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Architector for high-throughput cross-
periodic table 3D complex building

Michael G. Taylor 1,2, Daniel J. Burrill1,2, Jan Janssen1, Enrique R. Batista 1 ,
Danny Perez 1 & Ping Yang 1

Rare-earth and actinide complexes are critical for a wealth of clean-energy
applications. Three-dimensional (3D) structural generation and prediction for
these organometallic systems remains a challenge, limiting opportunities for
computational chemical discovery. Here, we introduce Architector, a high-
throughput in-silico synthesis code for s-, p-, d-, and f-block mononuclear
organometallic complexes capable of capturing nearly the full diversity of the
known experimental chemical space. Beyond known chemical space, Archi-
tector performs in-silico design of new complexes including any chemically
accessible metal-ligand combinations. Architector leverages metal-center
symmetry, interatomic force fields, and tight binding methods to build many
possible 3D conformers fromminimal 2D inputs includingmetal oxidation and
spin state. Over a set of more than 6,000 x-ray diffraction (XRD)-determined
complexes spanning the periodic table, we demonstrate quantitative agree-
ment between Architector-predicted and experimentally observed structures.
Further, we demonstrate out-of-the box conformer generation and energetic
rankings of non-minimum energy conformers produced from Architector,
which are critical for exploring potential energy surfaces and training force
fields. Overall, Architector represents a transformative step towards cross-
periodic table computational design of metal complex chemistry.

Data-driven methods for materials1–3 and chemical4,5 discovery have
enjoyed considerable success, fueled by the availability of accurate
high-throughput structure-based simulation approaches6–9. For
example, the dramatic increase in availability of computational data
for d-block organometallics was in part enabled by the creation of
reliable three-dimensional (3D) structure generation tools; notable
examples being the molSimplify6, molAssembler7, and DENOPTIM8

codes. These tools allow for the generation of 3D configurations of
organometallic complexes, whose properties can subsequently be
computed using high-level electronic structure calculations. molSim-
plify structure generation operates using force-field pre-optimized
ligands and assembly of those ligands through alignment to a specified
(typically octahedral) metal-center geometry. molAssembler operates
by leveraging graph enumeration9, stereopermuters, and the distance

geometry10 algorithm informed by tabulated bond lengths. Another
approach for organometallic structure generation is taken by the
DENOPTIM8 program,which leverages fragment building in addition to
genetic algorithms to assemble hypothetical complexes that optimize
a given fitness function. The generation of large numbers of potential
complexes, via tools such as the ones listed above, can fuel the com-
putational creation ofmassive datasets of chemical properties. This, in
turn, can aid the development of powerful data-driven machine-
learning approaches for the efficient exploration of chemical space.

A complex building algorithm to set up initial structures of lan-
thanoid complexes has been published byMunguba and co-workers11. It
considers stereo control, including stereoisomer identification and
coordination chirality recognition, and was demonstrated for mono-
dentate and bidentate ligands. f-block organometallic chemistry is vital
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for clean energy and the nuclear energy cycle, including chemical
separations for waste treatment12,13, as well as the extraction of rare
earth elements14 needed for modern technologies ranging from cell
phones to turbines15. The relative rarity of data on f-block systems can
be explained by a range of fundamental and practical factors, including
difficulties inherent to working with radioactive elements, elemental
scarcity15,16, complexity in terms of characterization17–19, high coordina-
tion environment, and their complex electronic structure20,21. None-
theless, there are noteworthy cases where computational design of
organometallics has been successfully performed22,23, albeit with
structures intuitively-generated by hand and with ligand sets on the
order of tens of ligands rather than hundreds or thousands. With these
methods, however, large-scale chemistry and structure generation
including conformers for potential f-block organometallic complexes
remains prohibitively time-consuming, limiting the potential applica-
tion of large-scale data-driven methods for f-block organometallic
chemistries. Because of these challenges, the amount of data on the
chemical structure of f-block organometallics is dwarfed by data per-
taining to related d-block organometallics24–26.

Older 3D-generation packageswere benchmarkedwith root-mean-
square displacement (RMSD) comparisons to experimental structures27

while recent 3D structure generation routines have not compared
generated structures to experimental structures either due to interests
more targeted towards specific application spaces6,8, or due toconcerns
surrounding metrics for comparison7. Notably, gas phase or liquid
phase conformers can dramatically differ from crystalized structures28,
but different conformers can be vital for accurately capturing
spectroscopic29 and even catalytic30 properties of the underlying com-
plex. Key advances for conformer sampling and the generation and
prediction of thousands of structures are the broadly applicable semi-
empirical extended tight binding (xTB) xTB/GFN2-xTB31 and related
geometry relaxation routines32. Both were leveraged to produce the
largest available electronic structure-based d-block dataset derived
directly from experimental structures25. Further methods for enhanced
conformer sampling beginning from existing 3D structures show pro-
mise for d-block applications33. Studies of d-block conformers, gener-
ated from a limited set of CSD geometries (~40 structures), revealed
lower-energy structures for 68% of CSD structures without any shifts in
relative ligand positioning around the metal center34. However, with
multiple ligands and different symmetries, additional lower-energy
solution-phase conformers for even these simpler d-block systems
exist, much less with higher-coordinated f-block systems35. The avail-
ability of large databases of electronic and chemical structures of dif-
ferent conformers and off-equilibrium structures of f-block complexes
could drive a more systematic exploration of this vast chemical space.
Such a database would also enable the development of powerful
accelerated computational methods such as tight binding36,37 and
machine-learning (ML) potentials38,39 capable of capturing f-block long
timescale physicochemical properties such as diffusion coefficients and
solution-phase reaction rates in f-block extraction processes.

