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Reconstruction of the cell pseudo-space
from single-cell RNA sequencing data with
scSpace

Jingyang Qian1,2,3,12, Jie Liao 1,2,3,12 , Ziqi Liu1,12, Ying Chi 4,12, Yin Fang 5,
Yanrong Zheng1,6, Xin Shao 1,2,3,7, Bingqi Liu8, Yongjin Cui1,2,3, Wenbo Guo1,2,3,
Yining Hu1,3, Hudong Bao1, Penghui Yang1,2,3, Qian Chen2,3, Mingxiao Li 9,
Bing Zhang 4,10,11 & Xiaohui Fan 1,2,3,10

Tissues are highly complicated with spatial heterogeneity in gene expression.
However, the cutting-edge single-cell RNA-seq technology eliminates the
spatial information of individual cells, which contributes to the characteriza-
tionof cell identities. Herein,wepropose single-cell spatialposition associated
co-embeddings (scSpace), an integrative method to identify spatially variable
cell subpopulations by reconstructing cells onto a pseudo-space with spatial
transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark
scSpace with both simulated and biological datasets, and demonstrate that
scSpace can accurately and robustly identify spatially variated cell sub-
populations. When employed to reconstruct the spatial architectures of
complex tissue such as the brain cortex, the small intestinal villus, the liver
lobule, the kidney, the embryonic heart, and others, scSpace shows promising
performance on revealing the pairwise cellular spatial association within
single-cell data. The application of scSpace in melanoma and COVID-19 exhi-
bits a broad prospect in the discovery of spatial therapeutic markers.

Uncovering the organization of cells in a tissue and how this orga-
nization affects function is a fundamental pursuit of life science
research1,2. Spatial characteristic plays a key role, sometimes even as
a determinant in the identity of a single cell in specific complex tis-
sues such as brain regions and tumor microenvironments (TME)2–5

since cell subpopulations show more heterogeneity in space than
transcriptomes. While single-cell RNA sequencing (scRNA-seq)
technologies have greatly expanded our understanding of the

comprehensive characterization of cells from complex tissues, clas-
sic protocols of scRNA-seq6–9 are to digest tissues into single-cell
suspension, which leads to the loss of spatial information of cells.
Meanwhile, recently developed spatially resolved transcriptomics
technologies can overcome the limitations of scRNA-seq by profiling
the gene expression with spatial information preserved across tissue
sections10–15, though, they fail to provide unbiased transcriptomes of
individual cells.
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It is recommended to conduct both state-of-the-art technologies
to decipher the cellular and spatial heterogeneity within the complex
tissue across multiple conditions simultaneously. However, this is
expensive and there may not be enough available samples. Therefore,
computational methods are urgently needed to integrate single-cell
and spatial transcriptomics (ST) data from different experiments and
patients. Recently, in silico methods are developed to improve the
quality of ST data by integrating single-cell and ST data, including spot
deconvolution16–21, spatial mapping22–24, and gene imputation25–27.
However, there are few approaches reported for reconstructing the
spatial association of cells and identifying spatially heterogeneous
subpopulations from single-cell data using ST data as references.

To this end, we introduce scSpace, an integrative method that
uses ST data as a spatial reference to reconstruct the pseudo-space of
scRNA-seq data. Subsequently, a space-informed clustering is con-
ducted to identify spatially variable cell subpopulations within the

scRNA-seq data (Fig. 1a). Specifically, using a transfer learningmodel,
termed transfer component analysis (TCA), whichwas originally used
in domain adaptation to solve a learning problem in a target domain
by utilizing the training data in a different but related source
domain28, scSpace enables eliminating the batch effect between
single-cell and ST data and extracting the shared latent feature across
these two types of data. By creatively integrating pseudo-space
reconstruction and space-informed clustering, scSpace significantly
outperforms other methods on simulated datasets. Moreover, both
existing ST data and single-cell transcriptomics data are utilized to
validate the performance of scSpace. Finally, we apply scSpace to
existing datasets from the embryonic heart29, human middle tem-
poral gyrus (MTG)30, human melanoma31, and human lung under
normal and COVID-19 states32 to discover significant cell sub-
populations with spatial heterogeneity as well as transcriptional
specificities in various circumstances.
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Fig. 1 | Schematic workflow of scSpace and performance evaluations on simu-
lated data. aOverview of the design concept of scSpace. Given the scRNA-seq data
(SC) and spatial transcriptomics reference (ST), scSpace co-embeds these two
types of data into a shared latent space and extracts the shared latent features.
Using the characteristic matrix from ST data, scSpace trains a multi-layer percep-
tron model with spatial coordinates as the outcome and latent features as the
predictors. The trained model is then applied to the characteristic matrix from SC
data for pseudo-space reconstruction. Basedon the geneexpressionprofiles aswell
as the pseudo-space information, scSpace identifies the spatially variable cell
subpopulations from scRNA-seq data. b Conceptual framework of latent feature
extraction with scSpace. A transfer learning method termed transfer component
analysis (TCA) is applied to extract the shared latent feature representation across
scRNA-seq and spatial transcriptomics data. TCA first projects the scRNA-seq and
spatial transcriptomics data into a Reproducing Kernel Hilbert Space (RKHS), and
then reduce the difference in the distribution of transformed two domain data by
minimizing the maximum mean discrepancy (MMD) between them. The shared

latent feature representation across two domain data is then extracted for the next
pseudo-space reconstruction step. c Conceptual framework of space-informed
clustering with scSpace. The gene expression graph is first constructed on the
reduced principal components derived from normalized gene expression profiles
of single cells using the k-nearest neighbor (KNN) algorithm. For each edge in the
gene expression graph, a spatial weight is introduced based on the distances
between cells in the pseudo-space. Then, scSpace performs the unsupervised
clustering step on the space-informed gene expression graph to identify spatially
variable cell subpopulations from scRNA-seq data. d and e Comparison of scSpace
with other existing clustering methods in identifying all cell clusters (d) and only
spatially heterogeneous subclusters (e) on 140 simulated datasets. Data are pre-
sented as boxplots (minima, 25th percentile,median, 75th percentile, andmaxima).
P-value is calculated with the two-sidedWilcoxon rank-sum test (the exact P-values
from left to right are 1.6e−10, 1.5e−12, 1.6e−12, 3.1e−18, 1.1e−17, 4.7e−28, 2.2e−30,
and 4.0e−35, respectively).
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Result
Design concept of scSpace and performance evaluation on
simulated data
Wehypothesize that single-cell analysis, which typically considers only
transcriptome information, can be enhanced by recovering the spatial
arrangement of cells. Therefore, scSpace is developed to reconstruct
the spatial architectures of cells and thus identify cell subpopulations
with spatial heterogeneity from single-cell data. As illustrated in Fig. 1a,
theworkflowof scSpace comprises threemain components: (1) extract
the shared latent biological feature representation across scRNA-seq
andSTdata, (2) reconstruct the spatial associationof cells fromscRNA-
seq data, and (3) identify spatially heterogeneous cell subpopulations
from the reconstructed spatial architecture of single-cell (optional).
Briefly, scSpace first applies a transfer learning model, termed TCA, to
eliminate the batch effect as well as extract shared biological char-
acteristics between scRNA-seq and ST data (Fig. 1b). Subsequently,
scSpace trains the shared latent features extracted from ST data with a
multi-layer perceptron to learn the relationship between character-
istics and spatial coordinates. Next, the trained model is employed to
generate spatial coordinates for single cells with the extracted char-
acteristic matrix from scRNA-seq data via feature representation. The
resulting spatial arrangement of single cells is termed the “pseudo-
space”. Additionally, scSpace can further perform space-informed
clustering to identify spatially heterogeneous cell subpopulations in
scRNA-seq data. Based on the Leiden algorithm33, a classical clustering
method widely used in single-cell data analysis, we extend its applic-
ability by introducing the spatial weight of edges in the gene expres-
sion graph constructed from gene expression profiles. Therefore,
scSpace allows for both gene expression and pseudo-space informa-
tion of cells in the clustering process (Fig. 1c).

