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Cross-modal autoencoder framework
learns holistic representations of
cardiovascular state

Adityanarayanan Radhakrishnan1,5, Sam F. Friedman 2,5, Shaan Khurshid2,3,
Kenney Ng 4, Puneet Batra 2, Steven A. Lubitz 2,3 ,
Anthony A. Philippakis 2 & Caroline Uhler 1,2

A fundamental challenge in diagnostics is integrating multiple modalities to
develop a joint characterization of physiological state. Using the heart as a
model system, we develop a cross-modal autoencoder framework for inte-
grating distinct data modalities and constructing a holistic representation of
cardiovascular state. In particular, we use our framework to construct such
cross-modal representations from cardiacmagnetic resonance images (MRIs),
containing structural information, and electrocardiograms (ECGs), containing
myoelectric information. We leverage the learned cross-modal representation
to (1) improve phenotype prediction from a single, accessible phenotype such
as ECGs; (2) enable imputation of hard-to-acquire cardiac MRIs from easy-to-
acquire ECGs; and (3) develop a framework for performing genome-wide
association studies in an unsupervised manner. Our results systematically
integrate distinct diagnostic modalities into a common representation that
better characterizes physiologic state.

Clinicians leverage measurements across many complementary
diagnostic modalities to develop an integrated understanding of a
patient’s physiological state. For example, heart function can be
interrogated with a variety of modalities, such as electro-
cardiograms (ECGs) that provide myoelectric information (e.g.
sinus rhythm, ventricular rate, etc.), and cardiac magnetic reso-
nance images (MRIs) that provide structural information (e.g. left
ventricular mass, right ventricular end-diastolic volume, etc.). By
utilizing measurements across both modalities, we can gain a more
holistic view of cardiovascular state than with eithermodality alone.
The recent availability of large-scale cross-modal measurements in
biobanks1,2 provides the opportunity to develop systematic and rich
representations of physiology. In particular, such cross-modal
representations provide an opportunity for a broad range of
downstream tasks such as (1) prediction of clinical phenotypes for
diagnostics; (2) imputation of missing modalities in biomedical
data; and (3) identification of genetic variants associated with a

given organ system. Using the heart as a model system, we here
develop such an integrative framework and show its effectiveness in
these three downstream tasks.

Multi-modal data integration is a rich field with a variety of
methods developed for specific applications. A survey of multi-
modal approaches is presented in ref. 3. Unlike multi-modal data
integration approaches based on classical methods such as cano-
nical correlation analysis (CCA)4–7 or non-negative matrix
factorization8,9, our approach relies on a class of machine learning
models called autoencoders. Autoencoders10,11 are a class of gen-
erative models that serve as a standard method for learning repre-
sentations from unlabelled data. These models have been
successfully applied in a variety of applications including computer
vision12–14, chemistry15, and biology16–21. A line of recent works utilize
autoencoders to learn joint representations of multi-modal data
including natural images and captions in computer vision14,22–27,
nuclear images and gene expression in biology20, and paired clinical
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measurements28–31. Indeed, autoencoders have been observed to
perform competitively with other multi-modal integrationmethods
including classical integration approaches using CCA5–7 and gen-
erative adversarial networks32,33. Unlike these prior works that focus
primarily on improving a specific downstream task such as pheno-
type prediction or modality translation through multi-modal data
integration, we develop a generalized representation that improves
performance on several downstream applications. We demonstrate
the utility of this representation on three important biomedical
tasks: in addition to phenotype prediction and multi-modal data
integration and translation, we show that our cross-modal repre-
sentation yields a new framework for characterizing
genotype–phenotype associations. While various prior works have
conducted genome-wide association studies (GWAS) to identify
single nucleotide polymorphisms (SNPs) associated with cardio-
vascular diseases34,35, features measured on ECGs36,37, or features
measured on cardiac MRI38,39, these GWAS approaches have relied
on labelled data derived from individual modalities. Instead, our
approach can identify SNPs that affect cardiac physiology in an
unsupervised and general way. Namely, rather than merely identi-
fying SNPs that affect a single phenotype such as the QT interval,
our approach identifies SNPs that generally impact phenotypes
present on ECGs or cardiac MRIs.

Utilizing cardiac MRI and ECG samples from the UK Biobank1, we
develop a cross-modal autoencoder framework for building a repre-
sentation of cardiovascular state (Fig. 1a). We show that these learned
representations improve phenotype prediction (Fig. 1b) over super-
vised deep learning methods. Additionally, our cross-modal auto-
encoders enable generating hard-to-acquire MRIs from easy-to-
acquire ECG samples, and we show that these generated MRIs cap-
ture common MRI phenotypes (Fig. 1c). We show that a GWAS on
phenotype labels derived from cross-modal embeddings leads to the
recovery of known genotype–phenotype associations. Importantly,
our framework also allows us to perform GWAS in the absence of
labelled phenotypes to identify SNPs that generally impact the cardi-
ovascular system (Fig. 1d).

Results
Cross-modal autoencoder framework enables the integration of
cardiovascular data modalities
To build a cross-modal representation of the cardiovascular state, we
utilize autoencoders tomap paired cardiovascular data modalities, i.e.
38,686 paired median 12-lead ECGs and 50 frame videos of long-axis
cardiac MRIs, from the UK Biobank1 into a common latent space. A
description of the data used in this work is provided in the “Methods”
subsection “Study design”. Building on the traditional autoencoder
framework, we train modality-specific encoders and decoders to map
to and from this latent space such that the reconstructed training
examples are similar to the original examples for all modalities (see
Fig. 1a). Additionally, given an ECG andMRI pair for a single individual,
we utilize a loss function that ensures thatpaired ECGandMRI samples
are represented via nearby points in the latent space (i.e., using a
contrastive loss). Importantly, while our model is trained on paired
modalities, the model can be applied in settings where only one
modality is present. Namely, we simply utilize the embedding given by
the trained encoder for the single input modality. A description of our
loss function, architecture, and training procedures is given in the
“Methods” subsection “Cross-modal autoencoder architecture and
training details” and Supplementary Fig. S1. As indicated in Fig. 1, the
resulting representations are useful for a variety of downstream tasks
including phenotype prediction, modality translation, and genetic
discovery. While we mainly apply our framework to integrate two
modalities (ECGs and cardiacMRIs), we demonstrate that it can also be
applied to three or more modalities in Supplementary Fig. S2.

