches.
Analysis of different neighborhood sizes may yield further insight into
themechanisms that drive cohabitation between cell types. Patterns of
cohabitation that span large areas are more likely to reflect environ-
mental influences that can impact multiple cell types in a large geo-
graphic swathe, such as hypoxia or other metabolic stresses, whereas
patterns that vary over smaller distances may reflect the effects of
direct cell-cell interactions. Further investigation will be needed to
elucidate the exact mechanisms that underlie the organization of cell
types into distinct compositional patterns. While we were able to find
support for our tissue state hypothesis in our spatial transcriptomics
data, additional insight may be provided by improved read coverage
and sample preparation. Furthermore, while DAPI provided a mea-
surement of cellularity and NeuN provided information of the dis-
tribution of neurons, additional stains, such as standardH&E as well as
immunostains GFAP or IBA1, would have provided more insight into
the landscape of neuropathologic features in the samples analyzed by
spatial transcriptomics.

Importantly, we discovered that enrichment for tissue state B, a
reactive state that harbors a reactive astrocyte state (Ast3), was asso-
ciated with increased risk of death. The presence of tissue-state B was
significantly associated with a worse mortality even though its indivi-
dual component cell types were not, suggesting that the composi-
tional patterns defined by tissue-states contribute tomortality in GBM.
We show that gene signatures for these tissue states can also be
identified in more accessible bulk RNAseq samples and correlate with
immunohistochemical profiles. Significantly, we found that tissues
states were transcriptionally enriched in distinct metabolic pathways,
and that targeting fatty acid synthesis, a pathway enriched tissue state
B, resulted in depletion of that signature in ex vivo GBM slice cultures.

The therapeutic implications of our findings help expand the target of
therapy from targeting one gene or one cell type, to targeting tissue
states comprising cell populations that co-inhabit the tissue under
defined metabolic constraints.

Our analysis of the cellular phenotypes in the glioma micro-
environment revealed that subpopulations of non-neoplastic astro-
cytes show enrichment for abnormal transcriptional signatures that
are also seen in the context of neurodegenerative diseases. In contrast
to CNVpos neoplastic astrocytes, which express high levels of pro-
liferation and glioma genes, a subpopulation of non-neoplastic astro-
cytes (Ast3) displayed a reactive signature reminiscent of astrocytes
described in neurodegenerative diseases like Huntington disease,
Parkinson disease and Alzheimer’s disease23,36. This phenotype
includes enrichment of pathways related to fatty acid metabolism.
CLU, a gene which codes for clusterin, an astrocyte-expressed apoli-
poprotein involved in lipid transport37 and neuroprotection in Alz-
heimer’s disease21,38, was significantly increased in glioma-associated
astrocytes and is amarker of the reactive Ast3. We found that Ast3-like
CLU-overexpressing astrocytes alter the transcriptional phenotype of
glioma in vitro (Supplementary Results and Supplementary Fig. 13),
including upregulation of genes involved in glial differentiation and
notch signaling. Thus, our results point to commonalities in astrocyte
dysregulation across neurologic diseases, whichmay offer therapeutic
targets to be exploited in different clinical scenarios. Future studies are
needed to further evaluate the potential of targeting reactive astro-
cytes as a therapeutic strategy to block GBM progression.

One of the main findings highlighted by our analysis of cellular
composition is that specific cell types are correlated with each other
both compositionally and spatially, indicating that they co-inhabit the
same tissue-states. Cohabitation between cell types and transcrip-
tional states was reflected in enrichment of distinct metabolic path-
ways. For example, tissue state Bwas enriched ingenes associatedwith
oxidative stress, which determines a cell’s sensitivity to ferroptosis-
inducing drugs39, and in fatty acid metabolism, which has been impli-
cated in glioma survival, stemness and progression32,40,41. We found
that fatty acidmetabolismgenes were distributed among different cell
types in the brain, however, FASN, the gene associated with the rate-
limiting enzyme in fatty acid synthesis31 was most highly expressed in
astrocytes and glioma cells. Astrocytes play key roles in lipid meta-
bolism; for example, in synthesizing fatty acids necessary for neuronal
membranes33 and catabolizing fatty acids released by neurons during
excitotoxicity42. We showed that blocking FAS effectively depleted
tissue state B signature from treatedGBMslices. Thismaybe explained
by either a change in the composition of theGBMslices, given that FAS
inhibition may lead to glioma cell death32,41, a change of gene expres-
sion of the cells that reside in the slices, or both. The latter is likely the
case, given that GBM slices treated with FAS inhibitor showed a posi-
tive enrichment for the gene signature of astrocytes treated with FAS
inhibitor, and negative enrichment for tissue state B. These finding are
clinically relevant, given FASN is a promising target against