To address the challenges inherent in f-block organometallic
structure generation and their relative data paucity, we here introduce
Architector, a python package for mononuclear organometallic 3D
conformer assembly from 2D-inputs based on metal-center symmetry
analysis, distance geometry, fragment assembly, and xTB-evaluation.
To sensibly measure deviations between generated structures where
metal-distal configurations overaccentuate differences, we tailor a
simple RMSD approach limited to metal-center proximal alignment.
Leveraging this RMSD method and energetic comparisons, we show
Architector can reproduce X-ray diffraction (XRD)-determined 3D
chemical structures from the Cambridge Structural Database26 (CSD)
for f-block in addition to s-, d-, and p- block chemistries. We further
show how leveraging tight binding methods inside the Architector
generation workflow allows for near-density functional theory (DFT)
levels of accuracy in ordering generated conformers out of the box.

Finally, we highlight its high-throughput capabilities, producing up to
20 conformers evaluated with xTB/GFN2-xTB for each of over 6,000
CSD structures within 12 h on ~500 cores.

Results
Architector workflow and design
We begin with an overview of Architector structure generation along
with example chemical illustrations of each step of the process (Fig. 1).
We showcase a Ce complex for example inputs (Fig. 1a) and outputs
(Fig. 1e) due to its variety of multidentate ligands (both bidentate cis
and tridentate fac). The exampleArchitector inputs arederived froman
existingmolecule by identifying themetal, coordination number (CN),
ligand simplified molecular-input line-entry system (SMILES) strings40,
and which index/indices from the SMILES are coordinating atoms (CA)
to the metal center. Architector includes a utility to aid users in iden-
tifying CAs for arbitrary ligand SMILES (Supplementary Fig. 1). In total,
Architector inputs amount to a full 2Dmolecular graph specification for
the 3D molecule to be constructed.

2D molecular graphs can be defined for any synthesized complex
and any not-yet-synthesized complex from across the periodic table for
Architector structure generation. For user ease in generating 2D mole-
cular graphs and assigning electronic states to complexes, Architector
also contains default information for each metal including oxidation
states, spin, and coordination numbers in addition to a substantial and
increasing number (~100) of named ligands that can be used in con-
struction (SupplementaryTable 5). After theArchitector3Dconstruction,
the user is returned a list of generated conformers (Fig. 1e) for the given
input, which is ranked according, by default, to their GFN2-xTB31 energy.

As deciding if a 2D molecular graph can be embedded into 3D is
NP-hard41, we opt for heuristic approaches. These approaches attempt
to identify close-to-minima energy structures as well as a range of
reasonable higher-energy structural isomers that can be useful for
understanding high-temperature solution chemistries and for training
sets for reduced-cost semi-empirical approaches37. For the givenmetal
type and CN, all pre-defined core geometries (Supplementary Table 1)
are referenced and tested (Fig. 1b,i). Aswith the default core library, we
identified default ligand types and corresponding CA-M-CA angles
(Fig. 1b,ii) from ligands sampled across the CSD (Supplementary
Note 1, Supplementary Fig. 2, and Supplementary Table 2). Finally, with
the given ligand and coordinating atoms, ligand types can be assigned
using an included aid (Supplementary Fig. 3) or from a built-in brute-
force search method. Thus, both ligand and core geometries are
assigned or determined by Architector.

Given the ligand and core geometries, Architector constructs all
possible mappings between the two. Architector determines all ligand
binding sites by taking all combinations of core CA positions and
determining if the angles between all pairs of CAs align with the
assigned ligand geometry (Fig. 1b,iii and Supplementary Fig. 4). Then,
Architector assigns valid sets of binding sites from all possible binding
sites for all ligands by reducing to only sets of possible binding sites
with no shared core CAs (Fig. 1c,i).

Even for simple complexes, the number of possible core-ligand
binding sitemappings can be enormously large, needing that one only
tests a reduced number of mappings. For example, a CN= 8 complex
bound by 8 different monodentate ligands has 8! = 40,320 possible
core-ligand binding site maps. However, if some of the ligands are
identical (e.g., 4 water and 4 ethanol ligands), the number of unique
mappings usually decreases by 2–3 orders of magnitude (8 choose
4 = 70). Thus, for cases with fewer distinct ligands, mappings can
automatically be greatly reduced.

Mappings can be further reduced by not considering structures
with identical metal-center symmetries. To evaluate the uniqueness of
valid sets of binding sites and quickly rank the likelihood of each map-
ped core-ligand binding, we developed a heuristic function corre-
sponding to a pseudo-energy of binding sites (Supplementary Note 2).
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We note that the pseudo-energy evaluated with b = 1 heuristic charge
produced ~94% of GFN2-xTB lowest-energy conformers considering
only the top 10 lowest-pseudo-energy binding configurations (Supple-
mentary Fig. 5), while using up to the top 19 lowest-pseudo-energy
configurations produced 99.5% of lowest-energy conformers. Therefore,
pre-calculating pseudo-energy greatly reduces the number of sets of
binding sites that must be considered if only minimum-energy struc-
tures are desired.