Cross-modal representations enable improved phenotype
prediction
We first demonstrate that supervised learning on cross-modal repre-
sentations improves performance on phenotype prediction tasks.
While our model is trained on ECG and MRI pairs, we consider the
practically relevant setting in which only one modality (e.g. ECG) is
available. In this case, we perform supervised learning on embeddings
given by a single modality-specific encoder (Fig. 1b). For our cross-

Fig. 1 | An overviewof our cross-modal autoencoder framework for integrating
cardiovascular data modalities. Our model is trained on ECG and cardiac MRI
pairs from the UK Biobank. a A visualization of our training pipeline. Modality-
specific encoders map data modalities into a shared latent space in which a con-
trastive loss is used to enforce the constraint that paired samples are embedded
nearby and further apart from other samples. Modality specific decoders are then
used to reconstruct modalities from points in the latent space. b Learned cross-
modal representations are used for downstream phenotype prediction tasks by
training a supervised learning model (e.g., a kernel machine) on the latent

representations. c Our framework enables translation between modalities: ECGs
can be translated to correspondingMRIs and vice-versa.dThe learned cross-modal
representations can be used to understand genotype-phenotype maps in the
absence of labelled phenotypes by performing a GWAS in the cross-model latent
space and clustering SNPs via their signatures (i.e., the vector in latent space
oriented from homozygous reference to the mean of heterozygous and homo-
zygous alternate); SNPs 1 and 4 have similar signatures in the latent space and thus
similar phenotypic effects.
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modal autoencoder trained on paired cardiac MRI and ECG samples,
we show that utilizing standard regressionmethods (e.g. kernel, linear,
or logistic regression) for supervised learning on our cross-modal
representations leads to improved prediction of (1) MRI-derived phe-
notypes (e.g. left ventricular mass, right ventricular end-diastolic
volume, etc.) from ECG only; (2) ECG derived phenotypes (e.g. length
of the PR interval, QT interval, etc.), fromMRI only; and (3) prediction
of general phenotypes (e.g. age, sex, bodymass index, etc.) fromeither
ECG or MRI. We observe that predictive models applied to our cross-
modal representations generally outperform supervised deep learning
models and supervised learning on traditional unimodal autoencoder
representations. In Supplementary Fig. S3, we additionally demon-
strate that cross-modal representations outperform semi-supervised
unimodal autoencoders, i.e., those trained to simultaneously auto-
encode and predict labels from the latent space. Overall, our cross-
modal embeddings improve the representational power of inexpen-
sive and prevalent ECGs for predicting clinical phenotypes by lever-
aging just a few MRI samples.

Cross-modal embeddings allow for matching cardiac MRI and
ECG test samples.Webegin by verifying thatour trainingmethodology
provides a latent space in which corresponding ECG andMRI pairs are
nearby. Hence, even in the absence of one of themodalities, the cross-
modal autoencoder provides a representation that is characteristic of
all available modalities. In Fig. 2a, we provide a t-distributed stochastic
neighbor embedding (t-SNE) visualization comparing the unimodal
and cross-modal autoencoder latent space representations for 500
paired ECG and MRI test samples. We can use a combined t-SNE
visualization of the twomodalities also for the latent space embedding
obtained from the unimodal autoencoders, since our ECG and MRI
autoencoders both use latent embeddings of the same size (256
dimensions). The t-SNE plots demonstrate that the ECG and MRI
samples are well-mixed in the cross-modal latent space, while the two
are clearly separated in the corresponding unimodal latent space. To
quantify the benefit of cross-modal representations, we compute the
accuracy that the correct MRI pair lies within the top k nearest

neighbors (under cosine similarity) for 4752 test ECGs across embed-
dings from cross-modal autoencoders, unimodal autoencoders, and a
baseline where ECGs and MRIs are randomly paired. Figure 2b
demonstrates that cross-modal representations outperform unimodal
representations in this task, with the latter performing similarly to the
random baseline.

Cross-modal representations improve phenotypeprediction from
a single modality. We now show that our learned cross-modal repre-
sentations are more effective for downstream phenotype prediction
than unimodal representations or supervised deep learning methods.
In particular, we consider four groups of phenotype prediction tasks:
prediction of (1) continuous valued MRI-derived phenotypes from
ECG; (2) continuous valued ECG-derived phenotypes from MRI; (3)
categorical physiological phenotypes from either ECG or MRI; and (4)
continuous physiological phenotypes from either ECG or MRI (see
Fig. 2c. All MRI-and ECG-derived phenotypes as well as the categorical
and continuous-valued physiological phenotypes were provided by
the UK Biobank. For all prediction tasks, we utilized the same training,
validation, and held out test data from the UK Biobank. Importantly,
we note that all data considered for the downstream prediction tasks
were excluded from the training procedure for the cross-modal
autoencoders. This is critical since otherwise, we could simply train a
cross-modal autoencoder to zero error onpaireddata, and our learned
representations would naturally benefit from using both MRI and ECG
features for any downstream prediction task; see the “Methods” sub-
section “Models, data, and scaling law for phenotype prediction tasks”
for details on the data splits considered. Again, we note that only a
singlemodality is used for eachof these tasks, i.e.,weare not giving the
cross-modal autoencoders access to any paired samples for the
downstream phenotype prediction tasks.

Our results demonstrate the value of cross-modal embeddings for
improving the prediction of clinical phenotypes including diseases
such as left ventricular hypertrophy (LVH), left ventricular systolic
dysfunction (LVSD), and hypercholesterolemia. We utilize kernel
regression to perform supervised learning from the cross-modal and

Fig. 2 | Improvement of phenotype prediction from cross-modal representa-
tions over unimodal representations or supervised learning from the original
modalities. aA t-SNE visualization of the cross-modal embeddings for the ECG and
MRI samples demonstrates that the modality specifc embeddings are well-mixed,
unlike the modality specific embeddings obtained from the unimodal auto-
encoders. b Ranking eachMRI by its cosine similarity with a given ECG in the latent
space, we visualize the accuracy that the ground truth MRI appears in the top k
neighbors among 4752 test ECG-MRI pairs from the UK Biobank. c Kernel regres-
sion on cross-modal representations outperforms kernel regression on unimodal
representations and supervised deep learning methods on 4 different tasks: (1)
prediction of ECG derived phenotypes from MRIs only (n = 4120, mean values are
reported with error bars indicating one standard deviation); (2) prediction of MRI-
derived phenotypes from ECG only (n = 4218, mean values are reported with error
bars indicating one standard deviation); (3) prediction of general physiological