Fig. 6 | Tissue composition analysis defines “tissue states” recapitulated in a
validationbulkRNAseq dataset. aDendrogramof hierarchically clustered glioma
and epilepsy samples based onManhattan sample distance analysis drawn from the
fractional composition matrix (see Fig. 4a). Three clusters were identified and are
color-coded on the dendrogram in black (Tissue-state C), red (Tissue-state B), and
blue (Tissue-state A). The condition (primary, recurrent and epilepsy) and pro-
portion of neoplastic nuclei are indicated. b Three-dimensional scatter plot
showing the samples in panel a projected in the first three principal component
loadings—see Fig. 4b for PCA analysis. c Bulk RNAseq samples from 91 primary and
recurrent IDH-WT glioblastoma samples projected in the principal component
space. The samples were clustered (Hierarchical clustering—Ward.D2 method) on
the Euclidian distance of the enrichment scores of the genes unique to each tissue
state signature into three clusters A–C. d Gene ontology term analysis of the dif-
ferentially expressed genes for each cluster in panel c. KEGG, REACTOME, or

Biological Process GO pathways are shown in the y-axis. Negative log10 adjusted p-
value is shown on the x-axis. eNormalized expression of select genes characteristic
of each of the clusters projected onto the compositional-signature enrichment
score space shown in panel c. Red denotes high expression, and gray denotes low
expression. NeuN (RBFOX3) is highest in the samples of Cluster A.CD68 is highest in
the samples of cluster B. SOX2 is highest in the samples of clusters B and C.MKI67 is
highest in the samples of cluster C. f Quantification of histological cellularity ana-
lysis and immunohistochemistry labeling indices of SOX2, KI67, CD68, and NeuN.
The labeling index is shown on the y-axis. Note that the y-axis for the cellularity
graph is total cellularity normalized to the most cellular sample. The sample clus-
ters are labeled (A–C) as in panel c. Indicated p-values were calculated using a
Kruskal–Wallis test. n = 45biological samples: 8 for clusterA, 25 for cluster B, and 12
for cluster C. Source Data are provided as a Source data file.
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glioblastoma43, and highlight how the tissue-state approach can pro-
vide insights into the effects of targeted therapies on the GBM
microenvironment.

This study showed that the concept of tissue-states based on
cellular cohabitation patterns generates testable hypotheses that
inform our understanding of GBM biology. We found that tissue state
B,which is enriched in reactive astrocytes (Ast3),monocyte-like tumor-

associatedmyeloid cells, T-cells, andmesenchymal/astrocyte-likeGBM
cells (gl_Mes2) is associated with worse prognosis in GBM. Tissue state
B is also characterized by specific metabolic signatures, like fatty acid
metabolism, which we targeted ex vivo and showed it depleted the
tissue state B signature. Future studies are needed to further evaluate
the potential of targeting fatty acid synthesis to block GBM
progression.
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Methods
All study protocols were approved by Columbia University
Irving Medical Center Institutional Review Board.

Human subjects and glioma tissue
Frozen primary untreated GBM tissue was acquired from the Bartoli
brain tumor bank atColumbiaUniversityMedicalCenter. All diagnoses
were renderedby specialized neuropathologists. Study protocols were
approved by Columbia University Medical Center Institutional Review
Board. All clinical sampleswerede-identifiedprior to analysis. Analyses
were carried out in alignment with the principles outlined in the WMA
Declaration of Helsinki and the Department of Health and Human
services BelmontReport. Informedwritten consentwasprovidedby all
patients. The demographics of the cases used are provided in Sup-
plementary Dataset 1. None of the participants were compensated for
participating in this study.

Extraction of nuclei and snRNAseq procedure
Nuclei were isolated from frozen surgical resection specimen in
accordancewith Al-Dalahmah et al.23. Briefly, the frozen tissue samples
were dissected from fresh frozen tissue or frozen OCT-embedded
tissue blocks to yield tissue measuring in general from 5 × 2 × 1mm to
10 × 6 × 3mm. The tissue was homogenized using a dounce homo-
genizer in ice-cold 30% sucrose 0.1% Triton-X 100 based homo-
genization buffer. 10–15 strokes of the loose dounce pestle were
followed by 10–15 strokes of the tight dounce pestle on ice. Mixing
using a P1000 pipette followed before filtration through a BD Falcon
40um filters. Filtration was repeated after a 10-min spin at 1000 × g at
4 °C. A cleanup step followed using a density gradient step in accor-
dance with44. The nuclear pellet was suspended in 1% BSA in PBS
resuspension buffer containing RNAse inhibitors. A final filtration step
using 20 µm Flowmi™ filters followed before dilution to 700–1200
nuclei per µl in resuspension buffer. The nuclear suspensions were
processed by the Chromium Controller (10x Genomics) using single-
Cell 3’Reagent Kit v2 or v3 (ChromiumSingle Cell 3’ Library &Gel Bead
Kit v2, catalog number: 120237; Chromium Single Cell A Chip Kit, 48
runs, catalog number: 120236; 10x Genomics).

