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Enabling accurate and early detection of
recently emerged SARS-CoV-2 variants of
concern in wastewater

Nicolae Sapoval 1, Yunxi Liu1, Esther G. Lou2, Loren Hopkins 3,4,
Katherine B. Ensor4, Rebecca Schneider3, Lauren B. Stadler2 &
Todd J. Treangen 1

As clinical testing declines, wastewater monitoring can provide crucial sur-
veillance on the emergence of SARS-CoV-2 variant of concerns (VoCs) in
communities. In this paper we present QuaID, a novel bioinformatics tool for
VoC detection based on quasi-unique mutations. The benefits of QuaID are
three-fold: (i) provides up to 3-week earlier VoC detection, (ii) accurate VoC
detection (>95% precision on simulated benchmarks), and (iii) leverages all
mutational signatures (including insertions & deletions).

Wastewater monitoring is an invaluable tool for SARS-CoV-2
surveillance1–4. Despite multiple recent successes in VoC monitoring
and detection from wastewater sequencing data5–7, there are multiple
challenges associated with the nature of the environmental data. Since
wastewater represents a pooled sample of multiple hosts, it harbors a
diversity of SARS-CoV-2 variants that are currently circulating in the
population1,2, including potentially previously unreported genotypes8.
Variant detection and phasing are further complicated by uneven
genome coverage2 and environmental RNA degradation9, which render
phased assembly difficult10. Despite these challenges, detectionof VoCs
in wastewater samples is important for monitoring the emergence and
spread of variants and informing public health response7,9. Current
approaches for VoC detection in wastewater samples typically require
sufficient depth and breadth of coverage of the variant genomes5,11, and
therefore depend on a large fraction of the sample representing the
variant genotype6, hampering early detection. Furthermore, most cur-
rent approaches discard insertion and deletion (indel) information and
only rely on single nucleotide variants (SNVs) associated with the
VoC5,11. However, recently several new approaches have emerged that
take indels into account12,13, most notably COJAC12 utilizes co-
occurrence information for the mutation providing high specificity of
detections. Finally, all approaches that rely on a database of previously
collected SARS-CoV-2 genomes are biased by the contents of the
database14, which can lead to both false negative and false positive calls
at the inference stage15. This issue can be further amplified when the
underlying database is not scrutinized for potential metadata errors.

In this work, we introduce QuaID: a computational pipeline for
analyzing SARS-CoV-2 wastewater sequencing data and inferring pre-
sence of VoCs, that leverages both SNV and indel data. We demon-
strate the performance of our tool on real Houston wastewater data
detecting Alpha, Delta, and Omicron VoCs. We also compare the per-
formance of QuaID and state-of-the-art tool Freyja5 on both real and
simulated data. We demonstrate enhanced precision of QuaID in the
simulated benchmark, and earlier detection of the Omicron VoC in
Houston based on the real data. Thus, we demonstrate the benefits of
using QuaID for the early and accurate detection of SARS-CoV-2 VoCs.

Results
Between February 23, 2021, and May 5th, 2022 we collected, processed,
and analyzed 2,637 wastewater samples from the fifth-most populous
metropolitan area in the US: Houston, Texas. Samples were collected
weekly from 39 wastewater treatment plants (WWTPs, Supplementary
Table 1, Supplementary Figure 1) distributed throughout the city of
Houston and servicing more than two million Houston residents16.
During the study period, the VoC detection signal clearly reflected the
three major variants that affected Houston - Alpha, Delta, and Omicron
(Fig. 1b). QuaID was able to detect the Delta VoC two weeks prior to the
first sequenced clinical sample in Texas (marked by star in Fig. 1c) and
continued to provide detection signal for the four subsequent weeks
after the first sequenced clinical sample (2021-04-05 to 2021-05-03). In
contrast, Freyja reliably picked up the Delta signal only once the VoC
becamemore prevalent. Similarly for the Omicron VoC, QuaID detected
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Fig. 1 | Detection of Alpha, Delta, and Omicron VoCs in Houston, TX waste-
water. a QuaID VoC inference process overview. Parameters that affect described
subroutines are provided in the rounded rectangles. b Early detection of the emer-
ging variants of concern in Houston wastewater provided by QuaID and Freya
pipelines. For Omicron and Delta variants, QuaID provided earlier detection. Each
week is presented as the aggregate signal from the 39WWTPs with detections being
reported if at least 2WWTPs had anyQuaID signal or had any non-zero abundance of