We first evaluate the performances of scSpace on a series of
simulated datasets to test whether scSpace can reconstruct the spatial
arrangement of single cells. To achieve this, we employ Splatter34 to
simulate paired scRNA-seq data and ST data with varying numbers of
spatially heterogeneous cell populations (Supplementary Fig. 1 and
Methods). Using ST as the spatial reference, scSpace exhibits out-
standing performance on the spatial reconstruction of scRNA-seq data
(Supplementary Fig. 2a) with Pearson correlation coefficient (PCC) of
pairwise distances between cells in the pseudo-space and original
space above 0.9 (Supplementary Fig. 2b and Supplementary Data 3).

We next conduct scSpace to identify spatially heterogeneous cell
subpopulations and then compare its performance with other meth-
ods using 140 simulated data, which constitute different spatial dis-
tribution patterns including several cell clusters and 2–10 refined cell
subclusters. Specifically, the performanceof scSpace is comparedwith
three classical clustering algorithms that are applied to scRNA-seq
data, Louvain, K-means and Hierarchical clustering (Hclust), four
recently published spatial domain identification methods, SpaGCN35,
STAGATE36, BayesSpace37, and DR-SC38, and one latent space learning
method for gene expression data using transfer learning algorithms,
scCoGAPS39. The clustering accuracy is evaluated by the adjusted Rand
index (ARI) of cell-type assignments. As shown, scSpace significantly
performed superior to other methods (Fig. 1d), especially in spatially
variable cell subpopulation identification (Fig. 1e). The ARI of scSpace
is consistently the highest as the number of subclusters increases.
Besides, the results also illustrate that the performance of scSpace
remains relatively stable when the number of subclusters increases to
8, whereas other methods continue to decrease (Fig. 1e). Notably, all
four spatial domain identification methods perform worse than clus-
tering methods designed for scRNA-seq data over the simulated data,
which may due to the difference in application purposes and scopes
between them. scSpace, aswell as other single-cell clusteringmethods,
is designed for scRNA-seq data analysis. Moreover, scSpace further
focuses ondistinguishing spatially heterogeneous cell subpopulations.
On the contrary, spatial domain identification methods are generally

more suitable for ST data rather than identifying specific subpopula-
tions in single-cell data.

For spatial weight construction, scSpace is also suitable for the
framework that works with distances, which has been employed in
previous methods such as SpatialDE40. Since the hyperparameter l,
also known as the characteristic length scale, determines how rapidly
the weight decays as a function of distance and will influence the
performance of scSpace partly, we next discuss the effect of l on the
performance of scSpace. The results show that scSpace performed
best on 140 simulated data when l is set to 20 (Supplementary
Fig. 3a–d). Furthermore, the space-informed clustering is compared
between the two strategies of calculating the spatial weight w in
scSpace, and the results indicate no significant difference between
them when l = 20 (Supplementary Fig. 3e).

In addition, we also evaluate the computation time and scalability
of scSpace by increasing the cell number from 500 to 50,000. As
shown in Supplementary Fig. 4, with a 24GB NVIDIA GeForce RTX
3090GPU, scSpace could process 50,000 single cells within 20min,
and the clustering accuracy remains stable at a high level as the
number of cells increases.

Reconstruction of the hierarchical structure of human and
mouse cortex using existing ST data by scSpace
ST data are better examples than simulated data for evaluating the
performance of scSpace on spatial reconstruction because cell or spot
coordinates in spatial data are biologically meaningful and objectively
present. Therefore, two ST datasets of the human dorsolateral pre-
frontal cortex (DLPFC)41 andmouse primary visual cortex (V1)42, which
areprofiled by 10XVisium and STARmap, respectively, are collected to
evaluate the performanceof scSpace in reconstructing the hierarchical
structures of highly organized cortex tissues. Specifically, scSpaceuses
the ST data of one tissue slice as the spatial reference and reconstructs
the pseudo-space of spots in another tissue slice with coordinates
removed in advance.

As illustrated in Fig. 2a and Supplementary Figs. 5 and 6, scSpace
can successfully reconstruct the hierarchical structure of different
human DLPFC layers in the pseudo-space, with the relative position
between the layers as well as the neighbor system of spots preserved
(Fig. 2b). Further analysis demonstrates that the pairwise distances
between spots in the pseudo-space and original space are highly cor-
related (Fig. 2c). Moreover, we have examined the spatial distribution
of differential expressiongenes for each layer identifiedby Seurat43 and
find that the spatial expression patterns of these genes in the pseudo-
space and original space exhibit consistent distributions (Fig. 2d).

Similar results are reproduced when we estimate scSpace using
another spatially resolved single-cell transcriptomics data with 1020
targeted genes from mouse V1 neocortex by STARmap (Fig. 2e).
Interestingly, for the STARmap data, scSpace can successfully restore
the spatial arrangement of cells along the X-axis, with a Pearson’s
correlation coefficient (PCC) of 0.782 (Fig. 2f), yet fails along the Y-axis
(PCC=0.112) (Supplementary Fig. 7a). This difference may cause by
the specific shape of the tissue slices used for RNA imaging. In the
1.4mm by 0.3mm slice of the mouse V1 cortex, the X-axis (1.4mm)
corresponds to the layer-axis, showing striking heterogeneity in both
cell type and gene expression and the opposite is true for the Y-axis
(0.3mm) (Supplementary Fig. 7b, c). We further investigate the
expression trend of marker genes of each layer along the X-axis in the
pseudo-space and original space and find that the pseudo-space con-
structed by scSpace well preserves the expression pattern of genes
along the layer-axis in the original space (Fig. 2g).

Evaluating the performance of scSpace on tissues with more
complex structures
Whenmore complex conditions are encountered, such as cancers, the
molecular signature of the tissues is highly heterogeneous among

Article https://doi.org/10.1038/s41467-023-38121-4

Nature Communications |         (2023) 14:2484 3



different patients and even within tumors. Thus, scSpace is applied to
ST data from the human skin squamous cell carcinoma (SCC)44 and
humanHER2 breast cancer (BC)45, to further evaluate the performance
of scSpace on the reconstruction of the pseudo-space. Notably, the
four patients of SCC exhibit substantial variability in the correlation of
pairwise distances between spots in the pseudo-space and original
space. In detail, for Patient 2, themean PCC value of pairwise distances
between spots in the pseudo-space and original space across three

slices is 0.63, however, for Patients 5, 9, and 10, the mean PCC values
are around0.2–0.4 (Supplementary Fig. 8). Similar results are revealed
on the eight patients of BCdata, comparedwith Patients B, F, G, andH,
Patients A, C, D, and E show higher correlations of pairwise distances
between spots in the pseudo-space and original space (Supplementary
Figs. 9, 10, and 11). This differencemay causeby the intrinsic difference
in the spatial homogeneity of tumors45. Compared with tissue slices
from other donors, the biological replicates from Patients 5, 9, and 10
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of the SCC and Patients B, F, G, andH of the BCmay share lower spatial
coherences between eachother, leading to apoor result of thepseudo-
space reconstruction by scSpace. Moreover, as shown in Supplemen-
tary Fig. 12a, when scSpace is used in tissue sections with inherent
spatial patterns, such as cortical layers of brains whose structure is
conservative even between multiple individuals, the resulting PCC
scores remain at a high level robustly across many consecutive or
discrete slices. In contrast, limitation regarding variable morphology
of the tissue microenvironment, the heterogeneity across multiple
donors, and the intrinsic intra-tumor difference exists in distinct tissue
sections from the SCC (Supplementary Fig. 12b) and BC (Supplemen-
tary Fig. 12c) patients occasionally.