Sequencing and raw data analysis
Sequencing of the resultant libraries was done on Illumina NOVAseq
6000 platformV4 150 bp paired end reads. Alignment was done using
the CellRanger pipeline (10x Genomics) to GRCh38.p12 (refdata-cell-
ranger-GRCh38-1.2.0 file provided by 10x genomics). Count matrices
were generated from BAM files using default parameters of the Dro-
pEst pipeline45. Filtering andQCwas done using the scater package (3).
Nuclei with percent exonic reads from all reads in the range of 25–75%
were included. Nuclei with percent mitochondrial reads aligning to
mitochondria genes of more than 19% were excluded. Genes were fil-
tered by keeping features with >10 counts per row in at least in 31 cells.
Further filtering of low-quality cells was done to include cells with at
least 400 detected genes and 10,000 reads.

Single-nuclei RNAseq analysis
Sequencing and analysis of raw data. Sequencing of the resultant
libraries was done on Illumina NOVAseq 6000 platformV4 150 bp

paired end reads. We used 10X chromium v2 chemistry for samples
PO1 and PO2, and v3 chemistry for samples PA1, PA2, and P3. Read
alignment was done using the CellRanger pipeline (v3.1−10X geno-
mics) to reference GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 file
provided by 10x genomics). Countmatrices were generated fromBAM
files using default parameters of the DropEst pipeline45.

Data-cleanup. Filtering andQCwas done using the scater package46,47.
Nuclei with percent exonic reads from all reads in the range of 25–73%
were included. Nuclei with percent mitochondrial reads aligning to
mitochondria genes of more than 15% were excluded. Genes were fil-
tered by keeping features with >10 counts per row in at least in 31 cells.
The count matrix of each sample was normalized by first running the
quickcluster function, then estimating size-factors by calling scran::-
computeSumFactors() function with default options and clusters set
to clusters identified by calling quickcluster function. scater::norma-
lize() functionwas then used to generated normalized counts. Doublet
identificationwas done using scran::doubletCells functionwith default
options, and cells with doublet score of NMADs >3 were excluded in
accordance with previous publications23.

Combining multiple datasets from different sequencing batches.
To control sequencing and technical batches, we utilized canonical
correlation analysis in Seurat48 accounting for batch andmitochondrial
read percentage for CNVneg nuclei. For CNVpos nuclei, we accounted
for case and mitochondrial read percentage.

Pre-Clustering and clustering of nuclei. Pre-clustering of nuclei was
done in Seurat using the shared nearest neighbor smart local moving
algorithm. PCA reduction was used as the reduction in the Find-
Neighbors() step. Pre-cluster identity determination was done using
geneset enrichment analysis of lineage markers23 and by inspecting
cluster markers generated by scran::findmarkers(direction = ”up”)
function. Microglia +/– oligodendrocytes were used as negative con-
trol cell for InferCNV pipeline (below). Once CNVneg cells were ver-
ified, cells from all cases were aligned using Seurat and clustered.
Clusters withmixed identities based on enrichment ofmultiple lineage
genes were sub-clustered iteratively until all “pre-clusters” showed
pure identities. Only then do we combine the pre-clusters of the same
lineage into lineages (astrocytes, neurons, oligodendrocytes, myeloid,
endothelial). For subclustering of astrocytes and myeloid cells, we
analyzed the nuclei in isolation of other lineages, and re-aligned them
in Seurat, and reduced the dimensions before subclustering. For
CNVpos nuclei, unbiased clusters were combined into glioma states/
lineages based on similarity in marker expression and enrichment for
known gene sets described in Supplementary Figs. 1d, 3d.

Count normalization. Raw counts were normalized in Seurat using the
sctransform function SCT() function with default settings and con-
trolling for percent mitochondrial gene expression49. We also cor-
rected for the donor and sex.

Copy-number variation analysis of snRNAseq. To detect putative
neoplastic tumor cells, we used combination ofmarker expression and
large scale copy-number variation inference as per the InferCNV R

Fig. 7 | Enrichment for tissue state B is independently associated with worse
survival. a Pre-rankedGene Set Enrichment Analysis (GSEA) comparing tissue state
B bulk RNAseq samples with tissue states A & C samples for 3 sub-lineages: Ast3,
moTAM, and T-cells. Marker genes for each cell type were used as the gene set for
each analysis. Normalized Enrichment Score (NES) is displayed, along with p-values
and FDR-adjusted q-values. b Cox proportional hazard ratio of survival in the
combined TCGA and CGGA IDH-WT GBM dataset given enrichment of each of the
tissue state signatures (left), for the individual cell types that comprise Tissue State
B (middle), and for each of the tissue states, regressing out enrichment of the Ast3