phenotypes that are of categorical nature from either ECG or MRI (n = 4218, mean
values are reported with error bars indicating one standard deviation); and (4)
prediction of general physiological phenotypes that are of continuous nature from
either ECG or MRI (n = 4212, mean values are reported with error bars indicating
one standard deviation). All MRI phenotype abbreviations are defined in the
“Methods” subsection “Models, data, and scaling law for phenotype prediction
tasks”. Error bars are computed using 5-fold cross-validation. d Analysis of the
scaling law when utilizing our framework for predicting MRI derived phenotypes
from ECGs only. We observe that increasing the number of unlabelled ECG–MRI
pairs for pre-training boosts the mean R2 prediction of 9 MRI-derived phenotypes
by twice as much as increasing the number of labelled MRI samples. This analysis
highlights the benefit of collectingmore unlabelled ECG–MRI pairs as compared to
paired labelled examples for this task.
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unimodal embeddings; see Supplementary Fig. S4 for a comparison
with the performance of linear regression and logistic regression. For
fair comparison with supervised deep learning models, we extract the
embeddings given by the last layer of the trained neural networks and
apply kernel regression on these embeddings; see the “Methods”
subsection “Models, data, and scaling law for phenotype prediction
tasks” for a description of the architectures for all deep networks used
in this task. In all but one setting (hypertension classification), we
observe that predictions from our cross-modal latent space improve
over predictions from unimodal latent spaces and those from direct
supervised learning methods. An important practical implication of
these results is that ourmethod is capable of improving the prediction
of a variety of phenotypes just using ECGs, which are far easier to
obtain and more plentiful than MRIs. This is exemplified by the
improvement in prediction of MRI derived phenotypes from cross-
modal embeddings of ECGs shown in Fig. 2c.

To further evaluate the results described above, in the “Meth-
ods” subsection “Models, data, and scaling law for phenotype pre-
diction tasks” and Supplementary Fig. S5, we additionally consider
the prediction of cardiovascular diseases based on thresholded
MRI-derived phenotypes. In addition, in Supplementary Fig. S6, we
showcase the impact of incorporating circulating biomarkers such
as C-reactive protein (CRP) and low-density lipoproteins (LDL) on
phenotype prediction. In general, we find that CRP and LDL improve
performance for predicting age and BMI. Furthermore, in Supple-
mentary Fig. S7, we demonstrate that there is a boost in the pre-
diction of MRI-derived phenotypes when stratifying phenotypes by
sex and BMI. Lastly, in Supplementary Fig. S8, we demonstrate that
the cross-modal representation can improve prediction for diseases
such as atrial fibrillation (AF) or heart failure (HF) using labels
provided by the UK Biobank.

Increasing the number of unlabelled samples improves the pre-
diction of MRI-derived phenotypes from cross-modal ECG repre-
sentations. We now analyze the relationship between the amount of
labelled data for supervised learning, the amount of unlabelled data
for cross-modal autoencoding, and the performance of supervised
learning from cross-modal latent representations. Such an analysis is
crucial for understanding the number of labelled and unlabelled data
samples needed to build an effective cross-modal autoencoder for use
in practice. In Fig. 2d, we focus on such an analysis for the practically
relevant setting of predicting MRI derived phenotypes from ECGs. In
particular, we measure the mean R2 performance across all 9 MRI
derived phenotypes from Fig. 2c as a function of the number of unla-
belled samples for autoencoding and labelled samples for supervised
learning from cross-modal embeddings. Performing a scaling law
analysis (see the “Methods” subsection “Cross-modal autoencoder
architecture and training details”), we observe that collecting unla-
belled samples for autoencoding leads to roughly twice the increase in
predictive performance as collecting labelled samples for supervised
learning. Since the collection of unlabelled ECG–MRI pairs is easier
than the collection of labelled MRIs, our cross-modal autoencoder is
able to leverage easily collectable data to improve the performance on
these downstream phenotype prediction tasks.

Cross-modal autoencoder framework enables generating car-
diac MRIs from ECGs
Our framework enables the translation of ECGs, an easy-to-acquire
modality, to cardiac MRIs, a more expensive, difficult-to-acquire
modality. To perform such translation, we simply provide test ECGs
into our ECG-specific encoder and then apply theMRI-specific decoder
to translate from ECGs to MRIs. We note that since the two data
modalities capture complementary cardiac features (ECGs capturing
myoelectric information and MRIs capturing structural information),
such translation is a nontrivial task. Nevertheless, we show that the
translation of ECGs provided by a cross-modal autoencoder

remarkably captures features present in MRIs, and we quantify the
amount of such features captured via the translation.

Cardiac MRIs generated from test ECGs capture MRI specific
phenotypes. We begin by qualitatively analyzing the reconstruc-
tions and translations of 12-lead ECG and 50 frame cardiac MRI test
pairs using our cross-modal autoencoder. In Fig. 3, we demonstrate
that translations from ECGs to MRIs generally capture MRI-derived
phenotypes such as left ventricular mass (LVM) or right ventricular
end-diastolic volume (RVEDV). In Fig. 3a and b, we consider trans-
lating from ECGs toMRIs for test samples of individuals with high or
low LVM/RVEDV. We observe that the corresponding translations
generally capture whether an individual has high or low LVM/
RVEDV, as indicated by the annotated regions in red. For compar-
ison, we additionally present reconstructions given by our model
when provided the test MRI as an input. These reconstructions
demonstrate that the MRI-specific decoder has the capacity to
reconstruct fine grained details of an MRI. Hence, the difference in
quality between reconstructions and translations can be attributed
to the difference in embedding provided from ECG andMRI specific
encoders. Additional translations from ECG to MRI (and vice-versa)
are presented in Supplementary Figs. S9 and S10, demonstrating
that decoding ECG or MRI cross-modal embeddings after shifting
them in a direction of phenotypic effect (e.g. moving from low LVM
to high LVM) leads to the desired phenotypic effect on the original
modality (e.g. increased LVM in the corresponding generated MRI).
Videos of reconstructed MRIs, translated ECGs, and MRIs shifted
according to a selected phenotypic effect are presented in Sup-
plementary Videos S1–S5.

In order to quantify the effectiveness of the translations using the
cross-modal autoencoder, we compare the predictions of the transla-
tion to a neural network directly trained to predict LVM and RVEDV on
the original modality. In particular, in Fig. 3c, we verify that the pre-
diction of LVMandRVEDV from the reconstructed and translatedMRIs
positively correlates with that from ground truth MRIs. Hence, the
translations of test ECGs provided by our cross-modal autoencoder
indeed generally capture MRI derived phenotypes, as shown in
Fig. 3a and b.