Regional reconstruction of scRNA-seq data in different circum-
stances with scSpace
To investigate the ability of scSpace in restoring the relative spatial
associations among cells, we focus on real scRNA-seq data that are
obtained from different tissues, including the small intestinal villus46,
liver lobule47, V1 neocortex48, and kidney49. After the cells are allocated
to the pseudo-space, their spatial distributions vary from region to
region (Supplementary Figs. 13–17), exhibiting a diverse functioning
zonation in the tissuemicroenvironment. As shown, the “cortex—outer
medulla—inner medulla” three-layer zonal distribution pattern of cells
in the kidney is restored by scSpace (Supplementary Fig. 13c–e). Fur-
thermore, scSpace also accurately reconstructs the more refined spa-
tial architectures of the various cell populations of the thin limb of
Loop ofHenle (tl-LoH) as well as the principal cells (PCs) of the ureteric
epithelium, whose diversities relate at least in part to position along
the cortical–medullary axis49. As illustrated in Supplementary
Fig. 13f–h and Supplementary Fig. 13i–k, the cell populations of tl-LoH
and thePCs exhibit sequential orders along the cortical–medullary axis
in the pseudo-space, which are consistent with their anatomies. Similar
results are reproduced when reconstructing the pseudo-space of
scRNA-seq data with another spatial reference from kidney Slide-seq
V2 ST data (Supplementary Fig. 14). In addition, the regional recon-
struction of the small intestinal villus (Supplementary Fig. 15), liver
lobule (Supplementary Fig. 16), and V1 neocortex (Supplementary
Fig. 17), further demonstrates the general applicability of scSpace in
the spatial reconstruction of scRNA-seq data from different tissues.

Regional reconstruction of scRNA-seq data in the embryonic
human heart using scSpace
To further demonstrate the high flexibility of scSpace in spatial
reconstruction and spatial heterogeneous subpopulations identifica-
tion in single-cell data, we employ the ST data of embryonic heart
generated by Asp et al.29 as the spatial reference, to reconstruct the
pseudo-space of the paired scRNA-seq data from the same experiment
(Fig. 3). Here, we focus on the cardiomyocytes, whose transcriptional
as well as spatial heterogeneity reflects developmental origins and
differences in electrophysiological, contractile, and secretory
processes50.

The pseudo-space constructed by scSpace accurately restores the
molecular architecture and spatial relationship between different
cardiomyocytes29. Specifically, the atrial and ventricular cardiomyo-
cytes are separated fromeach other in the pseudo-space, in agreement
with their true spatial localization in the atria and ventricles, respec-
tively. Moreover, the Myoz2-enriched cardiomyocytes, expressing
MYOZ2 and FABP3, are localized between the atrial cardiomyocytes
and ventricular cardiomyocytes in pseudo-space, which is also con-
sistent with its true localization in both the atria and ventricles (Sup-
plementary Fig. 18a, b).

Subsequently, the scRNA-seq data are classified into 14 clusters by
scSpace andSeurat, respectively, according to thenumber of cell types
in the original annotations (Fig. 3a). As illustrated in Fig. 3b, atrial (C9),
ventricular (C4), and Myoz2-enriched (C12) cardiomyocytes can be

precisely distinguished by scSpace (Left). However, Seurat fails to
identify the spatial variation within single-cell data at the same clus-
tering resolution (Fig. 3b, c). The ARI and normalized mutual infor-
mation (NMI) scores for cardiomyocytes of scSpace, representing the
clustering accuracy, are 0.91 and 0.85, respectively, which are sig-
nificantly higher than that of Seurat (0.16 and0.18), as shown in Fig. 3d.
Besides, the spatial localization in the pseudo-space as well as the
spatial expression patterns of relevant marker genes of these three
clusters identified by scSpace (Fig. 3e-g) are also in line with the three
types of cardiomyocytes (Supplementary Fig. 18).

To avoid the misclassification of three types of cardiomyocytes
by Seurat due to the lack of clustering resolution, we have further
explored the influence of cluster number (K) on the results of Seurat.
Specifically, as illustrated in Fig. 3h and i, with gradually increasing
the K from 14 to 23, the atrial and ventricular cardiomyocytes are
indeed identified by Seurat at a higher clustering resolution, how-
ever, the ventricular andMyoz2-enriched cardiomyocytes are still not
well separated eventually. The ARI scores of all cell types or cardio-
myocytes for Seurat are consistently lower than scSpace (Supple-
mentary Fig. 19a). In short, the present results indicate that scSpace is
a relatively accurate and efficient method for identifying the sub-
populations that are similar in transcriptome but heterogeneous
in space.

Recovering the spatial order of excitatory/inhibitory neuron
subtypes with scSpace
We next perform scSpace to reconstruct the pseudo-space of human
middle temporal gyrus (MTG) snRNA-seq data generated by Hodge
et al.30, which contain 15,928 cells, including 10,708 excitatory neu-
rons, 4297 inhibitory neurons, and 923 non-neuronal cells. Compared
with other cortex datasets, the MTG data comprise a more complex
mixing of cell types, including the layer information of cells and the
taxonomy of 69 neuron subtypes. Specifically, the human DLPFC 10X
Visium ST data mentioned above is utilized as the spatial reference. As
illustrated in Fig. 4a, scSpace successfully reconstructs the spatial
hierarchical structure of layer 1 (L1) to layer 6 (L6), and the normalized
distance between cells and L1 increases layer by layer from L1 to L6
(Fig. 4b), which consistently with previous results.

Subsequently, scSpace is employed to recover the layer distribu-
tion of refined excitatory and inhibitory neuron subclasses to explore
its applicability in the spatial reconstruction of more complex archi-
tectures. The spatial distribution of each excitatory and inhibitory
neuron subclass is accessed from the original publication30. As illu-
strated in Fig. 4c, scSpace accurately reconstructs the span-layer spa-
tial architecture of excitatory neuron subclasses (Fig. 4d), with
different excitatory neuron types broadly segregating by layer in the
pseudo-space (Fig. 4e). For the two major branches of inhibitory
neurons, distinguished by expression of ADARB2 and LHX6, scSpace
also spatially restores the positional relationship between them. The
ADARB2 branch shows more diversity in L1–L3 than L4–L6, and the
opposite is true for the LHX6 branch (Fig. 4f–h). In total, these results
demonstrate that the pseudo-space reconstructed by scSpace has
biological significance (Fig. 4c, g) and rationalizes the subsequent
space-informed clustering based on it (Fig. 4i).