Architector 3D generation of structures then starts from ligands
and assigned ligand CA binding sites (Fig. 1c,ii). We developed the
ligand 3D-generation routines extending and synergizing approa-
ches from both molSimplify6 and molAssembler7. First, we initialize
chemically-meaningful ligand geometries from the SMILES strings
using the Openbabel42 package, which are then relaxed with either
MMFF9443 or UFF44. Next, we prepare ligands for distance geometry45

conformer generation46. Briefly, we form both lower-bound and
upper bound distances based on the initial ligand geometries in
addition to single bond covalent radii (rcov)47, and van der waals
radii48 (vdw) found in the literature. Additional details surrounding
distance matrix construction and distance geometry generation can
be found in Supplementary Table 3 and Supplementary Note 3. To
correct the distortions resulting from distance geometry, we turn
again to FFs with a multistep geometry cleaning process

(Supplementary Note 4). Following FF cleaning, the Kabsch
algorithm49 is used to rotate the ligand around themetal tominimize
CA location deviation from the assigned core geometry locations,
returning the rotational root-mean-squared deviation (rotRMSD)
between the sets of locations (Supplementary Note 5). After force-
field relaxation and alignment, the generated ligand conformers are
ready for metal-ligand complex assembly.

With different ligand conformations at multiple sites at the metal
surface, rapid methods for ranking conformations and reducing
numbers of structures breaking chemical sanity are needed for com-
plex assembly. BydefaultweuseGFN2-xTB31 to select FF-relaxed ligand
geometries by placing each ligand conformer on the complex and
evaluating the total energy to select low-total-energy geometries for
each ligand in order from highest to lowest denticity (Fig. 1d,i). To bias
the conformers to their assigned binding sites, we select the con-
formers with the lowest total GFN2-xTB energy multiplied by 1/
rotRMSD to minimize potential ligand overlaps. As this bias does not
remove all potential ligand overlaps, we introduce three distinct
interatomic distance cutoff checks before GFN2-xTB evaluation to
minimize tests on unreasonable geometries (Supplementary Note 6,
Supplementary Fig. 6, and Supplementary Table 4). If different meth-
ods for ordering of ligands during construction are desired, users can
optionally request all the assembled complexes and specify any other

      Inputs
Metal, Coordination Number, Ligands, Coordinating Atoms (CA)

Metal Symmetry and Ligand Mapping
(i) Core Library    
Example: Ce, 8

       
Metal: Ce
Coordination Number: 8
Ligands (SMILES, CAs): 
1. c1ccc(nc1)c1ccccn1, (4, 11)
2. CC(C)(C)c1cc([Se]c2cc(cc(c2[O-])C(C)(C)C)
C(C)(C)C)c([O-])c(c1)C(C)(C)C, (7,14,24) (x2)

Example: Cambridge Structural Database Refcode = CONPEC 

Architector: 3D construction of organometallic complexes

(ii) Ligand Type 
Determination
1. 

bidentate, 
cis- 

configuration

2. 
   

(iii) Site Mapping
dodecahedral

Binding Site Locations:
1.

2.

(i) Binding Assignment 

Identify only 
unique sets 
of all binding 
site locations

Mapped core-ligand binding  

CC(C)(C)c1cc([Se]c2cc(cc(c2[O-])C(C)(C)C)C(C)(C)C)c([O-])c(c1)C(C)(C)C

Generate Ligands  

Complex Assembly 

Add ligands to
metal center 
one at a time
from highest 
denticity to 
lowest

Evaluate each 
ligand 
geometry with
xTB

Selecting only 
low-energy, sensible 
ligand geometry

      Outputs
Ranked-order (by GFN2-xTB energy) conformers 

tridentate, fac-configuration

(ii) Relax assembled conformers 
from all  core-ligand binding sites

Remove distorted/duplicate geometries 
across core structures!

Architector Internal

User interactions

axial-bicapped 
trigonal 
prismatic

dodecahedral

hexagonal
bipyramidal

square 
prismatic

...

...

All possible locations 
iterated

dodecahedral Build 3D 
from 
SMILES

Distance 
Geometry 

 (ii) Ligand Geometry Generation

Add metal 
& construct 
distance 
matrix

a

b

c

e

d

Generated  geometries:

Repeat
generation
process!

(i) Iterate Geometries

dodecahedral inital conformers:

dodecahedral relaxed conformers:

Relax with 
force field 
& align to core

Relative E: 0 kcal/mol 1.2 kcal/mol 3.4 kcal/mol 

1

2

Fig. 1 | Flowchart ofArchitector: 3Dconstructionoforganometallic complexes.
a Example inputs for an Architector generation derived from a Cambridge Struc-
tural Database (CSD) molecule b Metal-center symmetry and ligand mapping
procedures done in order (i)-(iii), steps (ii) and (iii) are repeated for each core
geometry. c Ligand binding site assignment mapping (repeated for each core
geometry) followed by ligand geometry generation for each binding site mapping.
d Full complex conformer assembly and evaluation performed for each core

geometry and unique binding site mapping. e Outputs from the Architector gen-
eration includingmultiple conformers sorted by GFN2-xTB energy. Note that users
interact directly with only a and e while b, c, d, and e. are handled internally by
Architector. Inset images are molecules colored by atom type with N:blue, Ce:yel-
low, C:gray, O:red, Se:orange, and core geometry binding site:light blue, hydrogens
have been removed for clarity.
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desired ordering (Supplementary Fig. 7). Assembled complexes are
then ready for relaxation and electronic structure analysis.