Cross-modal autoencoder framework enables genome-wide
association study using integrated latent space
Next, we analyze whether cross-modal embeddings can be used to
identify genotype–phenotype associations related to the heart. As a
first step, we verify that performing a GWAS on labels derived from
cross-modal representations leads to the recovery of SNPs previously
associated with common disease phenotypes. We then develop a
methodbasedon the cross-model latent space toperformGWAS in the
absence of labelled phenotypes, i.e. an unsupervised GWAS. We
demonstrate that our unsupervised GWAS approach applied to cross-
modal embeddings recovers SNPs typically identified by performing
GWASon labelled data, aswell as those found inmore computationally
demanding ECG-wide screens40.

GWAS of phenotypes predicted from cross-modal representa-
tions recovers phenotype-specific SNPs. In order to verify that cross-
modal representations capture genetic associations with respect to a
specific phenotype, we perform a GWAS on single trait predictions
based on these representations; see the “Methods” subsection “GWAS
of phenotypes derived from cross-modal representations” for a
description of performing such GWAS and a list of confounders con-
sidered. As an example, the Manhattan plot in Fig. 4a shows that such
GWAS for body mass index (BMI) predicted from cross-modal
embeddings identifies the gene FTO, which is known to have an
effect on BMI and obesity risk41,42. Similarly, performing a GWAS of
right ventricular ejection fraction (RVEF) predicted from MRI cross-
modal representations identifies lead SNPs corresponding to genes
BAG3, HMGA2, and MLF1, which have all been previously associated
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withRVEF43. These results indicate thatour learned representations are
physiologically meaningful. Additional examples of ECG phenotypes
derived from cross-modal embeddings are presented in Supplemen-
tary Fig. S11.

Unsupervised GWAS of cross-modal representations leads to the
recoveryof SNPs associatedwith a givenmodality.Whilewehave so far
demonstrated that we can perform GWAS on one-dimensional traits
using our cross-modal embedding, we note two limitations of this

Fig. 3 | Cross-modal autoencoders enable imputing cardiac MRIs from ECGs
while capturing MRI-specific features such as left ventricular mass (LVM) and
right ventricular end-diastolic volume (RVEDV) on test MRI–ECG pairs.
a Examples showingqualitatively thatMRIs imputed from test ECG samples capture
LVM for those individuals with LVM in the highest and lowest quartile. The LVM in
theoriginal, translated, and reconstructedMRI is shown in red.b Examples showing

qualitatively thatMRIs imputed fromtest ECGscaptureRVEDV for those individuals
with RVEDV in the highest and lowest quartile. The RVEDV in the original, trans-
lated, and reconstructedMRI is shown in red. c The predictions of LVM and RVEDV
on MRIs imputed from test ECGs correlate with the predictions of these pheno-
types performed on the original MRIs.
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approach. The first limitation is that genetic variants are often pleio-
tropic, affecting many traits at the same time. Indeed, a variant can
have a small effect on a pair of traits, and looking at one trait alone
would not provide sufficient power for identifying this variant. The
second limitation is that one-dimensional traits, even in aggregate, are
an incomplete characterization of the information in a diagnostic
modality. For example, in ECGs, we aim to not only identify variants
that impact the measured phenotypes such as the QT interval but
variants that affect the ECG in any way. In the following, we, therefore,
develop an unsupervised GWAS methodology that provides a prin-
cipled approach for automatically discovering genetic variants from
rich diagnostic modalities without using any labelled phenotype
measurements or turning to manual, time-intensive interpretability
strategies such as saliency maps or direct visualization of ECGs and
MRIs. Our approach is as follows: (1) for each SNP, we identify those
individuals in the latent space that are either homozygous reference,
heterozygous, or homozygous alternate; (2)we then askwhether these
distributions are separable, and quantify the level of separation among
these groups via a p-value from a Multivariate Analysis of Variance

(MANOVA). The statistics used for computing p-values usingMANOVA
are discussed in the “Methods” subsection “GWAS of phenotypes
derived from cross-modal representations”. Importantly, prior to
performingMANOVA across the sets, we need to account for potential
genetic confounders (stratification), which are inherently reflected in
the cross-modal embeddings. Without accounting for confounders,
MANOVA is unable to recover the genetic signals from the latent
embeddings (see Supplementary Fig. S13a, b). To remove the effect of
possible confounders, we use the iterated nullspace projection (INLP)
method38. This method was originally developed in the natural lan-
guage processing domain to protect against biases (such as gender
stereotypes) fromappearing inword embeddings.We leverage INLP in
the medical domain to ensure that confounders such as principal
components of ancestry cannot be easily predicted from cross-modal
embeddings, thereby ensuring that such features do not arise as
confounders in the GWAS. This method iteratively removes dimen-
sions from the latent space until the remaining embeddings cannot be
used to predict any confounder (see the “Methods” subsection
“Unsupervised GWAS of cross-modal representations” for additional

Fig. 4 | Cross-modal autoencoders capture genotype–phenotype associations
for cardiovascular data. a Manhattan plots for GWAS of BMI and RVEF derived
from cross-modal embeddings identify lead SNPs associated with these traits. For
BMI, such GWAS identifies SNPs associated with FTO, which is known to have an
effect on BMI andobesity risk. For RVEF, suchGWAS identifies SNPs associatedwith
BAG3, HMGA2, and MLF1, which have been previously associated with RVEF. b To
more generally capture genetic associations with the heart, a GWAS can be per-
formed in the cross-modal ECGandMRI latent space even in the absenceof labelled
data. TheManhattanplots of suchunsupervisedGWAS identify lead SNPs including
those associated with NOS1AP, TTN, SCN10A, SLC35F1, KCNQ1, which have been

previously associated with cardiovascular phenotypes. c The corresponding QQ
plots and λGC factors indicate that there is minimal inflation in the unsupervised
GWAS of cross-modal ECG and cardiac MRI embeddings. d Clustering SNPs by the
vector from the mean embedding of homozygous reference samples to the mean
embedding of heterozygous and homozygous alternate samples in order to group
SNPsby similar phenotypic effect results in clustersof SNPs corresponding to those
associated with the QT interval (NOS1AP and KCNQ1), those related to the P-wave
(SCN10A and ALPK3), as well as SNPs that affect multiple cardiac traits (e.g., BAG3,
SLC35F1, and KCND3).
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details). After removing latent space dimensions that are predictive of
confounders using INLP, we utilizeMANOVA on the lower dimensional
embeddings to perform an unsupervised GWAS (see the “Methods”
subsection “UnsupervisedGWASof cross-modal representations” for a
list of confounders considered).