Next, by combining transcriptional and spatial information of
single cells, we apply space-informed clustering to a total of 69 sub-
classes (including 10RORB-expressing types, 7 FEZF2-expressing types,
4 THEMIS-expressing types, and 3 LAMP5-expressing types in excita-
tory neurons, as well as 6 LAMP5/PAX6 subclasses, 21 VIP subclasses, 11
SST subclasses, and 7 PVALB subclasses in inhibitory neurons) using
scSpace, and compare the clustering results with Seurat. As shown in
Fig. 4i, j, Supplementary Figs. 20, and 21, scSpace achieves more
accurate clustering results in each of the major subclasses, which
substantiates the utility of scSpace on spatially heterogeneous sub-
classes identification.
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Discovery of spatially variated subpopulations in human cortex
from scRNA-seq data
As mentioned above, scSpace shows the superiority of spatial recon-
struction and spatially heterogeneous subpopulation identification in
MTG snRNA-seq data. Here, we further demonstrate its ability on

deciphering spatially variated subpopulations in the human cortex
from experimental snRNA-seq data accessed from Allen Brain Atlas.
The snRNA-seqdata include single-nucleus transcriptomes fromnuclei
across multiple human cortical areas, covering the middle temporal
gyrus (MTG), the anterior cingulate cortex (ACC), the primary visual
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Fig. 3 | Regional reconstruction of scRNA-seq data in the human embryonic
heart using scSpace. a t-SNE visualization of human embryonic heart scRNA-seq
data, the single-cell annotation is obtained from the original publication.
b Clustering results of scSpace (left) and Seurat (right). c Sankey plot showing the
assignment of cardiomyocytes in scSpace and Seurat. d Comparison of scSpace
with Seurat in identifying cardiomyocyte subpopulations. eThe spatial distribution
of three cardiomyocyte subpopulations (C4, C9, and C12) identified by scSpace in
the pseudo-space. f Normalized pairwise distance between different cardiomyo-
cyte subpopulations to C4 (left) and C9 (right). Data are presented as boxplots
(minima, 25th percentile, median, 75th percentile, and maxima). The number of

data points (to C4) are 48,654 and 58,671, respectively; the number of data points
(to C9) are 12,546 and 58,671, respectively. P-value is calculated with the two-sided
Wilcoxon rank-sum test (the exact P-values from left to right are 0 and 8.6e−89,
respectively). g Expression patterns of marker genes for three cardiomyocyte
subpopulations in the t-SNE plot (top) and pseudo-space (bottom). h t-SNE visua-
lization of three cardiomyocyte subpopulations, colored by the original annotation
(left) and clustering result of scSpace (right). i t-SNE visualization of three cardio-
myocytes with Seurat’s clustering result under different targeted cluster number
setting (from 14 to 23).
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average layer positions for two branches of inhibitory neuron subclasses. g Spatial
distribution of inhibitory neuron subclasses in the pseudo-space. All other sub-
classes are colored with gray. h Normalized pairwise distance between different
Inhibitory neuron subclasses to L1 (left) and L6 (right). Data are presented as
boxplots (minima, 25th percentile, median, 75th percentile, and maxima). The
number of data points (to L1) is 2,496,320 and 1,984,144, respectively; the number
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both 0). i t-SNE visualization of 10 RORB-expressing excitatory neuron subclasses,
colored by the single cell annotation obtained from the original publication (left),
the clustering result of scSpace (middle), and Seurat (right). j Comparison of the
clustering accuracies between scSpace and Seurat.
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cortex (V1C), the primary motor cortex (M1C), the primary somato-
sensory cortex (S1C), and the primary auditory cortex (A1C), which
could be a suitable example to evaluate the ability of scSpace that
processing the similar single-cell data frommultiple sources. As shown
in Supplementary Fig. 22, after spatial reconstruction by scSpace, the
distribution density of cells in different cortex layers is significantly
different in the pseudo-space (Supplementary Fig. 22a, b), and the
normalized pairwise distances between cells and Layer 1 (L1) increase
layer by layer from L1 to WM (Supplementary Fig. 22c).

Next, the snRNA-seq data are classified into 19 clusters according
to the given number of subclasses in original annotations using
scSpace and Seurat, respectively. Among these clusters, scSpace has
successfully distinguished twomajor subclasses of L6 (Supplementary
Fig. 22d), L6 CT (C10) and L6b (C15), which are also separated from
each other in the reconstructed pseudo-space (Supplementary
Fig. 22e). However, the spatial heterogeneity is difficult to distinguish
at the same clustering resolution by traditionalmethods suchas Seurat
(Supplementary Fig. 22f), which uses only transcriptional information
with a clustering ARI score of—0.004 and an NMI score of 0.004,
compared with that of 0.725 and 0.637 for scSpace, respectively
(Supplementary Fig. 22g). Same as the previous strategy, we further
attempt to increase the cluster number (K) of Seurat to avoid mis-
classification caused by a low clustering resolution. As shown in Sup-
plementary Fig. 22h, these two subclasses of L6 are eventually
distinguishedby SeuratwhenK increased to 26.Once again, the results
confirm that the spatial information of each cell is crucial for the
characterization of its cellular identity.

Notably, as illustrated in Supplementary Figs. 22i and 23, intrate-
lencephalic (IT) neurons in the original dataset can be further classified
into five subpopulations (C3, C1, C9, C4, and C2) based on their tran-
scriptome and spatial characteristics. The scSpace analysis shows that
these IT neuron subpopulations are distributed in all layers but
accounted for different proportions (Supplementary Fig. 22j). More-
over, the density centers of cell spatial distribution in C3, C1, C9, C4,
and C2 moved from cortex L2 to L6 monotonously (Supplementary
Fig. 22k). We select five target genes coupled with the histological
staining images derived from the Allen Brain Atlas and explore their
expression patterns in the five IT subpopulations (Supplementary
Data 4), the results demonstrate that the spatial expression patterns of
these target genes are consistent with the distribution of the corre-
sponding subpopulations in layers (Supplementary Fig. 22l), which
further supports the ability of space-informed clustering for scSpace.

Spatial reconstruction of T cell pseudo-space revealed T cell
exhaustion in melanoma
Melanoma is widely recognized as one of the most immunogenic
human cancer types and a strong correlation between the infiltration
of T cells, both in primary lesions and in melanoma metastases, and
clinical outcome has been described51–53. We, therefore, perform
scSpace to reconstruct the pseudo-space of cells in melanoma scRNA-
seq data generated by Tirosh et al.31 and further identify the spatial
heterogeneity of 2064T cells. The ST data of the melanoma derived
from another experiment54 is utilized as the spatial reference.

As shown in Fig. 5a, b, T cells are clustered into five refined sub-
populations by scSpace. Furthermore, the C5 subpopulation is sig-
nificantly nearer than other subtypes to the malignant cells, while the
C3 subpopulation is the opposite (Fig. 5c). This result is also observed
in the spatial reference. Using the RCTD20 algorithm to deconvolve the
cell-type proportions of each spot in ST data, we discover that the C5
and C3 subpopulations are mainly located in the tumor and lymphatic
regions, respectively (Fig. 5d). Notably, the similar spatial relationship
between different T cell subpopulations and malignant cells is also
revealed when utilizing the ST data from other patients as the spatial
reference, suggesting the robustness and universality of the pseudo-
space reconstruction by scSpace (Supplementary Fig. 24).