Final relaxation on assembled complexes can be performed with
any electronic structure or force-field method, though by default
Architector uses GFN2-xTB. If unspecified by the user, Architector
assigns default oxidation state, spin state, and core CNs (Supplemen-
tary Table 5) to the complex based on the metal identity and total
electron counts (Supplementary Note 7). For the actinides, we swap
the metal center and electron counts for the equivalent-group lan-
thanide, since atomic numbers greater than 88 are not supported by
GFN2-xTB31. However, this swap is unnecessary for models para-
metrized for actinides37. With charge and spin assigned, we relax all
assembled complexes within the Atomic Simulation Environment
(ASE)50. Once relaxed, we perform an additional set of tighter intera-
tomic distance chemical sanity checks ensuring generated structures
match the input 2D molecular graph (Supplementary Table 4). For all
relaxed complexes found to satisfy the input parameters, Architector
by default applies Kuhn–Munkres ordered RMSD (kmRMSD)51 to
eliminate duplicate structures before returning all generated com-
plexes ranked by GFN2-xTB energy (Fig. 1e). Additional comments
surrounding assumptions made during complex construction can be
found in Supplementary Note 8. From input to output structures,
Architector is thus uniquely tailored to high-throughput and accurate
organometallic complex 3D structure generation.

Structure reference for targeted generation and
CSD-replication set
To create a targeted set of mononuclear complexes for 3D structure
generation, we turned to the CSD26. We mined the CSD version 5.43
(Nov 2021) for mononuclear structures (Fig. 2a and Supplementary
Note 8) using previously described methods52, resulting in a total of
312,527 mononuclear complexes. The full CSD distributions of mono-
nuclear metal centers are 83% d-block with 80% CN less than 8 and
primarily coordinated by C, N, or O atoms (Supplementary Fig. 8).
From here, the CSD python API was used to remove structures
incompatible with Architector, broadly due to mismatches in stoi-
chiometry between the 2D representation and 3D structures, yet-
unsupported ligands, unreasonable charges, or structures with dis-
torted geometries (Supplementary Table 6). We highlight example
Architector-compatible structures from CSD (Fig. 2b) that are repre-
sentative of different blocks, visually noting that f-block complexes
tend to be higher-coordinated. To focus on a more evenly distributed
set of complexes across metal (some metals have fewer than ten
structures), we randomly sampled up to 100 different complexes for

each metal resulting in a subset of 6,154 structures for generation
(Fig. 2c and Supplementary Table 7). The atom distributions and
descriptive statistics for this subsampled set are still largely repre-
sentative of the full CSD (Supplementary Fig. 8 and Supplementary
Fig. 9). Thus, we created a cross-periodic table set of organometallic
complexes for replication by Architector.

Structure and energy statistics for lowest-energy Architector
conformers vs. CSD
Across the full set of 6,154 structures, we performed Architector
generation using CSD-derived oxidation state assignments (Sup-
plementary Note 7) and corresponding spin states suggested by
the mendeleev53 package and relaxed the CSD-derived structures
with GFN2-xTB. Overall, this resulted in 5,956 successful genera-
tion of sane relaxed complexes with comparable successfully-
relaxed GFN2-xTB CSD structures (Supplementary Fig. 10 and
Supplementary Table 8). Accounting for unsuccessful generations
that do not result directly from Architector failures (Supplemen-
tary Note 9), only 57 structures were unable to be handled by
Architector construction, corresponding to a 99.1% success rate in
generation. Comparable statistics on organometallic structure
generation for the CORINA program54 was 51.6% successful gen-
eration, while the COSMOS program reported comparable 94.6%,
the only other programs benchmarked in a similar manner27.
Importantly, this prior benchmark organometallic set27 did not
include any structures with CN > 8, where actinides and lantha-
nides constitute the majority of observed complexes (Supple-
mentary Fig. 8). Thus, Architector is directly competitive with
state-of-the-art comparable programs even on complex actinide
and lanthanide structures.

Focusing further on the f-block structures generated, we need
reliable and descriptive methods for describing how close the gener-
ated structures are to the CSD reference structures. A tricky aspect of
comparing different organometallic structures in terms of energy and
structures is that variations in soft trailing organic components of the
molecules can obscure a direct RMSD comparison between two
organometallics, leading to identical graphs and visually/chemically
similar structures being artificially labeled as distinct7. To directly
compare the structures, we leverage the kmRMSDmethod specifically
in the regionproximal to themetal centerwithin twographhops of the
metal center on the molecular graph (Fig. 3a). The kmRMSD up to
depth two from the metal center was selected (c-kmRMSD), as this
depth shows a stronger correlation with energy differences (Supple-
mentary Fig. 11).