In Fig. 4b,we visualize theManhattanplots resulting fromutilizing
our unsupervised GWAS approach on the cross-modal ECG and MRI
embeddings. We observe that lead SNPs such as NOS1AP44,45, TTN46,47,
SCN10A48–50, SLC35F151, and KCNQ152,53 are consistent with those
identified by prior work. In Supplementary Fig. S12, we present the
results of the unsupervised GWAS performed on the joint cross-modal
embeddings of both ECG and MRI along with unsupervised GWAS
performed on the unimodal autoencoder representations for these
modalities. Full lists of the lead SNPs identified in each analysis are
presented in Supplementary Tables S1–S3. Furthermore, Fig. 4c shows
the QQ plots and the corresponding λGC values to verify that the cor-
responding p-values are not inflated after removing the effect of
confounders via INLP. In Supplementary Fig. S13, we analyze the
impact of varying hyper-parameters of INLP on the level of inflation
present in the resultingGWAS.As shown in Supplementary Fig. S14, the
lead SNPs identified from our GWAS approach for cross-modal ECGs
generally include those from GWAS on individual ECG phenotypes. In
Supplementary Fig. S15, we provide Venn diagrams comparing the
SNPs found by the unsupervised GWAS and those found by the
supervised GWAS on ECG-derived phenotypes. We also identify many
sites not previously associated with ECG or MRI traits, but which have
clear associations with the cardiovascular system in general, for
example NRP1, previously associated with HDL cholesterol54, USP34
previously associated with cardiovascular disease55, and NRG1 pre-
viously associated with systolic blood pressure56. We note that the
cross-modal MRI GWAS identifies fewer lead SNPs than the cross-
modal ECG GWAS, which could be because MRIs are more strongly
associated with the confounders and thus removing confounders via
INLPmay also remove genetic signal. Indeed, confounders such as age
and sex are much more easily predicted from cross-modal MRI
embeddings than cross-modal ECG, as is showcased in Fig. 2c. To
illustrate the difference between between unsupervised GWAS of dif-
ferent representations, we compare the corresponding differences in
Manhattan plots in Supplementary Fig. S16.

Clustering SNPs in the cross-modal latent space identifies SNPs
with similar phenotypic impact. An additional benefit of our cross-
modal approach for genetic discovery is thatwe can cluster SNPs in the
latent space to group those with similar phenotypic effects. In parti-
cular, we perform hierarchical clustering based on the direction from
themean embedding of the homozygous reference group to themean
embedding of the heterozygous and homozygous alternate groups for
any given SNP (see Fig. 1d). In Fig. 4d, we analyze the SNP clusters given
by performing hierarchical clustering on the SNP signatures in the
cross-modal embeddings given only ECG inputs (see the “Methods”
subsection “GWAS of phenotypes derived from cross-modal repre-
sentations” for details regarding hierarchical clustering). In particular,
we find two clusters corresponding to SNPs affecting the QT interval
(SNPs associated with NOS1AP and KCNQ1) and SNPs related to the
P-wave (SNPs associated with SCN10A and ALPK3) of the ECG. We find
several additional clusters corresponding to SNPs affecting multiple
cardiac traits such as those associated with BAG3, SLC35F1, or KCND3.
Supplementary Fig. S17 shows a high resolution version of this clus-
tering and a clustering of a subset of lead SNPs, which illustrates
robustness of our clusters.

Discussion
In this work, we developed a cross-modal autoencoder framework for
integrating data across multiple modalities to learn holistic repre-
sentations of the physiological state. Using the heart as a model sys-
tem, we integrated cardiac MRI and ECG data to showcase the benefit

of cross-modal representations via the following three applications: (1)
improving prediction of phenotypes from a single modality; (2)
enabling imputation of hard-to-acquiremodalities likeMRIs fromeasy-
to-acquire ECGs; and (3) identifying genotype associations with gen-
eral cardiovascular phenotypes. In particular, we showed that cross-
modal representations improve the prediction of cardiovascular phe-
notypes from ECGs alone. This setting is of practical importance given
the abundance of ECG data over more difficult-to-acquire modalities
such as MRI. Interestingly, we observed that increasing the number of
unlabelled ECG and MRI pairs was more beneficial than increasing the
number of labelled MRI data. We also demonstrated that cross-modal
autoencoders enable imputing cardiac MRIs from ECGs. Importantly,
we showed that the MRI-derived phenotypes are conserved in the
translation. We also showed that the cross-modal representations can
be used to perform GWAS. Notably, such an analysis not only recovers
known phenotype-specific SNPs but can also be used to perform
unsupervised GWAS to identify SNPs that generally affect the cardio-
vascular system. The proposed unsupervised GWAS method provides
an effective and efficient approach to genetic discovery as it has the
same computational cost as performing a singleGWAS and, in contrast
to existing methods for GWAS, it does not require any labelled
phenotype data.

The reliable performance boost in phenotype prediction from a
cross-modal embedding further highlights its applicability to aid in
diagnostics. An interesting future application of our framework is to
determine the extent to which cross-modal ECG embeddings can be
translated to a hospital setting and, in conjunction with other bio-
markers, improve the prediction of specific cardiovascular diseases.
However, we acknowledge that a current limitation of our work is that
UK Biobank samples are limited in their diversity with individuals pri-
marily falling between the ages of 40–69. In addition, the UK Biobank
is known to contain racial and socioeconomic biases, which can lead to
problematic inequities in terms of healthcare57. It would therefore be
important to re-train or update our model on a more diverse popula-
tion and perform a careful analysis of how well our model generalizes
to underrepresented cohorts in future work before translating this
method to hospital settings. For deployment in such settings, it is
critical to account for potential confounding factors. For example, in
our dataset, LDL was negatively correlated with the incidence of
hypercholesterolemia, which is presumably due to these individuals
taking lipid-lowering medications. While we showed how our cross-
modal embeddingof ECGandcardiacMRIdata canbeused to improve
the prediction of clinical phenotypes such as LVH, LVSD, and
hypercholesterolemia, our framework is general and only requires a
few labelled samples to be applicable to other clinical phenotypes. As
such, an interesting direction for future research is to understand the
extent to which related neurological phenotypes can be predicted
from cross-modal ECG and MRI embeddings.