Compared with the C3 subpopulation which is far from the
malignant cells, the C5 subpopulation highly expresses a large number
of genes related to the dissemination and metastasis of melanoma
(Fig. 5e and Supplementary Fig. 26), including thymidine kinase 1
(TK1)55, NME/NM23 nucleoside diphosphate kinase 1 (NME1)56, and
immunoglobulin superfamily member 8 (IGSF8)57. Besides, multiple
cell-cycle and apoptosis-related genes (AURKB, BIRC5, MKI67, CDK2,
etc.) also exhibit a high expression level in the C5 subpopulation, and
cyclin-dependent kinase-2 (CDK2), which has been identified as a bio-
logical marker of melanoma, could be a potential therapeutic target in
melanoma treatment. The research suggests that targetingCDK2 could
suppress melanoma cell growth, induce apoptosis, and overcome
melanoma resistance58–61. Congruously, Aurora kinase B (AURKB) is
also crucial for melanoma proliferation, apoptosis, and cell cycle62.
These differential expression genes indicate that the character of the
“spatially adjacent to melanoma” of the C5 subpopulation may be
associated with tumor-infiltrating31.

Also, we attempt to identify T cell subclusters with Seurat43, a
classical clustering method for scRNA-seq data analysis, and then
compare the results with scSpace. Unsurprisingly, the
C5 subpopulationwith high expressionof a series ofmelanoma-related
genes could not be accurately identified by Seurat under the same
targeted clustering number setting (Supplementary Fig. 25), which in
turn supports the superiority of scSpace in spatially heterogeneous
subpopulation identification by reconstructing and considering the
pseudo-space information of cells.

Furthermore, to determine the identity of the C5 subpopulation,
we calculate the T exhaustion score for the C5 and C3 subpopulations
with the exhaustion-related genes defined by Zheng et al.63 T cell
exhaustion is the loss of T cell function in patients with common
chronic infections and cancer. As a result of long-term exposure to
persistent antigens and inflammation, exhausted T cells gradually lose
their effective function64. Our results illustrate that the
C5 subpopulation had a higher T exhaustion score (Fig. 5f), suggesting
this T cell subpopulation may be the tumor-infiltrating lymphocytes
(TIL). The pathway enrichment analysis results indicate that the genes
highly expressed in the C5 subpopulation are enriched in E2F targets,
oxidative phosphorylation, and some cell-cycle-related pathways
(Fig. 5h and Supplementary Fig. 26), which are closely related to the
tumor microenvironment.

Finally, by linking the highly expressed genes of the
C5 subpopulation with clinical outcomes, we demonstrate that
patientswith a higher expression level of thesegenes have significantly
worse survival time than patients with a lower expression level
(Fig. 5g). The results indicate that the C5 subpopulation may play an
important role in the occurrence and development of melanoma, and
these highly expressed genes are also expected to become potential
therapeutic targets for precision medicine in clinics.

Reconstruction of spatially resolved TSK-stroma communica-
tions with scSpace
To further extend the applicability of scSpace, it is applied to recon-
struct the spatial crosstalk between tumor-specific keratinocytes
(TSKs) and tumor microenvironment (TME) cells over the scRNA-seq
data of the human SCC generated by Ji et al.44 A total of 17,738 single
cells are retained from SCC samples (Supplementary Fig. 27a) and
three replicated ST data of Patient 2 from the same experiment are
used as the spatial reference (Supplementary Fig. 27b). As illustrated in
Supplementary Fig. 27c, the TSKs, fibroblasts, and endothelial cells of
scRNA-seq data show specific patterns of colocalizations in the
pseudo-space, despite using different spatial references to perform
spatial reconstruction by scSpace. In concordance with the previous
study results44 and the deconvolution results of the spatial reference
calculated by RCTD (Supplementary Fig. 27d), fibroblasts and endo-
thelial cells are enriched at the TSK-high leading edge, further
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supporting a fibrovascular niche surrounding TSK cells. Besides,
the distribution pattern of the TSK score based on markers defined
by Ji et al.44 in the pseudo-space is also in agreement with the spatial
structure of the TSK-proximal fibrovascular niche (Supplementary
Fig. 27e).

Next, we introduce SpaTalk65, a knowledge-graph-based method
that can infer cell–cell communications from ST data, to analyze the
cellular crosstalk in the pseudo-space of SCC scRNA-seq data recon-
structed by scSpace. To validate whether the pseudo-space con-
structedby scSpacepreserves the spatial interactionbetweendifferent
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cell types, we focus on the TSK-high leading-edge niche because TSKs
are reported to participate in extensive autocrine and paracrine
interactions (mostly with fibroblasts, endothelial cells, macrophages,
and MDSCs)44. Consistent with the previous study, the major spatially
resolved cell–cell communications between TSKs and stromal cells of
the fibrovascular niche in the TME are retained in the pseudo-space of
SCC scRNA-seq data. For instance, the prominent TSK signaling to
fibroblasts and endothelial cells is mediated by several common
ligand-receptor pairs which are close to each other in the pseudo-
space, including PGF-NRP1, TNC-SDC1, PGF-FLT1, and EFNB1-EPHB4
(Supplementary Fig. 28a). Conversely, fibroblasts and endothelial cells
prominently co-expressed numerous ligands such as TFPI, FN1, ITGB3,
and MDK (Supplementary Fig. 28b), matching TSK receptors that
promote the proliferation and differentiation of TSKs. Notably, similar
spatially resolved ligand–receptor interactions mediating the TSK-
stroma communications are also observed in the pseudo-space con-
structed by scSpace using other spatial references (Supplementary
Fig. 28c). Therefore, we further demonstrate that scSpace can pre-
cisely reconstruct the spatial arrangement of single cells as well as the
spatially resolved cell–cell interactions.

Reconstruction of cell pseudo-space captured invasion of mye-
loid subpopulations in COVID-19
To further examine whether scSpace could distinguish the spatial
variation of cells between normal and disease conditions, we utilize a
10X Visium ST dataset of the normal lung66 as the spatial reference and
applied scSpace to aCOVID-19 scRNA-seqdataset32 fromCOVID-19 and
normal samples with comparable expression states (Supplementary
Fig. 29a). By projecting single cells in normal and diseased tissues into
the same pseudo-space with scSpace, we can compare the cell-type
composition and proportion, the spatial distribution patterns, and the
relative pairwise associations between cell subpopulations. Therefore,
a more accurate description of the process of the occurrence and
development of the disease can be obtained and key potential ther-
apeutic targets can be uncovered.

Specifically, the pseudo-space of the control and COVID-19 group
is established by recovering the spatial relationship between cells by
scSpace (Fig. 6a and Supplementary Fig. 29b).We focus the analysis on
the myeloid cell and its subpopulations, whose dysregulation is an
essential driving factor that leads to severe COVID-19 cases and sub-
sequent death67–71. As shown in Fig. 6b, in the reconstructed pseudo-
space, the normalized distance between myeloid cells and alveolar/
airway epithelial cells is significantly reduced in the COVID-19 group,
suggesting that severe immune infiltration may occur. This spatial
variability between the control and COVID-19 group identified by
scSpace is validated on aGeoMxDSP targeted ST dataset generated by
Rendeiro et al.72 Compared with the control group, we observe a sig-
nificant increase in myeloid cell abundance in the regions of interest
(ROIs) of the alveolar and airway with COVID-19 by single sample gene
set enrichment analysis (ssGSEA) and CIBERSORTx73 deconvolutions,
respectively (Supplementary Fig. 30a, b).