Fig. 2 | Cross-periodic table replication dataset construction. a Size of different
subsets of theCSD resulting in the sample set for replication.b Examples structures
of sampled replication set with Cambridge structural database (CSD) refcode(-
metal) indicated. c Atom distributions present across all structures sampled from

the CSD divided by blocks. Inset images are molecules colored by atom type with
Na:light purple, F/Cl:green, I:dark purple, N:blue, C:gray, Si:light yellow, O:red,
S:yellow, H:white, Ga:brown, W/Eu/U:light blue.
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To illustrate how c-kmRMSD depicts differences in structures and
how it trends with chemical intuition, we focus on Yb-generated
compounds showing a wide spread in c-kmRMSD. For example, the
Architector-generated Yb structure with c-kmRMSD near 2.00Å has a
metal-center symmetry with different ligand relative locations
(Fig. 3b). Decreasing c-kmRMSD to near 1.25 Å reveals a non-distorted
Yb structure with only one different relative ligand position than the
CSD-derived structure. Looking at a structure near the mean
c-kmRMSD (0.5Å for Yb) reveals a close-to-perfect match in structure
with only deviating hydrogen positions. Finally, looking at an example
Yb structure with c-kmRMSD near 0.1 Å reveals virtually identical core
and full structures. Broadly, this agrees with previous reports of RMSD
similarity where RMSD< 1 Å can be regarded as identical conformers27.
Vitally, higher c-kmRMSD often does not imply chemically unreason-
able structures, merely differing ligand symmetries. Utilizing
c-kmRMSD thus allows us to compare metal-centered structural
comparison between generated and CSD-reference structures.

With c-kmRMSD, we primarily focused on the lanthanide/actinide
f-block targets looking to generated conformers closest to the CSD
equivalents (Fig. 3c). We immediately note that across the lanthanides
and actinides, minimum c-kmRMSD values average near 0.5 Å indi-
cating Architector typically generates at least one structure with mini-
mal deviations between the generated structures and CSD structures.
Lanthanides and actinides missing from Fig. 3c are not found at all in
the CSD (Supplementary Fig. 8). We see that though actinides were

simulated in GFN2-xTB by replacing them with their f-electron
equivalent lanthanides, the average c-kmRMSDs of actinides are
comparable to those across the lanthanides. Additionally, only 35 of
1,645 f-block structures fall in the >1.5 Å c-kmRMSD region where the
matching ligand symmetry to the CSD was not generated via Archi-
tector. We further note that across the whole periodic table there is
similar average andworst-case c-kmRMSDvalues betweenArchitector-
generated and CSD-derived structures (Supplementary Fig. 12). Over-
all, these results highlight a great degree of agreement between the
most similar Architector-generated complexes to CSD-derived struc-
tures they are replicating.

Beyond structural comparisons, energetic comparisons via GFN2-
xTB can also be made between the Architector-generated structures
and those from the CSD. With trailing-ligand conformations poten-
tially playing a larger role in determining energetics than metal-
proximal structure, we expect deviations in energetics between
minimum-energy Architector-generated structures vs. CSD structures.
We find instead that the mean absolute xTB energy difference on the
minimum-energy Architector structures and the CSD structures is
12.1 kcal/mol (Fig. 4) with 96.1% of structure energies within 50 kcal/
mol of the CSD structure. Additionally, the average differencebetween
the CSD and Architector structures is −4.6 kcal/mol, indicating the
Architector structures are, on average, only slightly higher in GFN2-
xTB energy than the CSD structures. The trends and histogram of
lanthanide energetics is also closely mapped by s-, p-, and d- block

Fig. 3 | Replicationof f-blockCSDstructures. a Illustration of coreKuhn–Munkres
root-mean-squared distance (c-kmRMSD) alignment procedure b Single boxplot
distribution of minimum-c-kmRMSD Architector-generated structures vs. CSD
c-kmRMSD values for Ytterbium complexes. C-kmRMSD values are calculated only
for the atoms within depth 2 neighbors of the metal center. Insets highlight closely
mapped, average, and less-ideallymappedgenerated cores. cBoxplot distributions
of c-kmRMSD of all minimum-c-kmRMSD Architector-generated lanthanide and
actinide complexes. All insets the CSD structures are colored by atom type with

Yb:green, Cl:light green, N:blue, C:gray, O:red, Ce:yellow, H:white. Overlayed
mimimum-c-kmRMSD Architector-generated structures are colored pink to reveal
differences in structure. Boxplots contain a colored region indicating the inner
quartile range (IQR) between the 1st and 3rd quartiles, while whiskers indicate
pointswithin 1.5*(IQR) of either the 25 and75 percentilepoints, andblackdiamonds
indicate outliers beyond the 1.5*IQR cutoffs. Metals with fewer than 10 structures
show all datapoints in black squares.
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Architector-generated complexes as well (Supplementary Fig. 13).
Overall, the xTB energetics of minimum-energy Architector structures
are comparable with CSD structure energetics.

Instead of overall energetic trends, focusing on specific cases that
both match and deviate in energy reveals potential sources of larger
energetic discrepancies between Architector and the CSD. Architector
structures much lower in energy (>50 kcal/mol lower) than the CSD
structures seem to have bulkier ligands forwhichArchitector identifies
different ligand orientations that are lower in energy (Fig. 4ii/iii). These
structures show c- kmRMSD values >1 Å indicating the core geometries
are nearly identical, but ligand conformations differ, indicating crystal
packing likely influenced the CSD conformer structure55. Alternatively,
structures forwhich the lowest-energy Architector structurewasmuch
higher in energy (>250kcal/mol higher) than the CSD structures seem
to be cases where Architector-generated a distorted ligand con-
formation different from that observed in the CSD (Fig. 4iv/v), albeit
close core structures. However, only 33 out of 344 lanthanide struc-
tureswithmore than 100 atoms show >50kcal/mol higher energy than
the CSD structure. The structures much higher in energy than the CSD
tend to have larger ligands, which have more rotational/structural
degrees of freedom.