Our unsupervised GWAS was able to leverage information across
ECGs and cardiac MRIs to capture a wide range of SNPs that had an
impact on the cardiovascular system. Subsets of these SNPs were
previously found by traditional supervised approaches on individual
phenotypes. Given that our approach is cross-modal,we also identified
SNPs that had not been found by previous GWAS approaches. This
framework for performing unsupervised GWAS in cross-modal repre-
sentations also opens important avenues for futurework. Investigating
the differences in the identified SNPs between unsupervised and tra-
ditional GWAS is an interesting direction for future work and requires
careful consideration of potential confounders. In particular, since
cross-modal autoencoders learn representations from modalities
directly, confounders are typically embedded in the representations.
Indeed, we for example observed that MRI cross-modal embeddings
can predict sex and age effectively. To minimize the effect of such
confounders when performing genetic analyses, we were stringent in
adjusting the latent space such that one could no longer predict
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confounders effectively from the learned representations. Developing
more causally-grounded methods for confounder removal from a
cross-modal latent space is an important open problem. Moreover, via
a simple clustering of cross-modal embeddings, our framework allows
for grouping SNPs by phenotypic effect without the need of labelled
phenotypes. Sinceour framework canbeused to integrate any number
of data modalities, an exciting direction of future work is to use such
modalities in other organs to better characterize the effect of SNPs
with similar signatures in an unsupervisedmanner. Such identification
requires reliable translation from the cross-modal latent space into
different modalities. While we showed that our framework is capable
of translating from easy-to-collect ECGs to more difficult-to-collect
MRIs while preserving relevant features, an interesting direction of
future work is to understand how far such translations can be pushed.

With the rise of Biobanks around the world, our cross-modal
integration framework opens an important avenue to integrate mul-
tiple modalities to build better representations of patient physiologi-
cal state and thereby have an important impact on diagnostics and
genomics. While we demonstrated the effectiveness of our cross-
modal autoencoder framework on the cardiovascular system, our
framework is broadly applicable to other organ systems.

Methods
Our research complies with all relevant ethical regulations. Access was
provided under UKBiobank application #7089. Analysis was approved
by the Broad Institute institutional review board.

Study design
All analyses were performed on the UK Biobank, a prospective cohort
of over 500,000 healthy adults that were aged 40–69 during enroll-
ment, which took place from 2006 to 2010. At the time of our analysis
the UK Biobank had released cardiovascular magnetic resonance
imaging for over 44,644 participants, 38,686 of whom also had a 12-
lead 10-second resting ECG acquired on the same day. The ECG and
MRI data for an individual are collected in the same assessment center.
While different MRI views were obtained, we only considered the
4-chamber long axis view with balanced steady-state free-precession
cines, containing 50 frames throughout the cardiac cycle. The ECG
data also spanned a single cardiac cycle, as we used the 1.2-s median
waveforms (600 voltages) derived from the full 10-s ECG. All voltages
were transformed to millivolts, and all MRI pixels were normalized to
have mean 0 and standard deviation 1 for each individual. The MRIs
were cropped to the smallest bounding box which contained all car-
diac tissues in all 50 frames as determined by the semantic segmen-
tation in58. Labels for the sex of individuals were provided by UK
Biobank. In particular, of the samples used for training and evaluating
autoencoders that had cardiac MRI available, 21,066 individuals were
labelled by UK Biobank as genetic sex of male and 23,577 individuals
were labelled as genetic sex of female.

Cross-modal autoencoder architecture and training details
Model architecture. The modality-specific encoders and decoders
used in this work were selected through Bayesian hyper-parameter
optimization59. In particular, we used a base architecture of densely
connected parallel convolutional blocks60,61 with 1d convolutional
layers for ECGs and 2d convolutional layers for MRIs. For modality-
specific modals, we optimized over the width, depth, activation func-
tions, regularization and normalization strategies to achieveminimum
reconstruction error for a given maximum overall capacity of 10 mil-
lion parameters and a 256 dimensional latent space. Since optimiza-
tion occurs for eachmodality independently, encoding, decoding, and
pairing are distinct tasks and can be trained asynchronously and dis-
tributed across machines. We note that simpler architectures such as
those from ref. 62 are also usable in our framework, but we observed
that the optimized models showed improvements in convergence

speed, reconstruction, and latent space utility for downstream tasks
(see Supplementary Fig. S1).

To ensure that only one modality is needed at test time, we
additionally utilized dropout63 to merge modality-specific embed-
dings. Inparticular, during training,we employeddropout of a random
subset of coordinates of the ECG embedding and merged it with the
complementary coordinates from the MRI embedding. The resulting
merged embedding was then decoded to reconstruct the original ECG
andMRI examples.We note that other techniques such as averaging or
concatenation to merge modality-specific embeddings were less
effective than dropout, and other losses to pair modalities such as
maximizing cosine similarity or minimizing Euclidean distance
between paired samples were less effective than using a contrastive
loss (see Supplementary Fig. S1).

Training methodology. Let X ð jÞ = fxði, jÞgni= 1 � Rdj denote the set of
samples of modality j for j∈ [m] where [m] = {1, 2,…m}, and let n
denote the number of samples and dj the dimension of modality j.

Consider the paired setting where the samples fxði, jÞgmj = 1 correspond to

multiple data modalities for the same sample (e.g. cardiac MRI and
ECG for the same individual). Given a subset of these modalities
fxði, jÞgj2I for I � ½m�, we constructed a cross-modal autoencoder that

produces the remaining representations fxði,jÞgj2½m��I as follows. We

decomposed ourmodel into encoders ff j : Rdj ! Zgm
j = 1

and decoders

fgj : Z ! Rdj gm
j = 1

, where the functions fj and gj are parameterized

using deep neural networks. The neural networks were trained to pair
and reconstruct each data modality. Modality-specific encoders and
decoders allowed for inferring all modalities given any single one.