Differentially expressed genes are then calculated between the
control and COVID-19 group using this GeoMx DSP targeted ST data,
and the highly expressed genes are defined in the COVID-19 group as
the “COVID-19 signatures” (Supplementary Fig. 30c and Supplemen-
tary Data 6). Thus, the accuracy of the spatial variability identified by
scSpace can be further evaluated via comparing the expression levels
of these signatures in allmyeloid cells in the COVID-19 group. Based on
the normalized distance to the alveolar/airway epithelial cell in the
pseudo-space, myeloid cells are further classified into two popula-
tions, where the cells with a close average distance to the alveolar/
airway epithelial cell (the top 50%) are defined as the “near to epithelial
cell” populations and the rest as “not near to epithelial cell” popula-
tions (Fig. 6c andSupplementaryFig. 30d). Unsurprisingly, the “near to
epithelial cell” myeloid population shows higher COVID-19 signatures

score (Fig. 6d) and highly expressesmultipleMHCClass I and II related
genes, such as B2M, HLA-A, HLA-B, HLA-C, HLA-E, and HLA-DRA, which
are associated with the interferon (IFN) response (Supplementary
Fig. 30f). The comparison indicates that “near to epithelial cell” mye-
loid population is more likely to be recruited into the alveolar and
airway to produce infiltration due to the robust IFN response caused
by SARS-CoV-2 viral infection74.

According to the original publication32, myeloid cells can be fur-
ther divided into four subtypes, including resident alveolar macro-
phages (AM), monocytes (Mon), monocyte-derived macrophages
(MDM), and transitioning MDM (TMDM). We thus compare the nor-
malized distance between each subtype and the alveolar/airway epi-
thelial cell in the COVID-19 group with the control group. The result
demonstrates that the normalized distance between all four myeloid
subtypes and the alveolar/airway epithelial cell is significantly reduced
in the COVID-19 group compared with the control group (Fig. 6e).
Besides, the distance reduction ratios of the MDM and the TMDM
change more than that of the AM and the Mon (Fig. 6f), consistently
with previous findings. The results suggest that when infected with
COVID-19, monocytes would differentiate into MDM and TMDM with
damage response and tissue repair signatures and accumulate in the
alveolar and airway32,75. Notably, AM appeared to be closest to the
alveolar/airway epithelial cell in the pseudo-space in both control and
COVID-19 groups, which is in line with the fact that these self-renew
tissue-resident macrophages (MFs) arise from fetal monocytes and
highly enrich in the alveolar76, indicating an accurate performance of
scSpace on the pseudo-space reconstruction.

To resolve the spatial heterogeneity of MDM/TMDM, 1,149 MDM,
and TMDM cells are clustered into six subpopulations with scSpace
(Fig. 6g, h). Specifically, the C4 subpopulation, which is nearest to the
alveolar/airway epithelial cell, is identified by scSpace (Fig. 6i). Com-
pared with other cell subpopulations, C4 highly expresses multiple
mitochondria-related and MHC Class I-related genes, such as B2M,
HLA-DRA, CD74, and CTSS (Fig. 6j and Supplementary Fig. 29c, d). In
addition, pathway enrichment analysis demonstrates that C4 has
higher activity in oxidative phosphorylation, proton transmembrane
transport, energy metabolism, oxidative stress, and MHC class II anti-
gen processing and presentation pathways (Fig. 6k), suggesting that
the C4 subpopulation may be highly and aberrantly activated32 and
thus play a key role in the process of COVID-19.

Discussion
In this study, we have demonstrated the utility of scSpace in recon-
structing the pseudo-space of single cells and identifying spatially
variable cell subpopulations with similar expression profiles in scRNA-
seq data. While there are similarities in the space-informed clustering
between scSpace and other spatial domain identification methods
such as SpaGCN35, BayesSpace37, DR-SC38, etc., we highlight the fun-
damental difference between the methods. Specifically, scSpace
focuses on the spatial analysis of scRNA-seq data whereas other
methods target the spatial domain identification of ST data. By intro-
ducing the concept of “pseudo-space”, scSpace can efficiently recover
the spatial association between single cells and identify spatially het-
erogeneous cell subpopulations within the scRNA-seq data. However,
other spatial domain identificationmethods, which are designedmore
for ST data, only detect the spatial domains with coherent expression
and histology but don’t attach the importance of cell independence.

In addition, even though current targeted methods such as
MERFISH and seqFISH canmeasure over 10,000RNA species as well as
observe at subcellular resolution, they fail to detect gene variations,
which directly reflect the function of specific genes. Simultaneously,
other in situ short-read sequencing methods such as FISSEQ and ISS
sequence very short segments of a transcript, which leads to a bias of
results. Also, even though these methods show success in the in situ
sequencing of cultured cells, they can hardly be applied to tissue
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plot of differentially expressed genes for six MDM/TMDM subpopulations.
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C4 subpopulation. P-value is calculated with the hypergeometric test.
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sections.Moreover, scRNA-seq data still dominates the cutting edge of
omics technology, with unmet biological and clinical needs. Compu-
tational methods such as scSpace that employ ST data to enhance the
spatial information that is ignored by scRNA-seq data are desirable and
meaningful.

As a reference-based method, scSpace applies to spatial refer-
ence profiled by various technologies, including STARmap42, “Spa-
tial Transcriptomics”11, 10X Visium, and Slide-seq v215. Since the
choice of spatial reference would directly influence the spatial
reconstruction, an important feature of scSpace is the ability to
maintain robustness when biological replicates (or samples) from
different sources but with high spatially shared coherence are uti-
lized as spatial references. For example, while reconstructing the
pseudo-space of melanoma, spatial references are derived from
different biological replicates, however, the performance of
scSpace on spatial variability identification is conserved. Similar
results are revealed in the spatial reconstruction of the kidney,
where the spatial references are profiled by 10X Visium and Slide-
seq v2 from separate experiments, respectively. However, there are
still aspects that need to be attended to in performing pseudo-space
reconstruction by scSpace. Firstly, scSpace should be applied cau-
tiously to tissues with low spatial coherence, such as Patients 5 and 9
of SCC evaluated in this paper. The intrinsic difference in the spatial
homogeneity between tissues may influence the accuracy of
scSpace. Secondly, as the spatial architectures of different regions
from the same tissue may also be heterogeneous (for example,
while DLPFC and dACC both belong to the cortex, their spatial
architectures are quite different, as dACC is agranular and lacks
cortical layer 4), performing an appropriateness assessment or
necessary pre-processing steps of the spatial reference should be
considered before applying scSpace.

Identifying the spatially heterogeneous cell subpopulations from
single-cell data can give rise to breakthroughs in understanding cell
identities and disease mechanisms. These spatially variable cell sub-
populations play an important role in the progress of diseases. For
instance, a subpopulationof oligodendrocytes located in specific areas
enriched with Aβ plaques is verified to strongly associate with Alzhei-
mer’s disease77. However, they are difficult to identify by traditional
single-cell analysis pipelines due to the similarity in transcriptome. To
this end, scSpace constructs and leverages the pseudo-space infor-
mation of single cells to identify the spatial heterogeneity between cell
subpopulations. In this paper, we have demonstrated the ability of
scSpace to identify the spatially heterogeneous cell subpopulation that
may relate to diseases with two main applications, namely melanoma
and COVID-19. In the former analysis, we have identified a T cell sub-
population inmelanoma, revealed the occurrence of tumor-infiltrating
near the TME by scSpace, and uncovered several potential therapeutic
targets for precision medicine in clinics. In the latter analysis, scSpace
is applied to identify an MDM subpopulation with significant immune
infiltration characteristics that are highly enriched in the alveoli and
airway in space. The use of scSpace has provided spatial therapeutic
markers and brought insight into the study of COVID-19. In a word,
these cases convincingly demonstrate the universality of scSpace in
identifying the spatially heterogeneous cell subpopulations from
scRNA-seq data of normal or disease tissues.