gene signature (right). Age, sex, andMGMT status are included as co-variates in the
model. The p-values are shown on the left, bars indicate confidence intervals (also
noted on the right). Enrichment of each geneset was categorized as negative or
positive. c Boxplots of the tissue state B normalized enrichment scores in theWang
et al. (2021) paired primary and recurrent GBMdataset. Eachbox indicates the 25th,
50th, and 75th percentile enrichment scores per condition and paired samples are
denoted by connected points. The whiskers indicate the minimum and maximum
values. Significance was assessed using a one-tailed paired t-test, n = 11 per group.
The p-value is indicated. Source Data are provided as a Source data file.
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Fig. 8 | Metabolic pathways drive targetable tissue state signatures. aHeatmap
displaying scaled enrichment scores for all KEGG pathways across all PLATE-seq
samples. The heatmap is grouped by tissue state (cluster A, B, C), annotated by the
horizontal bar at the top. Hierarchical clustering was performed on the rows
(pathways), demonstrating cluster-specific metabolic programs. b Bar plot dis-
playing scaled ssGSEA scores for select KEGGmetabolic programs frompanel a. Bar

plots represent mean scaled ssGSEA score ± standard error for each of the three
clusters for a given pathway. c Representative example showing a heatmap dis-
playing mean lineage-specific scaled normalized expression of genes in the GO:
Biological Process—Fatty Acid Biosynthesis gene set—which was most enriched in
tissue state B. Note the expression of FASN is highest in astrocytes and glioma cells.
Source Data are provided as a Source data file.
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Fig. 9 | Fatty acid synthase inhibition depletes tissue state B signature in GBM
slice cultures. a Scheme of in vitro and ex vivo fatty acid synthase perturbation
studies. This panel was created with BioRender.com. b Volcano plot showing the
log2 fold-change (x-axis) and log10 p-value (y-axis, two-tailed t-test) of differentially
expressed genes in astrocytes treated with Cerulenin (5mg/ml) vs. control. c KEGG
and Reactome pathway enrichment analysis with the terms indicated on the y-axis,
and the log10 p-value on the x-axis. The sign of the log10 p-value indicates the

directionof change (i.e., negative = reduced inCerulenin treatment).dVolcanoplot
showing the log2 fold-change (x-axis) and log10 p-value (y-axis, two-tailed Wald-
test) of differentially expressed genes in GBM slice cultures treated with Cerulenin
(5mg/ml) vs. control. e, f GSEA plots of pre-ranked enrichment of the genes
increased in astrocytes treated with Cerulenin (e) and the top 150 genes unique to
tissue state B signature (f). The normalized enrichment scores (NES), p-value (p),
and adjusted p-value (q) are indicated.
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package50. As a control population, we used microglia and oligoden-
drocytes from case PO2_1. Iteratively, CNVneg clusters including Oli-
godendrocytes and Neurons were identified and added as control
cells. Different gene window sizes were tested (50, 100, 200) and yield
similar results. We then applied an orthogonal approach to label
putative neoplastic cells based on previous approaches described in
refs. 2,51. Briefly, Log2 + 1 counts were averaged across chromosomes
for eachnucleus. A principal component analysis (PCA)was performed
on autosomal chromosomes in factominer Rpackage28. Chromosomes
with high correlation with PC2 were the same as the ones shown in the
detected by inferCNV() with the exception is PO1, where no neoplastic
cells were detected by InferCNV or CONICS. A malignancy score was
calculated by dividing the log2 gained chromosome counts over the
sumof those that are lost (selectionwas limited to three chromosomes
or less). The scores were then z-neoplastic per sample. To identify
putative neoplastic nuclei in this method, we next performed k-means
clustering of the scaled malignancy scores in R using the k-means
function and centers argument set to 2. PO1 does not show bimodal
malignancy score distribution and the results of k-means clustering
were not considered. For case PA3, only a minority of nuclei had
malignancy scores >2 standard deviations above the mean. Therefore,
these cells were identified using outlier detection in a normal dis-
tribution as done in the getOutliers (method= “I”, rho = c(0.1,3))
$iRight) in R. getOutliers is part of extremevalues R package https://
github.com/markvanderloo/extremevalues. Only the consensus nuclei
that were identified as CNV positive in both approaches were con-
sidered for analysis. Less than 7.0% of the nuclei were called alternately
by the two methods and were excluded from the analysis. Identifica-
tion of CNVpos nuclei in recurrent glioma samples was conducted
through a combination of InferCNV and identification of clusters with
high expression of tumor markers SOX2 and PTPRZ1.

Survival analysis
Survival analysis was performed using the survfit() function in the
survival package in R52,53, using the binarized enrichment of each of the
gene sets as the covariate in the formula. For coxproportional hazards,
the function coxph() was used in r, and the covariates are indicated in
the main figures.

Correlation analysis
Correlation analysis of glioma proportions was done using Pearson
correlation (function cor() or psych::corr.test in R). Correlation heat-
maps were generated using the corrplot package in R.