The training loss, L, for cross-modal autoencoders is given as the
linear combination of the following two losses: (1) a reconstruction
loss, LReconstruct, which is used to reconstruct the original modalities;
and (2) a representation loss LContrast, which is used to ensure that the
representations for modalities corresponding to the same sample are
embedded nearby in the latent space. We now provide a formal defi-
nition of these loss functions:

LðfX ð jÞ,f j,gjgÞ= LContrastðfX ð jÞ,f jgÞ+ λLReconstructðfX ðjÞ,f j ,gjgÞ, ð1Þ

LReconstructðfX ð jÞ,f j,gjgÞ=
Xn

i = 1

Xm

j = 1

k xði, jÞ � gjð f jðxði, jÞÞÞk2, ð2Þ

LContrastðfX ð jÞ,f jgÞ= � 1
2

X

Ik2Pb

Xm

j1 , j2 = 1

j1≠j2

X∣Ik ∣

i= 1

log
exp etempf j1 ðxði, j1ÞÞ � f j2 ðxði, j2ÞÞ

� �

P∣Ik ∣
i0 = 1 exp etempf j1 ðxði0 , j1ÞÞ � f j2 ðxði, j2ÞÞ

� �

0

@

1

A

+ log
exp etempf j1 ðxði, j1ÞÞ � f j2 ðxði, j2ÞÞ

� �

P∣Ik ∣
i0 = 1 exp etempf j1 ðxði, j1ÞÞ � f j2 ðxði

0 , j2ÞÞ
� �

0

@

1

A,

ð3Þ

where λ is a hyperparameter to balance the losses, temp is a trainable
temperature scalar as in ref. 64, and given a batch size
b,Pb = fI1, . . . ,Idmbeg denotes a partition of [m] such that ∣Iℓ∣ = b for
‘ 2 ½bmbc�. Intuitively, the contrastive loss above pushes embeddings
from the same individual and different modalities closer together
while pulling apart embeddings of different individuals and different
modalities.

In our experiments, we used a batch size of 4 samples (b = 4) and
used λ = 0.1. All models were optimizedwith the Adam optimizer65 and
a learning rate of 1e−3 for unimodal autoencoder training and 2e−5 for
cross-modal fine-tuning. The learning rate was decayed by a factor of 2
after each epochwithout an improvement in validation loss and after 3
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decays optimization was terminated. Samples were split into a training
set of 27,160 individuals, a validation set of 6780, and a test set of 4746.
To avoid any data leakage the entire test set wasmade of samples with
MRI phenotypes labelled in39, ensuring a fair comparison with models
trained on downstream prediction tasks. The MRIs were normalized
per individual to have mean zero and standard deviation 1. All ECG
readings were converted to millivolts before training.

Software for training cross-modal autoencoders. We used numpy
(version 1.22.4)66 and tensorflow (version 2.9.1)67 for training cross-
modal autoencoders.

Models, data, and scaling law for phenotype prediction tasks
Supervised learning models for phenotype prediction tasks. We
compared phenotype prediction from cross-modal embeddings to
training supervised models with the same encoder architecture as
described in the section “Cross-modal autoencoder architecture and
training details”. In particular, we trained these supervised models for
phenotype prediction by adding a last layer and updating the weights
via a logcosh loss for continuous tasks and cross entropy loss for
categorical tasks. We also used the same optimization procedures for
the hyper-parameters and the same stopping criteria as described in the
section “Cross-modal autoencoder architecture and training details”.

Definitions of MRI phenotype abbreviations considered in down-
stream prediction tasks. The following standard abbreviations were
used for MRI-derived phenotypes. Left ventricular mass was denoted
LVM, left ventricular end diastolic volume was denoted LVEDV, left
ventricular ejection fraction was denoted LVEF, left ventricular end
systolic volumewasdenoted LVESV, left ventricular stroke volumewas
denoted LVSV, right ventricular ejection fraction was denoted RVEF,
right ventricular end systolic volume was denoted RVEDV, and right
ventricular end diastolic volume was denoted RVEDV.

Data splits for phenotype prediction tasks. For all phenotype pre-
diction tasks, we only considered data that was held out during cross-
modal autoencoder training. This is crucial since otherwise the auto-
encoder would automatically utilize both MRI and ECG data for all
phenotype predictions and thus naturally perform better than pre-
diction from any individual modality. Since we were limited by the
availability of labelled data forMRIderived phenotypes, weheld out all
data for which there was an available MRI derived phenotype from the
autoencoder training and validation set. In particular, even though we
may have phenotypes such as age or sex for all individuals, we only
measured performance on phenotypes for the held out test set to
ensure fair comparisonwith othermodels. Naturally, using all available
labelled samples for predicting sex or age would have boosted per-
formance, but would have given an unfair advantage to our method.
This left us with 4218 samples containingMRI derived phenotypes. For
MRIderivedphenotypeprediction,we split these into 3163 samples for
training, 527 for validation, and 528 for test. Only 4120 of these sam-
ples hadcorresponding ECGderived phenotypes, and sowe used 3083
of these for training, 516 for validation, and 521 for test. For categorical
general phenotypes, we used the same splits as those for MRI-derived
phenotypes. For continuous valued general phenotypes, we con-
sidered only the subset of the 4218 samples that had labels available. In
particular, we used 3158 samples for training, 527 for validation, and
527 for testing.

Linear, logistic, and kernel regression models for phenotype pre-
diction tasks. For phenotype prediction from latent space embed-
dings, we considered the performance of three models (1) kernel
regression with the Neural Tangent Kernel (NTK)68; (2) linear regres-
sion ; and (3) logistic regression. We considered the NTK since it was
shown to have superior performance on supervised learning

problems69,70. For the prediction of MRI derived phenotypes, ECG
derived phenotypes, or continuous general phenotypes, we measured
performance using R2, and we compared the performance of the NTK
and linear regression. For the prediction of categorical phenotypes, we
measured performance using the area under the receiver operator
characteristic curve (AUROC), and we compared the performance of
the NTK and logistic regression. We utilized EigenPro71 to solve kernel
ridge-less regression and linear regression. We used the validation
splits to select the early-stopping point for the EigenPro iteration.
Similar results can be obtained with ℓ2-regularized kernel and linear
regression using the Scikit-learn implementation72, but require the
more computationally demanding step of fine-tuning of the regular-
ization parameter based on validation performance. For classification
tasks, we used the implementation of ℓ2-regularized logistic regression
from ref. 72, and we applied the following weighting on the loss to
account for class imbalances: if there were n total samples of which r
had label 1, then we weighted the loss for these samples by n

r and the
loss for the samples with label 0 by n

n�r.