the VoCs reported by Freyja. c Variant prevalence in the clinical data over the study
period obtained from GenBank and restricted to Texas. Stars indicate the first
occurrences of a Delta variant genome (dark green) and anOmicron variant genome
(purple). d Heatmaps of WWTPs with detected Omicron variant quasi-unique
mutations theweek ofDecember 2nd, 2021 (top) andDecember 10th, 2021 (bottom)
inHouston. Blanks indicate lackof sequencingdata, blue color indicatesnomutation
detected, and the gradient shows the allele frequency for detected mutations.
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the presence of the variant in wastewater two weeks prior to the first
clinical sample collection date, while Freyja required an additional week
after the first clinical sample to detect Omicron presence. Furthermore,
QuaID reported detections of BA.2 sublineage of Omicron starting 2021-
12-16, and BA.5 sublineage of Omicron starting 2022-01-13 (Supple-
mentary Data 1). Consistent detections of these two major sublineages
of Omicron have been reported in our data throughout 2022.

We further investigated the early detection of theOmicron variant
in Houston wastewater by visualizing a heatmap of variant calls
(Fig. 1d) and examining the multiple sequence alignment (MSA) of
SARS-CoV-2 Omicron variant genomes available on GISAID17 in early
December 2021. We observed 50% (5 out of 10) of the samples with
Omicron presence for the week of December 2nd, 2021 contained the
9 bp deletion (N:DEL31/33), which is a stable mutation (95.1% pre-
valence among all Omicron genomes18) for the Omicron variant
(Fig. 1d). Since the current version of Freyja relies on the UShER19

phylogenetic tree for its designation of mutational signatures, no
deletions are used in the inference process, highlighting one of the
reasons for the delayed detection of the Omicron variant. In the sub-
sequent week, December 10th, 2021, when both Freyja and QuaID
reported the presence of the Omicron variant in the wastewater, the
N:DEL31/33 mutation was present in 16 of 23 sites with detections
(Fig. 1d), and for one of the samples with no deletion there was no
coverage in the region flanking the deletion (Fig. 1d, Sampling Site SB:
Sims Bayou North).

To further examine the sensitivity of the QuaID and Freyja to
degradation of the sequencing data, we conducted simulated experi-
ments following three protocols motivated by the following empirical
observation from the wastewater data. In the real wastewater
sequencing data, 37.7% of all samples had less than 25% of the SNVs
associated with the Omicron VoC via UShER barcodes covered by at
least one read (Supplementary Figure 3B), and 24.4% of samples had
less than 10% of all Omicron-associated SNVs with at least one read.
The first simulation protocol (a) retained a percentage of SNVs at
random from a simulated sample. Thus, we constructed three simu-
lation scenarios with each retaining 10%, 25%, or 50% of all SNVs. Our
results show that due to the inclusion of deletion information in the
inference process, QuaID remained sensitive even when only 10% of all
SNV calls were retained, while Freyja required at least 50% of the calls
to be included to reliably detect the VoC presence. In particular, when
only 10% of all SNV calls were retained, QuaID still detected the pre-
sence ofDelta andOmicron VoCs reliably, and Alpha andGammaVoCs
sparsely, while Freyja failed to estimate the abundance of any of the
VoCs (Alpha, Delta, Gamma, and Omicron) present in the simulated
samples (Fig. 2a, Supplementary Figures 4A–7A). Furthermore, when
25%of all SNVs were retained, QuaID identified the present VoCs in the
majority of the simulated samples, while Freyja provided sparse
detection in the samples dominated by a single VoC (Fig. 2b). Finally,
when 50% of all SNVs are retained, Freyja detected most of the VoCs
present in the samples, and in several instances recovered the correct
relative abundance. However, even in this scenario 8 Omicron-
dominated samples failed to be correctly identified by Freyja, while
QuaID correctly inferred the presence of the VoC. Additionally, we
observe that the stability of the coverage for the N:DEL31/33 is further
empirically supported by our data, which indicated that among all
samples more than 61% had at least 10 reads that covered the bases
immediatelyflanking thedeletion (Supplementary Figure3C).Next,we
considered a simulation protocol (b), where SNVs were resampled as
Bernoulli trials based on the coverage of a real guide sample. The
results from these experiments support the robustness of QuaID
detections (Supplementary Figures 8–31).