Finally, even though scSpace focuses on transcriptomics data,
theoretically, it should apply to other single-cell-omics data such as
single-cell chromatin accessibility sequencing (scATAC-seq)78,79 and
single-nucleus methylome sequencing (snmC-seq)80, if appropriate
spatial references are provided. We have also made attempts to
reconstruct the pseudo-space of cells with scATAC-seq data from the
mouse cerebral cortex generated by ISSAAC-seq81. Because the
appropriate spatial ATAC-seq data is not available, we chose the spatial
reference with the ST data and convert the scATAC-seq data into a

gene activity matrix using Signac82 in advance. In conclusion, scSpace
successfully reproduces the spatial distribution of cells that con-
sistently with their layered patterns (Supplementary Fig. 31). The
promising result further demonstrates the extensive application of
scSpace in other single-cell-omics data.

Methods
Data collection and processing
All sc/sn RNA-seq and spatial transcriptomics datasets used in this
study are collected from high-quality publications and Gene Expres-
sion Omnibus (GEO). The detailed description of each dataset is
summarized in Supplementary Data 1. For the human skin squamous
cell carcinoma (SCC) scRNA-seq data44, we retain 17,738 single cells
from SCC samples. For the mouse kidney scRNA-seq data49, we only
retain the single cells belonging to the nephrogenic lineage (Ontology
ID: 1–19) and ureteric lineage (Ontology ID: 20–32). Besides, we only
retain the single cells from male donors, which is consistent with the
sex of the donor of the spatial reference. Cluster 3, cluster 5, and
cluster 7,whichalsobelong to females in the geneontology annotation
are removed. For the mouse cortex scATAC-seq data81, we convert the
data into a gene activitymatrix using Signac82 with default parameters.
For the human brain cortex scRNA-seq data of multiple cortical areas
(MTG, ACC, V1C, M1C, S1C, and A1C), we randomly down-sample them
to 4000 cells for computational efficiency. For the human lung scRNA-
seq data of lethal COVID-1932, we randomly down-sample them to
10,000 cells for computational efficiency. For the COVID-19 GeoMx
DSP targeted ST data72, we exclude 67 samples of “Non-viral” group
and further combine the “COVID-19 High” and “COVID-19 Low” groups
into the “COVID-19” group.

Computing environment
The workstation for developing scSpace is listed below. Dell Pre-
cision Tower 7929 Workstation (CPU (Intel Xeon Gold 6230,
2.1 GHz × 2), RAM (192 GB, 16 GB × 12, DDR4, 2933MHz), Hard Drive
(SSD, SATA Class 20, 512 GB; HDD, 7200 rpm, SATA), Graphics Card
(NVIDIA GeForce RTX 3090, 24 GB), Operating System (Ubuntu
18.04)). Running Environment (CUDA 11.3, Torch 1.12.1, Python 3.8.5,
numpy 1.23.4, pandas 1.5.0, scanpy 1.9.1, scikit-learn 1.1.2, scipy 1.9.2,
tqdm 4.46.1, igraph 0.10.2, leidenalg 0.9.0).

Design of scSpace
The scSpace model comprises three components: (1) latent biological
feature representation extraction, (2) spatial reconstruction, and (3)
space-informed clustering.

Latent biological feature representation extraction
Given the scRNA-seq data and the spatial reference, scSpace first
applies a transfer learning method TCA28 to eliminate the batch effect
of these two types of data and extract the shared feature representa-
tion across these two domains with true biological characteristics.

We denote the scRNA-seq data as XS = fxS1
,xS2

, . . . ,xSn1
g and the

spatial transcriptomics reference as XT = fxT 1
,xT2

, . . . ,xTn2
g. Here,

xSi
,xTi

2 RN represent the gene expression vectors of the cell Si in
scRNA-seq data and the spot (or cell) Ti in spatial reference respec-
tively, n1 and n2 represent the number of cells and spots, and N is the
number of genes. Let PðXSÞ andQðXTÞ be the distributions ofXS andXT.
Since scRNA-seq and ST data are obtained from different techniques,
we claim that PðXSÞ is quite different from QðXTÞ.

We assume that there exists a transformation ϕ : RN!H,
through which the distributions of XS and XT can be similar and the
data configuration for the two domains is preserved. Here H is a
universal Reproducing Kernel Hilbert Space (RKHS)83. Let
X ’S = fx0

Si
g= fϕðxSi

Þg and X ’T = fx0
Ti
g= fϕðxTi

Þg be the transformed
input sets, we expect that P’ðX 0

SÞ≈Q’ðX ’TÞ.
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To circumvent complex density estimation, we apply a non-
parametric method, maximum mean discrepancy (MMD)84, to esti-
mate the distance between these two distributions:

Dist X 0
S,X

0
T

� �
= k 1

n1

Xn1

i= 1

ϕ xSi

� �
� 1

n2

Xn2

i= 1

ϕ xTi

� �
k2H: ð1Þ

Where ∣ � ∣H is the RKHS norm. Then the optimal nonlinear mapping ϕ
can be obtained by minimizing this distance. Benefiting from the
kernel trick, instead of calculating the nonlinear transformation ϕ
explicitly, the above equation can be written in terms of the kernel
matrices as
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where K =
KS,S KS,T
KT,S KT,T

� �
2 Rðn1 +n2Þ× ðn1 +n2Þ is a kernel matrix, KS,S, KT,T

and KS,T are the kernel matrices defined by ϕ xS

� �
and ϕ xT

� �
, and

ðLÞij =
1

n1
2 xi,xj 2 XS

1
n2

2 xi,xj 2 XT

� 1
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otherwise

8><
>: . Then the calculation of the inner product

of ϕ xð Þ can be solved by learning the kernel matrix K , which can be
formulated as a semi-definite program (SDP)85 problem. However, it
still leads to huge computational resource because K is required to be
positive semi-definite.

Note that according to the empirical kernel map86, the kernel
matrix K can be decomposed as K = ðKK�1=2ÞðK�1=2KÞ. A more light-
weight solution is to conduct dimensionality reduction to transform
the empirical kernel map features vectors to an m-dimensional space
with a matrix eW 2 Rðn1 +n2Þ×m, where m≪n1 +n2. Then the kernel
matrix can be rewritten as:

eK = KK�1
2 eW� � eWT

K�1
2K

� �
=KWWTK : ð3Þ

Where W =K�1
2 eW 2 Rðn1 +n2Þ×m. Then we reformulate the MMD dis-

tance of the two distributions as:

Dist X 0
S,X

0
T

� �
= tr KWWTK

� �
L

� �
= tr WTKLKW
� �

: ð4Þ

In order to control the complexity of W , we add a regularization
term tr WTW

� �
to the objection function to avoid the rank deficiency

of the denominator in the generalized eigendecomposition. The final
kernel learning problem reduces to:

min
W

tr WTKLKW
� �

+μtr WTW
� �

: ð5Þ

s:t:WTKHKW = I

Where μ is a tradeoff parameter, I 2 Rm×m is the identity matrix,

H = In1 +n2
� ð 1

n1 +n2
Þ11T is the centering matrix where

In1 +n2
2 R n1 +n2ð Þ× n1 +n2ð Þ.Note that the constraintWTKHKW = I is

introduced to avoid the trivial solution (W =0), so that the trans-
formed patterns do not collapse to one point.