Identification of glioma state and lineage top gene markers
The lineage-specific genes were determined using sca-
ter::findmarkers(…, direction = ”up”) function on the top-level lineages
(Neurons, astrocytes, microglia, undetermined, oligodendrocytes,
OPC, and endothelial cells). The glioma-state-specific genes were
determinedusing scater::findmarkers (…, direction = ”up”) function on
the neoplastic glioma states only. To select specific lineage/glioma-
state markers, we further filtered the top markers generated above by
selecting the genes with positive log-fold-change values in 90% or
more of the cluster-to-cluster comparisons. The top 150 genes were
selected and are provided in Supplementary Datasets 2–4 for primary
glioma, recurrent glioma, and non-neoplastic lineages, respectively.

Principal component analysis
PCA analysis was done in factominer R package28. A matrix of snRNA-
seq sample by cell type/cluster was used as input (Supplementary
Dataset 1). The proportion of each snRNAseq sample with respect to 11
non-neoplastic cell types (Ast1, Ast2, Ast3, Endothelial, mgTAM,
moTAM,Myel1, Neuron, Oligodendrocyte, OPC, prTAM, Tcell) and the
summed proportion of all neoplastic cell types (CNVPos) were used to
form the initial PCA axes. The proportions of CNVpos cells that were

assigned to each of the glioma states (gl_Mes1, glMes2, gl_Pro1, gl_Pro2,
gl_PN1, gl_PN2) were added as supplementary quantitative variables.

PCA coordinates of the bulk RNAseq validation dataset were
generated using Factominer, by using the normalized expression of
the genes filtered by rowsum> 1000.

Acquisition of tissue and preparation of acute slice cultures
Primary GBM tissue from two separate surgeries, TB 6571 (3 blocks of
tissue) and TB 6579 (2 blocks of tissue) (see supplemental table for
related clinical information), performed at Columbia University Med-
ical Center/New York Presbyterian Hospital were retrieved fresh from
the operating room in a sterile specimen cup and transported back to
the laboratory on ice. Primary GBM acute slice cultures were
prepared54. 500 µm thick slices were treated with either DMSO or 5 µg/
ml Cerulenin for 18 h prior to preservation and RNA extraction.

Bulk RNAseq using PLATE-Seq and from public datasets (TCGA
and CGGA)
RNA extraction was done using the RNeasy Mini Kit (Qiagen cat#
74106). RNAseq was performed on MRI-localized biopsies (n = 91)
using PLATE-seq55 as described below and in accordance with ref. 55.
Specifically, 75 bp paired end sequencing was performed on Illumina
NextSeq platform. The first read was used to extract the barcode,
error-correct it, and map it to a known barcode sequence space. The
second read was aligned using STAR56 to the human genome (hg19,
annotation: UCSC known genes). STAR-generated read counts were
used to generate FPKM values, which were used in GSEA analysis. The
count matrix for the TCGA GBM dataset was downloaded using the
GDCquery tool in R. The Chinese Glioma Genome Atlas (CGGA) RNA-
seq datasets57,58 was downloaded from (http://www.cgga.org.cn/
download.jsp). The counts were normalized using the vst() function
in deseq2 R package59. IDH-WT only samples were kept from both
datasets (TCGA: 139 samples, CGGA: 179 samples) and used for
downstream analysis.

For acute slice-culture PLATE-seq analysis, slices were then
transferred to OCT and frozen into blocks. Tissue from each slice was
isolated forRNAextractionby theColumbiaMolecular PathologyCore
using QiaSymphony extraction method. Total RNA was quantified
using Nanodrop measurements, and 150ng of RNA from each slice/
condition was loaded into a well of a 96 well PLATE. Pooled library
amplification for transcriptome expression (PLATE-Seq)55 was then
performed on the 96 well plate and the resulting data analysis was
done as described above. U87 andAstrocyte co-culture PLATE-Seqwas
conducted the same way as described above.

Differential gene expression analysis
For comparing astrocytes to glioma, EdgeR glmQLFTest was used
and the top 3000 differentially expressed genes with an FDR cutoff
of 25%60 were extracted. Only datapoints with adjusted p-values less
than 0.05 were used in downstream analysis. For PLATE-seq data
differential gene expression analysis between treatment and control
was performed adjusting for tissue block and patient using the
Deseq2 pipeline59. For astrocyte cultures, differential gene expres-
sion analysis between treatment and control was performed adjust-
ing for astrocyte passage and cell culture batch using the Deseq2
pipeline.