Finally, we devised a simulation protocol (c) which resampled
simulated sequencing reads based on a coverage profile guide from a
real sample. In total, we generated 32,448 simulated samples for this
protocol and compared the performance of QuaID, and Freyja. The

results of this comparison aggregated over all 32,448 samples are
presented in Table 1. In this set of simulated experiments, QuaID had
the highest precision for all VoCs in consideration, further supporting
our confidence in early detection of Delta and Omicron VoCs in
Houston wastewater data. Freyja achieved a good balance between
precision and recall as indicated by high F1 score. We hypothesized
that the high precisionofQuaIDwas likely due to the combined variant
caller output used in the pipeline. To test this, we conducted an
experiment in which QuaID used only iVar output for its analyses. As
expected, we found that QuaID’s recall matched or in some cases
surpassed that of Freyja at the cost of lower precision when using iVAR
only (Supplementary Figure 32A, B).

Discussion
Wastewater monitoring of the emergence and spread of SARS-CoV-2
variants offers unique benefits based on the early detection of the
variant arrival prior to the clinical data3, 4,20,21, and broad surveillance
coverage of the population4,20. QuaID offers a solution for accurate and
early VoC detection with tolerance for degraded data for VoC detec-
tion using wastewater SARS-CoV-2 sequencing data. In comparison to
one of the leading tools for analyzing SARS-CoV-2 wastewater
sequencing data for VoC detection, QuaID demonstrated superior
sensitivity to the empirical data, and higher precision in simulations.
This is particularly important given that the underlying sample quality
and the depth and breadth of coverage of amplicon sequencing data
can vary widely across samples16. Furthermore, the ability to leverage
indel information in the inference process makes QuaID overall more
robust than approaches that rely solely on SNVs. However, assessing
the impact that analysis of indels provides in the task of VoC detection
requires more extensive evolutionary modeling.

QuaID also has some limitations in its design. Since QuaID is an
early detection tool it does not perform full phylogenetic placement of
reads, which in cases when data quality is high can provide a more
robust representation of the sample’s lineage composition. Addition-
ally, since our main goal was accurate and early detection of emerging
variants in scenarios where the underlying mutational signal is low,
QuaID treats each observed mutation as an independent event, and
hence is not in its current form suited to perform relative abundance
estimates. Analogous to the other tools for variant detection, QuaID
depends on the database of known lineages, and hence cannot detect
an emerging lineage that has not yet been designated as novel. How-
ever, the ability to track quasi-uniquemutations for all known lineages
combined with the variant calling in longitudinal samples can be
extended in future work to also enable detection of recurrent novel
mutations, and hence putative novel lineages. This is also important if
the rate of clinical sequencing declines, leading to less densely sam-
pled databases and hence potential for missing lineages in the avail-
able clinical sequencing data.

We envision QuaID to be one of several tools routinely employed
in wastewater monitoring efforts. For example, QuaID could be used
in parallel with Freyja and COJAC to achieve high sensitivity for
detecting emerging variants using QuaID, relative abundance esti-
mates for the dominant circulating variants using Freyja, and high
specificity confirmations for detection events using COJAC. Further-
more, future work on extending the framework of QuaID and other
tools to other pathogens that can be detected in the wastewater can
enable sensitive and continuous environmental monitoring beyond
the COVID-19 pandemic. Finally, given the multitude of technical
challenges posed by the inherent variability and quality of wastewater
sequencing data, we believe that establishing extensive sets of simu-
lated and synthetic datasets that emulate challenges in variant calling
in wastewater samples is required to further expand our under-
standing of how RNA degradation, sample preparation and storage
techniques, and sequencing protocols affect the downstreamdata and
analyses.
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Methods
Wastewater sample collection, RNA extraction, and sequencing
Houston Water collected and provided weekly 24-hour time-weighted
composite influent (raw wastewater) samples from 39 wastewater
treatment plants (WWTPs) in Houston covering a service area of
approximately 580 miles2 and serving over 2.3 million people. In total,
2637 samples were analyzed. Untreated wastewater samples were
collected from the influent channel using refrigerated 24-hour com-
posite samplers at eachwastewater treatment plant. The autosamplers
collected an aliquot of wastewater (200mL) every hour over 24 hours.
After sample collection, sampleswereplacedon ice and transported to
Houston Water’s laboratory, aliquoted into 250mL and 500mL bot-
tles, and transported on ice to Rice University (Rice) for processing.
Houston Water provided the influent flowrates for each WWTP cor-
responding to the 24-hour sampling period. SARS-CoV-2 was con-
centrated in wastewater samples using an electronegative filtration