Scaling law for prediction of MRI-derived phenotypes from cross-
modal ECG representations.Wenowdescribe our scaling lawanalysis
used to determine the relationship between the amount of labelled
data for supervised learning (denoted by v), the amount of unlabelled
data for cross-modal autoencoding (denoted by u), and the perfor-
mance of supervised learning from cross-modal latent representations
(denoted by r). We used linear regression tomap from ðlog2v,log2uÞ to
r for the 54 samples considered in Fig. 2d. The corresponding linear
mapping is given by:

r =0:0158log2u +0:007log2v,

and yields R2 = 0.983. Hence for these tasks, we were able to reliably
predict the boost in performance from supervised models on cross-
modal embeddings when varying the number of unlabelled ECG–MRI
pairs and labelledMRIs. Note that the coefficient of log2u is over twice
that of log2v implying that collecting unlabelled ECG–MRI pairs leads
to roughly twice the increase in predictive performance as collecting
labelled samples.

Prediction of left ventricular hypertrophy and left ventricular sys-
tolic dysfunction. We used LVM to derive thresholds for left ven-
tricular hypertrophy (LVH) and LVEF to derive thresholds for left
ventricular systolic dysfunction (LVSD). To provide a binarized label
for LVH, we first normalized all LVM measurements by dividing by
body surface area (derived using the Mosteller method). We then
stratified by sex and set the LVH label to be 1 if the normalized LVMwas
greater than 72 if the sex was male, respectively 1 if the normalized
LVMwas greater than 55 if the sex was female73. Supplementary Fig. S5
shows that using logistic regression from cross-modal embeddings
leads to the highest AUROC of 0.756 for predicting LVH. For LVSD, the
binarized label was obtained as an indicator of whether the LVEF was
less than45%. Again, logistic regression from cross-modal embeddings
leads to the highest AUROC of 0.572. In both analyses, standard
deviations were computed over 10-fold cross-validation.

Software for training predictive models. We used numpy (version
1.21.2)66, sklearn (version 0.24.2)72, scipy (version 1.7.1)74, and pytorch
(version 1.9.11) with gpu support (cudatoolkit version 11.1.74)75 for
training predictive models. We used pandas (version 1.3.3)76,77 for
loading data and matplotlib (version 3.4.2)78 for generating plots.

GWAS of phenotypes derived from cross-modal representations
GWAS on phenotypes predicted from latent representations. We
found multi-pathway genetic signals in the cross-modal latent spaces
by analyzing the inferences of the kernel regression models described
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above. Specifically, we trained ridge-regression models to use
modality-specific cross-modal embeddings to predict ECGphenotypes
(e.g. PR Interval N = 36,645), MRI-derived phenotypes (e.g. RVEF
N = 4788) and general demographics (e.g. BMI N = 38,000). These
simplemodels endow theseGWASwithmuchgreater statistical power,
sincephenotypes canbe predicted for thewhole cohort, not just those
with labels, as described in ref. 43. For example, GWAS of the less than
5000 MRI phenotypes returned by Petersen et al.39 yield no genome
wide significant hits, while inferences from ridge-regression yield
dozens of plausible sites. These sites are confirmed by GWAS of traits
computed from semantic segmentation described in ref. 43. Models
werefitwith 80%of the available labels and evaluatedon the remaining
20% and then inferred on the entire cohort.

Confounders considered in GWAS. To account for population
structure and ascertainment biases all GWASwere adjusted for the top
20 principal components of ancestry, the UK Biobank assessment
center where the measurements were conducted, the genomic array
batch, as well as age and sex of each individual.

Unsupervised GWAS of cross-modal representations
Application of iterative nullspace projection for removing con-
founders. To remove the effect of confounders, we utilized the idea of
iterative nullspace projection from Ravfogel et al.79. Intuitively, this
algorithm reduces the dimensionality of the latent space by removing
dimensions that are useful for the prediction of confounders. Unlike
the original implementation, which is designed primarily for catego-
rical confounder removal and has additional memory overhead from
storing projection matrices, we here present an implementation for
continuous confounder removal that avoids extra overhead by utiliz-
ing the singular value decomposition (SVD). At a high-level, the algo-
rithm involves iterating the following steps until the R2 from step 1 is
below a pre-selected threshold (we used R2 < 0.001).

Step 1: Use linear regression to learn a mapping from cross-modal
latent embeddings to confounders.
Step 2: Use the singular value decomposition to construct a pro-
jection matrix that projects onto the directions of the cross-modal
space that are least useful for confounder prediction, i.e. the
nullspace of the predictor from step 1.
Step 3: Multiply the cross-modal embeddings by the projection
matrix found in step 2.

Mathematically, these steps are implemented as follows. Let
fxðiÞgni = 1 � Rd denote the cross-modal latent space embeddings for n
individuals and let fF ðiÞgni= 1 � Rm denote the set ofm confounders for
the n individuals. To correct for confounders, we do the following:

Step 1: Learn the regression coefficients w 2 Rm×d by minimizing
the loss:

LðwÞ=
Xn

i = 1

k wxðiÞ � F ðiÞk22:

Step 2: Letw =UΣVT given by the SVD, where VT 2 Rd ×d . To project
out the components corresponding to the confounders, select out
the bottom d−m rows of VT into a matrix ~V

T 2 Rd�m×d .
Step 3: Replace each x(i) with ~xðiÞ = ~V

T
xðiÞ 2 Rd�m.

Repeat the above steps until theR2 of the predictorw is lower than
a fixed threshold.

MANOVA p-value computation. The p-values reported for unsu-
pervised GWAS are from Pillai’s trace test statistic from the MANOVA

computation. The Python statsmodels80 package was used to perform
MANOVA.

Clustering of SNPs by effect. Agglomerative clustering with Ward’s
method,whichminimizes the total within-cluster variance,was applied
to the matrix of SNP vectors. The python sklearn72 clustering package
was used to derive the clusters and dendrograms.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this studywereobtained fromUKBiobank. UKBiobank
data is available to researchers from research institutions following IRB
andUK Biobank application approval. UK Biobank data are available to
qualified investigators via application at https://www.ukbiobank.ac.uk.
GWAS results canbe found in theGWAScataloghttps://www.ebi.ac.uk/
gwas/studies/, and catalog accession ids are GCST90250896 (for
cross-modal ECG and cardiac MRI unsupervised GWAS),
GCST90250897 (for cross-modal ECG unsupervised GWAS), and
GCST90250896 (for cross-modal cardiac MRI unsupervised GWAS).

Code availability
Serialized encoders, decoders and full autoencoder models are avail-
able in the github repository https://github.com/broadinstitute/ml4h/
tree/master/model_zoo/dropfuse through81.
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