Geneset enrichment analysis and gene ontology analysis
The average normalized counts per gene per cluster was calculated.
The resultant cluster-wise count matrix was used as input to the GSVA
pipeline61. Gene sets used for various tests are provided in the sup-
plementary material (Supplementary Datasets 2–4). The options used
for performing the GSVA pipeline are as follows: method= ssgsea,
kcdf = “Gaussian”, mx.diff=TRUE. Heatmaps were generated using the
heatmap.2 in R function from the package gplots (R Package) and
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scores z-scaled were indicated. Ontology enrichment analysis in
gProfiler with default settings62. For GSEA of the combined TCGA and
CGGA dataset and the validation bulk RNAseq dataset (Fig. 3C) and
Fig. 3I, the enrichment was performed using method= “gsva” option
on normalized counts, which normalizes the enrichment scores for
eachgene-set per sample. GSEA analysis in Figs. 7 and9was conducted
using pre-ranked GSEA and was performed according to Subramanian
et al. with 1000 permutations63. Log-2-fold-change between cluster B
and the remaining clusters was used to rank the genes for the analysis,
and marker genes from each sub-lineage was used for the gene sets.
For GSEA in Fig. 9e, f, pre-rankedGSEA (based on log2fold-change)was
performed using tissue cluster gene sets and the genes significantly
upregulated after astrocyte treatment with cerulenin or the top 150
genes unique to tissue state B signature.

Generating the tissue state signatures
Pseudo-bulk samples from the snRNAseq dataset were created by
summing and rounding the normalized counts per sample. Differential
gene expression analysis using the DESseq2 pipeline was conducted
between the clusters, controlling for sequencing batch (Supplemen-
tary Dataset 3). The genes significantly differentially increased in
cluster C vs. A and C vs. B constituted tissue state C signature. The
genes significantly differentially increased in cluster B vs. A and B vs. C
constituted tissue state B signature. The genes significantly differen-
tially increased in cluster A vs. C and A vs. B constituted tissue state A
signature. Clustering samples of the validation bulk RNAseq dataset
into the three tissue states was performed by first retrieving the gen-
eset enrichment scores of the genes unique to each tissue state in each
sample using the gsva algorithm with method = ”gsva”. Next, we per-
formed hierarchical clustering on the Euclidian distance matrix cal-
culated from the gsea scores, with method = ”Ward.D2” in hclust, and
cutree function with k = 3—all in R.

Spatial transcriptomics
Spatial transcriptomics was conducted using 10X™ Visium Spatial
Gene Expression Slide & Reagent Kit, 16 rxns (PN-1000184), according
to the protocol detailed in document CG000239_RevD available in 10x
demonstrated protocols. 10 micron-thick tissue sections were moun-
ted on the ST slides and stained for nuclei—DAPI among other antigens
using a rapid immunofluorescence protocol described in document
CG000312_RevB available in 10X demonstrated protocols. Imaging of
whole slides was done at 20X magnification on a Leica Aperio Versa
scanner or a Leica DMI6 thunder tissue imager. After imaging, the
slides were de-cover-slipped and the tissue permeabilized for 11min
(which was empirically determined to yield best results based on the
Visium Spatial Tissue Optimization Slide & Reagent Kit PN-1000193 as
detailed in the protocol provided in document CG000238_RevD
available in 10X demonstrated protocols). The remaining steps were
conducted according to the manufacturer’s protocol. The libraries
were sequenced on multiple Illumina Nextseq 550 (paired end dual-
indexed sequencing) flowcells to achieve the recommended number
reads per ST spot. The spatial transcriptomic (ST) samples were pre-
pared using 10X genomics Cell Ranger (version 6.1.2) and Space Ran-
ger (version 1.2.1) software. Raw tiff images of the tissue were labeled
with Cell Ranger which generated a json file for Space Ranger to use
during alignment. Labeled spots from Cell Ranger were inputted into
the loupe-alignment argument in Space Ranger along with its respec-
tive tiff image file, FASTQ reads, and slide numbers. The reference
genome used for alignment was built using the Space Ranger function
spaceranger mkgtf with GRCh38 as the assembly and Ensemble 91 for
the transcript annotations. All other parameters to generating the
counts data for STwere set to its default setting. The number of counts
per spot per ST sample is shown in Supplementary Fig. 10c. The plots
of ST experiments shown in Fig. 5a and Supplementary Fig. 11 were
generated using SPATA264.

Deconvolution and spatial cross-correlation analysis
Deconvolution using RCTD was used to determine the proportion of
each cell type at each spot in each of the 9 ST experiments29. RCTDwas
run in “full”mode and used the complete annotated set of single nuclei
(n = 43,505) as a reference. The differential gene expression threshold
in the “createRCTD” step was set to 1.25 logFC; other parameters were
set to their default values. Bulk samples were deconvolved by sup-
plying null coordinates Deconvolution performance was quantified
using immunohistochemical staining of the ST samples for DAPI
(Supplementary Dataset 1). Using the package BayesSpace, spots in
each experiment were clustered according to their transcriptional
profiles and cartesian coordinates. The number of BayesSpace clusters
in each sample was determined using the SC.MEB package with cri-
terion set to “MBIC”65. The mean proportion of each cell type was
calculated within each BayesSpace cluster (total clusters n = 33). Using
QuPath cell detection, cellswere segmented and then assigned to each
BayesSpace cluster using the st_within function (R package sf). The
number of DAPI-positive nuclei within a BayesSpace cluster was com-
puted and divided by the area of the BayesSpace cluster to obtain the
nuclear density. The density was then correlated with the mean pro-
portion of each cell type and CNVpos (the sum of all neoplastic cell
types) using the cor.test function.