The CREST utility represents a powerful conformer sampling uti-
lity also applicable to lanthanide complexes targeted to sample local
rotational/structural degrees of freedom. Comparison of CREST sam-
pling performed directly on 19 CSD structures to Architector-
generated structures revealed CREST generating structures lower in
energy than the CSD structure in 83% of the cases with energy dis-
tributions on the order of 10 kcal/mol (Supplementary Note 11 and
Supplementary Fig. 14). Since Architector represents a structure
search over more diverse configurations, it produced structures lower
in energy than the CSD in 84% of cases, with energy distributions on
the order of 20 kcal/mol. The combination of these utilities, with
CREST sampling performed after Architector generation is already
implemented in Architector and is very likely to produce structures at
or lower in energy than the CSD for a given molecule, though it

typically adds between 10–15min of run time per complex to the
generation procedure. We note that even without any additional
conformational sampling via CREST, Architector identifies a majority
(55.1%) of conformers for f-block lanthanides within typical xTB accu-
racy (2 kcal/mol)31 or lower in energy than the CSD structure. Addi-
tionally, although outliers in energetics exist, 64.5% of lowest-energy
lanthanide Architector structures are within 10 kcal/mol (nearly iso-
energetic and isostructural) with theCSD structures (Fig. 4i/vi). Finally,
CREST requires a user-estimated 3D input structure for a molecule to
perform conformer sampling, while Architector only requires 2Dgraph
information about themolecule as input and thus canbe easily applied
to any metal-ligand combinations.

Larger Architector conformer space
Besides lowest-energy conformers, Architector can generate ranked-
order conformers by GFN2-xTB energy. Such higher-energy con-
formers can be vital for understanding and accelerating f-block com-
plex design. From a randomly-selected set of 765 complexes from
across the periodic table we isolated 3,039 conformers generated by
Architector to test with DFT relaxationmethods (Methods Section and
Supplementary Fig. 15).We note that sinceGFN2-xTBdoes not support
atoms with Z > 88, an approximation for the actinides is needed for
comparison of GFN2-xTB conformer energetics and structures. In
Architector and for comparison to the CSD, actinides are approxi-
mated by swapping the actinide with the same-group lanthanides.

Crucially, in thisworkwe arenot intending to focus on accuracy of
post-Architector methods or even the underlying xTB methods. From
the electronic structure standpoint, we insteadare focusedonwhether
the Architector-generated structures are able to be evaluated by gen-
eral electronic structure methods, and whether, from a given method
these structures are energetically and geometrically sensible com-
pared to experimentally-derived structures. For more detailed studies
of specific regions of the periodic table any available method can be
utilized to evaluate the configurations following Architector genera-
tion ranging from force fields (UFF) to complete active space self-
consistent field (CASSCF). Users can readily customize both Archi-
tector internal methods (e.g., ASE Calculator (ADF/Gaussian/VASP),
functional, and/or basis set) used and final evaluationmethods to their
own purposes. Given this broader goal and a desire to minimize
computational expense, we have chosen to report PBE56 +D57,58/DZP
methods59 as the baseline xTB vs. DFT comparison (Fig. 5).

Over Architector structures, we were able to perform single point
calculations on as many as 97% of all conformers with DFT including
94% of lanthanide and 99% of actinide conformers attempted (Sup-
plementary Fig. 15). Looking instead at distinct complexes, we were
able to perform at least one successful DFT relaxation from 99% of
lanthanide complexes and 100% of actinide complexes. Lanthanide
complexes are known to be particularly difficult to converge in
DFT60–62, so a lower rate of success is to be expected and is consistent
with convergence on CSD structures themselves (Supplementary
Fig. 15). Thus, for most f-block complexes, and especially actinide
complexes (even considering the approximation of swapping for lan-
thanides in GFN-xTB evaluation), Architector is generating structures
amenable to DFT minimization.

Beyond the minimum-energy PES structures, we benchmarked
Architector and the underlying GFN2-xTB ability to rank conformers in
terms of energy and structure (Fig. 5). Over the full set of complexes
and conformers evaluated with DFT (3039 conformers), we see that
often the closest c-kmRMSD structure (vs. CSD) is not the lowest-
energy for either DFT or GFN2-xTB (Fig. 5a). This again supports pre-
vious observations that minimized gas and liquid phase complex
conformations do not necessarily correspond to those observed in
single-crystal structures28. These observations suggest that the dis-
tribution of conformers generated by Architector is key for capturing
configurations important for different theoretical methods.

Fig. 4 | Lanthanide CSD vs. Architector GFN2-xTB energetics. Histogram of the
difference in energies of the GFN2-xTB-relaxed CSD structure and the lowest-
energy Architector conformers on lanthanide complex energetics. (i)–(vi) highlight
examples of structures falling into extreme categories. (i) and (vi) represent
Architector structures nearly isoenergetic with the CSD structure while (ii) and (iii)
are > 50 kcal/molmore stable than the CSD structure and (iv) and (v) are > 250kcal/
mol less stable than the CSD structure. All insets the CSD structures are colored by
atom type with Lns:green/light blue, F:light green, N:blue, C:gray, O:red, S:yellow.
Overlayed minimum-xTB-energy Architector-generated structures are colored pink
to reveal differences in structure with hydrogens removed for clarity. Associated
c-kmRMSD values on the insets provide a measure of metal-centered similarity
between the structures.