method as previously described22. We followed the same RNA extrac-
tion as described in prior work16. Namely, RNA extraction was per-
formed using a Chemagic™ Prime Viral DNA/RNA 300 Kit H96
(Chemagic, CMG-1433, PerkinElmer) with the PerkinElmer viral RNA/
DNApurificationprotocol and reagents. Sequencingwasperformedby
the Houston Health Department laboratory and several different
sequencing kits, library preparation kits, and primer panels were used
to amplify SARS-CoV-2 genomes in wastewater samples (Supplemen-
tary Table 2). Changes in sequencing protocols were made based on
availability of reagents and to update primers that were better opti-
mized for emerging VoCs. cDNA was generated via reverse transcrip-
tion using the Superscript IV first-strand synthesis system
(ThermoFisher Scientific, 18091050) following the manufacturer’s
protocol. Each sample library was then quantitated, normalized,
pooled, and diluted. Finally, sequencing was performed on an Illumina
MiSeq instrument using the kit and cycling conditions specified in

Fig. 2 | Detection of VoCs in simulated data at various levels of SNV dropout.
a Freyja relative abundanceestimates andQuaIDdetection signal on simulated data
fromGenBank (USA/TX)with 10%of all SNVs retained at random. Freyja is unable to
detect any of the four (Alpha, Delta, Gamma, Omicron) VoCs. b Freyja relative
abundance estimates and QuaID detection signal on simulated data from GenBank
(USA/TX) with 25% of all SNVs retained at random. Freyja sparsely detects major

VoCs (Delta, Omicron). QuaID detections are less sparse for all VoCs. c Freyja
relative abundance estimates and QuaID detection signal on simulated data from
GenBank (USA/TX) with 50% of all SNVs retained at random. d Metadata from
GenBank (USA/TX) showing the fraction of genomes belonging to different VoCs
for any given week. In this simulated experiment, the fractions shown correspond
to true relative abundances in the simulated mixture.
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Supplementary Table 2. Additional details on WWTP sample sites,
methods regarding sample collection procedures, and quantification
of SARS-CoV-2 in wastewater samples can also be found in our pre-
vious publication16. Estimates of the viral load are provided by the
Houston Health Department following the same methodology as
outlined in the SARS-CoV-2 Wastewater Monitoring Dashboard23.

Amplicon sequencing data processing
We processed the MiSeq paired-end data through a standard
sequence of steps consisting of quality control report generation
(FastQC24, default parameters), quality and adapter trimming
(BBDuk25, quality trimming both ends of the read with threshold 15,
and trimming standard PhiX adapter sequences), read mapping (BWA
MEM26, default parameters), and primer site soft clipping (iVar27,
ARTIC v328 primer scheme, minimum quality threshold 15). The sum-
mary overview of the whole processing pipeline is presented in Sup-
plementary Figure 2A.

Variant calling
We obtained two sets of variant calls for each sample: one with
iVar27 (minimum quality 20, minimum allele frequency 0) and the
other with LoFreq29 (after adjusting quality scores for indel calling
with the ‘lofreq indelqual–dindel‘ call, variant calling parameters
are set to default). Both variant callers were configured to output
all variant calls regardless of the allele frequency. We then used
custom Python code to perform a variant call merge-and-filter
operation which retained only those variant calls that were sup-
ported by both variant callers and had an allele frequency equal
or above the user-defined threshold (default: 0.02) according to
at least one of the two variant callers (while allele frequency
estimates are typically close between the two variant callers dif-
ferences of <0.01 occur).

Sequence database sanitation
Prior to the subsequent analysis, we used metadata obtained from
GISAIDwebsite to filter out sequences that weremarked as incomplete
or that had an associated host other than Homo Sapiens. Additionally,
VoCs with a large amount of clinical sequencing data available (Alpha,
Delta, Omicron) ismore prone to human error in themetadata entries.
Thus, we implemented a filter that removed any genomes: annotated
as Alpha with submission date prior to September 3rd, 2020, anno-
tated as Delta with submission date prior to March 1st, 2021, and
annotated as Omicron with submission date prior to September 1st,
2021 (first detection dates based on cov-lineages.org VoC reports).
Finally, we excluded all recombinant PANGO lineages30 (X*) from the
analysis.