Cohabitation patterns between cell types in the ST data were
quantified using spatial cross-correlation as implemented in the R
package MERINGUE and evaluated at neighborhood size = 900 µM66.
To determine the spatial adjacency matrix for the first order calcula-
tion (a spot’s immediate neighbors), the Cartesian coordinates of each
Visium spot were input into the “getSpatialNeighbors” function. As
Visium spots are arranged in a hexagonal lattice, the parameter “fil-
terDist” was initially chosen such that no spot had greater than six
contiguous neighbors. Spatial adjacency matrices were created using
the igraph package by generating a graph from the first order spatial
adjacency matrix using the “graph_from_adjacency_matrix” function
and then inputting this graph into the “connect” function67.

The deconvolved proportions of each cell type output by RCTD
(summed to unity on a spot-by-spot basis) and the first order spatial
adjacency matrix were used as inputs for the “spatialCrossCorMatrix”
function inMERINGUE to determine the average pairwise spatial cross-
correlations between each spot and its neighbors between each of the
18 cell types (171 combinations total) in each experiment, The pairwise
comparisons were normalized with respect to the number of spots in
each sample before being averaged across samples and plotted using
the ComplexHeatmap package68. The significance of the cross-
correlations was determined using the “spatialCrossCorTest” func-
tion with 100 permutations: the spatial cross-correlation calculation
was repeated 100 times using neighborhoods consisting of randomly
selected spots from that sample. The proportion of random permu-
tations that yielded spatial cross-correlations at least as high as those
obtained from the actual data was taken as the p-value for that rela-
tionship. For each sample, adjusted p-values for each cross-correlation
relationship were determined using Benjamini–Hochberg correction.
Significance across samples was computed using the Fisher method
for combining p-values across independent experiments (poolr pack-
age, R, unweighted). Relationships with a combined adjusted p-value
less than 0.05 were considered significant. Dendrograms for each of
the resultant heatmaps were determined using ward.D clustering of
the Euclidean distance between the spatial cross-correlation values for
each cell type.

Immunohistochemistry, histology, and in situ hybridization
Standard chromogenic Immunohistochemistry was done as described
below and in accordance with ref. 23. Briefly, paraffin-embedded for-
malin-fixed tissue sections or fresh frozen sections briefly fixed in 4%
PFA, for 10min (40 °C) in 4% PFA in PBS. Paraffin sections after
deparaffinization were treated with antigen unmasking solution
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according manufacture recommendations (Vector Laboratories, Bur-
lingame, CA). The following antibodies and dilutions were used SOX2
(1:200, Mouse monoclonal, Abcam, Ab218520), KI67 (1:500, rat
monoclonal polyclonal, Thermo Scientific, 14-5698-80), CD68 (1:200,
mouse monoclonal, Abcam cat# ab955), NeuN (1:1000, mouse
monoclonal, Millipore, MAB377). For fluorescent IHC, secondary
antibody conjugated to fluorophores: anti-mouse Alexa Fluor 488 and
594 and anti-rabbit Alexa Fluor 488 and 594; goat or donkey (1:300,
ThermoFisher Scientific, Eugene, OR) were applied for 1 h at room
temperature. In situ hybridization was done using RNAscope™ multi-
plex fluorescent v2 (ACDbio cat# 323100) per the manufacturer’s
protocol in 5-micron paraffin-embedded, formalin-fixed tissue sec-
tions. We used predesigned probes for PTPRZ1, CLU, TOP2A, NOVA1,
MEG3, and SOX2 from ACDbio; cat# 584781, 584771, 470321, 400871,
584801, and 400871, respectively. Fluorescent images were taken on a
Zeiss 810 Axio confocal microscope at 40X. Brightfield fluorescent
images were taken on an Aperio LSM™ slide scanner at 20x and 40x.

Quantification of ISH
For quantification of in situ hybridization images we used the positive
cell detection function in Qupath v0.2.369. We only quantified signal
contained in DAPI-positive nuclei. First, DAPI-positive nuclei were
detected using the cell detection tool. Next, subcellular detection
functionwas employed to segment puncta per each of the three probe
channels. A random tree classifier was used to classify nuclei to be
positive or negative in QuPath under default settings, with a minimum
of two puncta per channel to classify a nucleus as positive for the
probe. Infiltrated cortex and cellular tumor core were annotated by a
neuropathologist.

Cell culture and co-culture
Human Astrocytes (ScienCell cat #1800) were cultured in Astrocyte
culturemedium (ScienCell cat# 1801), 2% fetal bovine serum (ScienCell
cat #0010), 1% astrocyte growth supplement (ScienCell cat# 1852) and
1% penicillin/streptomycin (ScienCell cat # 0503). The cells were
maintained as adherent cultures on poly-L-Lysine coated tissue culture
plates. The cells were passaged at 70–90% confluence and treated at
passage numbers 5–7. DMSOor Cerulunin Sigma cat#C2389 at 5 µg/ml
was used to treat the cells for 18 h as indicated.