Article https://doi.org/10.1038/s41467-023-38169-2

Nature Communications |         (2023) 14:2786 6



Looking at specific examples where more than thirteen con-
formers were able to be relaxed also provides insight into factors
dictating minimum-energy structures for each method (Fig. 5b). Here,
we directly see that Architector is typically generating at least one
conformer quite close in structure to the CSD, but also forming a wide
distribution of conformers in terms of metal-core local geometry
(Fig. 5a). Both GFN2-xTB and DFT favor structures with two key dif-
ferences from the CSD. First, for structures DFT/GFN2-xTB VUWTAK,
SALHTH, LIZZIG, and WIZPAX, different ligand mappings and metal-
center symmetries are observed from the CSD structure (Fig. 5b). This
type of deviation potentially agrees with previous catalyticworkwhere
the catalytically active and lowest-energy structures had different
relative ligand symmetries63. We note that accessing these types of
conformers directly from an XRD initial structure is difficult, if not
impossible34. The second type of deviation is primarily observed in the
YUQQED structures, where the metal-ligand symmetry is nearly the
same as the experimental structure, but trailing-ligand orientation
differs resulting in a lower-energy conformer. Additionally, we note
that oxidation states for lanthanides and actinides differing from the
+3 state were also sampled and Architector-produced structures for

these compounds were comparable to experimental structures (e.g.,
SALHTH inFig. 5a/b). Sincenearly all themulti-symmetry (more than13
conformers) complexes are from the f-block, ligand symmetry effects
appear especially important when considering actinide and lanthanide
complexes as enabled in Architector.

Another key question relevant to structural generation is how
many conformers are needed to produce structures closest to
experimental structures. Here, we note that xTB energy-index
ordering tends to trend strongly with minimum c-kmRMSD
structures with over 93.3% of minimum c-kmRMSD structures
being found in the top 5 lowest-xTB-energy conformers (Fig. 5c).
Additionally, we directly observe that xTB energy-ordered index
also trends directly with c-kmRMSD with lower indices tending to
have lower c-kmRMSD values (Fig. 5d). Beyond closeness to
experiments, xTB-ordered index also appears to trend with DFT-
evaluated relative energy (Supplementary Fig. 16). Together, these
observations indicate that the combination of Architector/xTB
tends to select for structures that are close to experiments but
potentially contain some key differences in ligand symmetry,
resulting in the sampling of lower-energy structures.

Fig. 5 | Conformer distributions and examples. a Kernel density estimate (KDE)
plot of distributions of Architector-generated un-relaxed conformer core kmRMSD
vs. CSD structures over the full set of 3039 structures from765 different complexes
(upper). (lower) Specific examples of structures where more than 13 conformers
were relaxed by both DFT (PBE+D/DZP) and xTB (GFN2-xTB) and the distribution
of their core kmRMSDvalues.bRenderings of the conformations corresponding to
the structure directly from the CSD under the CSD refcode, the closest Architector-

generated un-relaxed initial conformer, the minimum-energy xTB-relaxed con-
former, and the minimum-energy DFT-relaxed conformer. Calculations for acti-
nides in xTB are reported with a lanthanide used as proxy. All renderings are
colored by atom type with Lns:green/light blue, Cl:light green, N:blue, C:gray,
O:red, S:yellow. c xTB energy-ordered index vs. fraction of minimum c-kmRMSD
conformers and d xTB energy-ordered index vs. c-kmRMSD for all conformers
evaluated with both xTB/DFT.
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High-throughput capabilities
Assessing the properties of yet-unsynthesized complexes requires
rapid screening of large chemical spaces and numbers of conformers.
Fromthe set replicating theCSD,we report anaverage generation time
of 6.7min per valid conformer returned on a single core (Fig. 6 and
Supplementary Fig. 17). For structures containing fewer than 100
atoms (~80% of structures), an average of 3.3min per valid conformer
on a single core is achieved. We note that the assembly and relaxation
steps of the final complexes dominate the time spent generating
complexes. Instead of using GFN2-xTB for both steps, a user can
request the force field, e.g., GFN-FF64 for the assembly and GFN2-xTB
for relaxation, as leveraged in CREST33. Over the same set of f-block
complexes, simply swapping GFN2-xTB for GFN-FF during assembly
resulted in a reduction in generation time by a factor of 2 withminimal
tradeoff in the quality of the results (Fig. 6).

Architector can also be readily run in an “embarrassingly” parallel
fashion over complexes, which enabledover 99%of the 6154 structural
generations relaxed at the GFN2-xTB level to complete within 12 h on
~500cores. Given the rapidity of othermethodsof 2D to 3D-generation
such as CORINA, which reports around 0.009min per conformer on a
single core over Pubchem, this may still seem comparatively slow54,65.
However, given the complexity of the targeted systems (f-block) along
with accounting for spin, charge, and energetics of multiple con-
formers (not performed with any other package), Architector is a very
effective tool for high-throughput 2D to 3D generation for challenging
complex organometallics across the periodic table.

Discussion
Architector represents a transformative tool for 3D structure generation
of mononuclear organometallic compounds, particularly f-block com-
plexes. We have shown it capable of producing chemically valid 3D
structures from 2D inputs, producing numerous GFN2-xTB-relaxed
conformers for each given input. The energetics and introduced core
kmRMSD comparison between the CSD and Architector-generated
f-block complexes reveal quite similar structures. Due to conformational
sampling and crystal field effects, in a majority of cases Architector was
able to find comparable-energy gas-phase structures to those obtained
from the CSD and evaluated by both DFT and GFN2-xTB. With many

chemically-sensible conformers generated for each structure and ener-
getic rankings of non-minima energy conformers,Architector is ready for
use in tasks such as force field and tight binding training for chemical
systems where cheaper methods do not yet exist31,66. Finally, Architector
shows strong promise for high-throughput structure generation of
mononuclear complexes across the whole periodic table, which can
enable the data-driven discovery of complex chemical systems essential
for energy, catalysis, separation that are on the horizon.