Mutation database construction
We used the pre-generated MSA file from GISAID to extract all muta-
tions using vdb31 in nucleotide mode with ambiguous bases included.
We then trimmed the resulting list of mutations using the vdb trim
command. Finally, we linked the resulting mutation list with the
metadata based on the genome accession IDs, and the resulting data
were aggregated by week and lineage through custom Python code.
Additionally, any SNVs that resulted in an ambiguous base call (e.g. N,
W, S, etc.) were removed from the database (summary view provided
in Supplementary Figure 2B). The resulting data were used as the
mutation tables to calculate prevalence of mutations in PANGO
lineages30 over a user-defined time window (default: 4 weeks).

Quasi-unique mutations
For each lineage and mutation combination, the prevalence of the
mutation occurring in the corresponding lineage’s genomes was cal-
culated and then converted to a fraction of all genomes assigned to the
lineage. Mutations that appeared in >50% of all genomes for a single
lineage (i.e., not appearing in any other lineage at 50% or more) were
considered quasi-unique for that lineage. The above choice of inclu-
sion (what fractionofgenomes in the lineagemusthave themutations)
and exclusion (what fraction of genomes in any other lineage pre-
cludes the mutation from being selected) corresponds to the defini-
tion of a consensus genome but can bemodified to arbitrary values by
the end user. Setting stricter thresholds (requiring more of the target
lineage genomes to have a mutation) will lead to smaller sets of quasi-
unique mutations of high confidence, trading of sensitivity for speci-
ficity. Furthermore, since often we want to report detections at a
higher level (e.g., anyOmicron sub-lineage asopposed to a specific leaf
node like BA.2.1) when determining which genomes are used for the
exclusion rule, all the genomes that come from the same sub-clade at a
fixed level (default: 4) in PANGO hierarchy are omitted from the
exclusion check. Thus,mutations common to BA.1 andBA.2 can still be
considered as quasi-unique for the Omicron VoC. Note that since vdb
reports out deletions and we only filter out ambiguous SNVs, a quasi-
unique mutation can be a deletion. Additionally, in order to reduce
potential noise from rare lineages, we omit any lineages which have
less than a user-defined count of genomes (default: 2) within the
designated time window. An overview of these processes is presented
in Supplementary Figure 2C. Finally, for each quasi-unique mutation
QuaID estimated its predictive power as the posterior probability of
observing a particular lineage given the observed mutation. Formally,
for a lineage of interest l and the quasi-unique mutation m we com-
puted Pðl∣mÞ using Bayes’ theorem Pðl∣mÞ= Pðm∣lÞPðlÞ

PðmÞ . We let PðmÞ to be
the ratio of the number of genomes with the mutationm observed to
the total number of genomes in the database. Next, we let PðlÞ to be the
ratio of the number genomes belonging to the lineage l and the total
number of genomes. Finally, we let Pðm∣lÞ to be the fraction of gen-
omes in the lineage l containing the mutation m. While we did not
provide any filtering based on the estimated predictive power of the
quasi-unique mutations, these probabilities can be used in the down-
stream analyses to improve the interpretations of the detection signal
provided by QuaID.

Mutational signature aggregation
Since the PANGO lineage hierarchy continuously expands potentially
introducing new sub-levels for any lineage, it is useful to aggregate
quasi-unique mutations into sets that correspond to a node at a fixed
level of the hierarchy. For example, Omicron variant is defined as any
descendant of B.1.1.529 PANGO lineage, and thus Omicron corre-
sponds to level 4 in the hierarchy. When aggregating quasi-unique
mutational signatures up to a given level, we took the union of all
descendant lineage quasi-unique mutation sets. Note that the aggre-
gation step always uses the same level of the hierarchy as the exclusion
step of the quasi-unique mutation set construction.