Human astrocytes used co-culture were first transduced with
lentiviruses carrying GFP (LentiORF control particles of pLenti-C-
mGFP-P2A-Puro Origene™ cat# PS100093V), CLU (Lenti ORF particles,
CLU (mGFP-tagged)-Human Clusterin (CLU), transcript variant 1 Ori-
gene™ cat# RC211875L4V), or LGALS3 (Lenti ORF particles, LGALS3
(mGFP-tagged)—Human lectin, galactoside-binding, soluble, 3
(LGALS3), transcript variant 1, Origene™ cat# RC208785L4V). Trans-
duction was performed by inoculating astrocytes seeded at 104 cells
per well with 10 µl of virus at 1 × 107 TU/ml (5 MOI), in the presence of
10 µg/ml polybrene, followed by 1-week selection in a 0.5 µg/ml pur-
omycin containing selection medium. Transduction efficiency was
confirmed by observing fluorescence on microscopy and FACS ana-
lysis. Co-culture with U87-MG (obtained from ATCC—maintained in
DMEM+ 10%FBS) ensued for 24 h—with both Astrocytes and U87-MG
cells seeded at 2*105 cells/well—6-well plate). The cultures were tryp-
sinized 24 h after seeding and subjected to FACSorting (influx cell
sorter—Beckman Coulter, Jersey City, NJ), into GFP+ (astrocyte) and
GFP– (U87MG) fractions, from which RNA was extracted as
described above.

Real-time quantitative PCR
Total RNA was extracted from brain specimens using RNAeasy minikit
(Qiagene©). RNA concentration and purity were determined using
NanoDrop (Thermo Scientific™, MA). RNA was converted to cDNA
using High-capacity RNA-to-cDNA kit (Thermo Fisher Scientific,
Applied Biosystems™, MA). The following Taqman assays were used

(CHI3L1-Hs01072228_m1, CD44-Hs01075864_m1, LGALS3-
Hs00173587_m1,GAPDH-Hs02786624_g1,MIB1-Hs01075903_m1, HES5-
Hs01387463_g1, CLU-Hs00156548_m1, EZH2-Hs00544830_m1, SOX2-
Hs04234836_s1, NES-Hs04187831_g1, HES1-Hs00172878_m1). The
reaction volumes were 15 µl per reaction. TaqMan™ Multiplex Master
Mix (Thermo Fisher Scientific cat# 4461881) was used. All reactions
included 5 ng of cDNA. Thermal cycling parameters were conducted
permanufacturer’s standard recommendations. The qPCR plates were
read on a QuantStudio™ 5 Real-time PCR system (Thermo Fisher Sci-
entific, Applied Biosystems™, MA). The reactions were done in tripli-
cates. Relative gene expression was calculated using the delta delta Ct
method with GAPDH as a reference gene.

Statistical testing
Statistical comparisons were done using one-way ANOVA (or
Kruskal–Wallis test) and Tuckey post-hoc comparison in R. Statistical
testing for RNAseq application is reported in the main text or
respective methods section. Differential abundance analysis was done
employing a moderated regression model in ANCOMBC with default
parameters, assigned Condition (primary vs. post-treatment recur-
rence) and CNVpos proportions in the design formula, and in accor-
dance with the authors guidance27. One-tailed paired t-tests were done
to compare the core and margin percentages of the same case (Sup-
plementary Fig. 5). A one sample t-test was conducted to determine if
the percentage of TOP2A+ that were CLU+ was less than 50%. One or
two-tailed t-testswere used in Supplementary Fig. 13 as indicated in the
legend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for spatial transcriptomic can be queried using an interactive web
app: https://vmenon.shinyapps.io/gbm_expression/. The data gener-
ated and/or analyzed for this study are included in this article, its
supplementary information files, and onGEOGSE228500. The data on
GEO has all raw data for snRNAseq and ST samples as indicated in
supplementary datasets 1, and bulk RNA-seq samples as indicated in
supplementary datasets 6, 8 and referring to Fig. 6. The processed
single nuclei and spatial transcriptomics data are available on [https://
github.com/adithyakan/reconvolving_gbm]. The DEG and enrichment
analysis data generated in this study are provided in the Supplemen-
tary Information/Source Data files. The Cancer Genome Atlas (TCGA)
data was accessed using the TCGAbiolinks package (version 2.18.0).
Chinese Glioma Genome Atlas (CGGA) RNAseq datasets can be
downloaded from [http://www.cgga.org.cn/download.jsp]. Datasets
from Gill et al. (2014) can be accessed through GEO: GSE59612).

Code availability
Custom code and processed data objects are available on github:
[https://github.com/adithyakan/reconvolving_gbm].
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