Although Architector is achieving over 97% success in structural
generation across the periodic table, as with any 3D-generation rou-
tine, Architector relies on heuristics and thus is not guaranteed to find
the lowest-energy conformer for a given molecule. Further develop-
ments in Architector are underway to expand its capabilities to include
ligand type handling for structures with neighbors bound to the metal
center and haptic ligands with CAs not involved in the haptic interac-
tion, representing ~7% of ligands found in the CSD (Supplementary
Table 6). In this first version of Architector, we focus on mononuclear
metal compounds, while extensions to polynuclear structures by
linking mononuclear centers are also under development.

Overall, the structural generationandconformer ranking ability of
Architector is remarkably broad. With conformers readily evaluated
with any electronic structure method, the screening of metal spin,
metal charge, ligand coordinating geometries, and ligand packing
become available, enabling accurate evaluation of properties such as
ligand binding energies, spectroscopic properties, and potentially
catalytic properties of organometallics. Although primarily developed
for higher-coordinated lanthanide and actinide chemistries, Archi-
tector has proven applicable across the periodic table, dramatically
expanding its potential usage. Additionally, though benchmarked
against knowncrystal structures, there is no limitation ofArchitector to
known chemical structures as it is readily applied to any metal-ligand
complex. Thus, Architector represents a vital step towards data-driven
discovery in f-block chemistries and beyond.

Methods
For CSD replication calculations, up to 20 different core symmetries
per core-ligand mapping were requested, with the top 10 lowest-
energy conformers relaxed by xTB/GFN2-xTB. All assembly steps were

Fig. 6 | Timings and Performance of Architector. 2D Kernel Density Estimates
(KDE) of the time per configuration on a single conformer on a single core vs.
number of atoms (n atoms) by each block. The smaller circles represent density
estimates of 50% of the data, while the outer circles represent 95% density esti-
mates. The inset on the left indicates the average distribution of the times for each
subtask of Architector where “core” refers to core and core-ligand mapping deter-
mination time, “symmetry” to finding valid sets of core-ligand bindings, “ligand” to

ligand conformer generation time, “assembly” to timeplacing andevaluating ligand
conformers, and “relax” to the final relaxation timewith GFN2-xTB. The right plot is
the same generations performed with GFN-FF for assembly rather than GFN2-xTB
for all Ce, Nd, Eu, Ho, Th, and U clusters. The inset highlights the structural results
for both methods are nearly identical and are colored by atom type with Th:light
blue, N:blue, C:gray, S:yellow.

Article https://doi.org/10.1038/s41467-023-38169-2

Nature Communications |         (2023) 14:2786 8



performed with xTB/GFN2-xTB as well except where otherwise indi-
cated. Single point GFN2-xTB energetic evaluations with the methanol
(ε = 33)67 solvent revealed shifts in conformer energetics and energetic
rankings (Supplementary Figs. 18 and 19). Shifts are expected given
more polar conformers would be more stabilized by the presence of
solvents and are suggested for use in cases where solvents are known.
In Architector, adding solvents supported by xTB during complex
construction and conformer ranking is facilitated by adding a single
“solvent” keyword. For this work, since the structures evaluated are
derived from crystals made in different solvents (e.g., ε = 2 for hexane
to ε = 80 for water)67, simulating in the gas-phase serves as a common
reference. Ligand types were assigned for replication by choosing the
ligand type classified from the 3D CSD structure (Supplementary
Table 2). Duplicates with full kmRMSD values lower than 0.5Å were
removed. Architector relies heavily on several open-source
packages including ASE50, scipy68, and xTB66. Internal visualization is
supported using the py3Dmol69 plugin for jupyter notebooks. All
molecular renderings were made using the Mercury70 package from
the CCDC.

All DFT relaxations were performed with the ADF 2022.10171 using
the PBE exchange-correlation density functional56 managed by the
open-source pyiron package72. For structures with all elements Z < 86,
D4 dispersion corrections (+D)57 were added, while for structures with
all elements Z < 95, D3 corrections58 were added to facilitate more
similar comparison between DFT and xTBmethods. A smaller double-
zeta basis set with polarization functions (DZP)59 was used to accel-
erate DFT calculations and encourage convergence, while ZORA scalar
relativistic effects73 were employed to capture relativistic effects typi-
cally present in f-block elements. Single point comparisons revealed
minimal impact of basis set and functional selection on conformer
ranking energetics (Supplementary Note 12 and Fig. 20). We evaluated
spin contamination on the PBE +D/DZP DFT calculations and found
only 7 of 3039 structures contained <S2 > deviations greater than 0.5
(Supplementary Fig. 21).

Data availability
All data generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
7764697. The data contained in the figures in this study are provided
in the Source Data file. Source data are provided with this paper.

Code availability
The Architector code is available on github at and is also able to be
installed via the Anaconda (conda install -c conda-forge architector) or
pip (pip install architector) package managers. A permanent version
associated with this manuscript can be found at https://doi.org/10.
5281/zenodo.7754279.
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