Table 1 | Precision (number of true positives divided by the
sum of true and false positives), recall (number of true posi-
tives dividedby the sumof true positives and false negatives),
and F1 score (harmonic mean of precision and recall) for
QuaID and Freyja on the data simulated under protocol (c)
(total number of samples analyzed, n = 32,448)

Variant Tool Precision Recall F1 score

Alpha QuaID 0.954 0.517 0.671

Freyja 0.847 0.555 0.670

Delta QuaID 0.979 0.532 0.689

Freyja 0.747 0.663 0.702

Gamma QuaID 0.999 0.343 0.511

Freyja 0.686 0.414 0.516

Omicron QuaID 1.0 0.472 0.642

Freyja 0.859 0.614 0.716

Bold font indicates highest F1 score.
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Variant of concern detection
Given a wastewater-based sequencing sample collected on a given
date D, we constructed the corresponding sets of quasi-unique
mutations in the time-window prior to and including weeks up to
date D (in case when there is no database information for the week(s)
immediately preceding the target date D, the last available time-
window was used). Then we merged the filtered set of variant calls for
the sample with the quasi-unique set of mutations with the key set to
the nucleotide change. We also filtered out any SNVs from the sample
that result in synonymous mutations. Once the combined data is
obtained, we reported for each sample the total combined allele fre-
quency and total count of observed quasi-uniquemutations, as well as
the total possible number of quasi-uniquemutations for the variants of
interest at thedesired level. Additionally, we reportedwhatpercentage
of the quasi-unique mutation sites had coverage (with deletions being
evaluated based on the genomic positions flanking the deletion) in
order to distinguish between the no detection and no coverage sce-
narios. A detailed description of the outputs provided byQuaID can be
found in Supplementary Table 3, and in the GitLab repository
README file.

Benchmarking tool performance with simulated data
We have considered three simulation protocols in order of increasing
complexity: (a) random SNV dropout model, (b) coverage template-
based SNV resampling, and (c) coverage template-based read resam-
pling. In all three cases the base dataset was constructed from SARS-
CoV-2 sequences deposited into NCBI GenBank before 15 April 2022,
and collected between 11 April 2020, and 15 April 2022. Sequences
were downloaded and grouped based on the collection week, yielding
a total of 104 groups. For each group read data was simulated using
ART32 short-read simulator. Each genome in the set representing a
week was sampled with the same coverage, thus lineages with more
representatives in each time frame yielded a higher amount of reads
for that sample. Then the reads were processed identically to the
regular pipeline processing. For the simulation protocol (a) after the
variant calling was performed and results of LoFreq and iVar calls
combined,we randomly retained 10%, 25%, or 50%of all SNVs thatwere
called. In protocol (b) we augmented this process by introducing
coverage templates. We selected 4 weeks of real data (corresponding
to 06/14/2021, 07/12/2021, 11/15/2021, and 12/16/2021) and for each
week we considered all 39 WWTPs and their corresponding sample
coverage profiles. Given a coverage profile we performed a SNV
resampling procedure directly on combined variant call files. The
procedure consisted of changing the total depth of coverage at a SNV
position to that in the coverage profile and if the resulting total depth
was below 10 the SNV was removed, otherwise, the AF of the SNV was
used as the probability of success in Bernoulli trial, and the fraction of
successes from the total depth number of trials was set as the new AF
for the SNV. However, since both protocols (a) and (b) operated at the
level of variant callswe couldnot use them for a complete comparison.
Thus, for simulation protocol (c) we directly resampled reads in order
to approximate coverage in the template profile. Template profiles
were identical to the ones used in protocol (b). Given a coverage
profile, we evaluated the coverage inpositions 80basepairs away from
the 3’ and 5’ ends of the ARTIC v3 amplicons and used these values as
target coverages. In order to build a sample, we sampled without
replacement reads from the simulated data that overlapped at least
one of target positions until either the target coverage, as defined
above, was achieved or there were no more reads left to sample. The
pipeline was then re-run with the modified read mapping files and the
three tools benchmarked.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data used in this manuscript is available at SRA via
BioProject accession PRJNA796340. SARS-CoV-2 genomes used
for the simulation dataset construction are available via GenBank
(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_
s=Nucleotide&VirusLineage_ss=taxid:2697049). SARS-CoV-2 mul-
tiple sequence alignments and their associated metadata used in
the database construction are available via GISAID (https://gisaid.
org). Minimal set of data to run a demo of QuaID is available via
Box (https://rice.box.com/v/QuaID-example-data).

Code availability
Code developed and used in this study33 is available on GitLab: https://
gitlab.com/treangenlab/quaid, and has also been deposited on
Zenodo: https://doi.org/10.5281/zenodo.7803146.
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