The Lagrangian of the above optimization problem is:

tr WTKLKW
� �

+μ tr WTW
� �

� tr WTKHKW � I
� �

Z
� �

= tr WT I +μKLKð ÞW
� �

� tr WTKHKW � I
� �

Z
� �

:
ð6Þ

Where Z is a diagonal matrix whose diagonal entries are the Lagrange
multipliers. Taking the derivative of the above Lagrangianwith respect
toW and setting the derivative to 0, we obtain I +μKLKð ÞW =KHKWZ .
Multiply both sides of the equation by ðKHKÞ�1, we can further obtain
ðKHKÞ�1 I +μKLKð ÞW =WZ , which is a generalized eigenvalueproblem.
The solution of W 2 Rðn1 +n2Þ×m is the eigenvectors corresponding to
the m smallest eigenvalues of ðKHKÞ�1 I +μKLKð Þ.

Therefore, the overall computational process can be summarized
as follows. We first collect the scRNA-seq data XS and the spatial
transcriptomics referencedataXT, fromwhich thematrices L,K , andH
can be obtained. Then we can construct the transformation matrix W
by selecting the eigenvectors corresponding to the top m smallest
eigenvalues of ðKHKÞ�1 I +μKLKð Þ. Finally, with the transformation
matrix W, the data from two domains are mapped into the lower
dimensional latent space WTK 2 Rm× ðn1 + n2Þ. After transposing and
dividingWTK , we obtain the latent feature representation X ’S 2 Rn1 ×m

for scRNA-seq data and X ’T 2 Rn2 ×m for spatial transcriptomics data
with true biological characteristics.

Spatial reconstruction
Once the latent biological feature representation across scRNA-seq
(XS) and spatial transcriptomics data (XT) are extracted, a multi-layer
perceptron (MLP)model is applied to spatial reconstruction of scRNA-
seq data. We assume that the spatial locations of cells are related to
their latent biological feature representation:

X ,Y½ �∼X 0
T: ð7Þ

Where X and Y are spatial coordinates of spots (or cells) in spatial
transcriptomics data XT, and X 0

T represents the latent biological fea-
ture representation extracted from spatial transcriptomics data.

scSpace applies a two-layer fully connectedmodel, where the first
layer is followed by a sigmoid (or ReLU) activation. The number of
neurons in the first layer is 128. The size of the input layer of thismodel
is equal to the dimension of the latent biological feature representa-
tion (m), and the size of the output layer is corresponding to the
dimension of spatial coordinates. We use the Adam optimizer with the
initial learning rate of 1e−3 and the betas parameters of 0.9 and 0.999.
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The loss function to be optimized is mean squared error (MSE) loss.
using the shared biological characteristics extracted from spatial
transcriptomics data, X 0

T, scSpace trains the model to learn the rela-
tionship between characteristics and spatial coordinates. Next, the
trained model is applied to X 0

S, the feature representation extracted
from scRNA-seq data. Thus, the spatial information of every single cell
is reconstructed (we term it “pseudo-space”).

Space-informed clustering
scSpace applies space-informed clustering to identify spatially het-
erogeneous single-cell subpopulations based on the gene expression
and the generated pseudo-space information of cells in scRNA-seq
data. In detail, a gene expressiongraphGg V , E1

� �
isfirst constructedon

the reduced principal components derived from normalized gene
expression using k-nearest neighbor (KNN) algorithm (top 50 PCs are
selected by default). Since our goal is to find spatially heterogeneous
subpopulations that may be similar in gene expression, the pseudo
space information of cells is expected to be transformed to the spatial
weight w of each edge in gene expression graph Gg V , E1

� �
:

w=W E1

� �
: ð8Þ

So that the spatial relationship of cells could be considered in the
later unsupervised clustering step. Here, we provide two strategies to
define spatial weight w.

(1) The spatial weight of edge Ei,j between cell Si and cell Sj is
negatively associated with their direct distance di,j in the pseudo
space, which is defined:

wi,j = exp �di,j
2

2l2

 !
: ð9Þ

The hyperparameter l, also known as the characteristic length
scale, determines how rapidly the covariance decays as a function of
distance. This framework that works with distances has also been
employed in SpatialDE40.

(2) A space graphGS V , E2

� �
is constructed on the pseudo space of

cells using k-nearest neighbor (KNN) algorithm firstly, and the spatial
weight of edge Ei,j between cell Si and cell Sj is negatively associated
with their distance di,j on the space graph GS V , E2

� �
, which is defined:

wi,j =
1

α +di,j
+β: ð10Þ

whereα and β arepseudocounts to guard against excessively large and
small weights, respectively87. By default, α =β = 1. The distance di,j is
calculated based on the adjacency matrix A of the space graph. Spe-
cifically, for given cell Si and cell Sj, the distance di,j = 1 if Sj is the
neighbor of Si on the space graph or di,j = 2 if Sj is the neighbor of the
neighbor of Si and so forth.

Finally, scSpace applies unsupervised clustering on space-
weighted gene expression graph using Leiden algorithm33.

Simulated data analysis
We apply Splatter R package (v1.16.1)34 to simulate 140 paired scRNA-
seq and ST data with 5000 expression genes. To simulate the original
batch effect between these two types of data, we set up two batches
representing scRNA-seq and ST data, respectively. To simulate the cell
subclusters with similar transcriptome profiles but being spatially
heterogeneous, we random set 2 to 10 cell populations as spatially
heterogeneous subclusters and set the probabilities of a gene being
differentially expressed in each of them as 0.01 (the differentially
expressed probabilities are set as 0.2 in cell populations with different
transcriptome profiles by contrast).

Next, for each cell in ST data, a pseudo spatial coordinate is
assigned based on random sampling and normal distribution strategy.
Specifically, given a simulated spatial transcriptomic with N cell
populations,we randomsampleN points in the 20×20 range as spatial
coordinate centers of cell populations. Then for cells in each cell
population, we randomly generate the spatial coordinates for the
normal distributionwith ameanequal to the spatial coordinate centers
of this cell population and a standard deviation equal to 1.

Moreover, for the robustness of the results,we set a gradient from
500 to 1500 for the number of cells and a gradient from 3 to 14 for the
number of cell populations. The detailed description of the experi-
mental design is summarized in Supplementary Fig. 1 and Supple-
mentary Data 2.

To evaluate the space reconstruction results of scSpace, we
compute the pairwise distance of cells in original space and pseudo
space, respectively, and then calculate the Pearson correlation coeffi-
cient (PCC). To evaluate the space-informed clustering results of
scSpace, we compare scSpace with three classical clustering algo-
rithms for scRNA-seq data, Louvain, K-means, and Hierarchical clus-
tering, four spatial domain identification methods for ST data,
SpaGCN35, STAGATE36, BayesSpace37, and DR-SC38, and one latent
space learning algorithm for gene expression data, scCoGAPS39. For
scCoGAPS, to make the results comparable, we replace the latent
biological feature representation extracted by TCA with the output of
scCoGAPS, and the remaining steps are the same as scSpace. The
number of iterations is set to 1000 and the number of patterns is set to
50 for scCoGAPS. All other methods are set with default parameters.
We use the adjusted rand index (ARI) measurement to evaluate the
performance of clustering results.

Differential gene expression analysis
For the scRNA-seq and ST data, the differentially expressed genes
between cell populations/subpopulations or spatial domains are cal-
culated using the “FindAllMarkers” function in Seurat R package
(v4.1.0)43 with the default two-tailed Wilcoxon rank sum test. For the
GeoMx DSP targeted ST data generated by Rendeiro et al.72, the dif-
ferentially expressed genes between the control and COVID-19 groups
are calculated by limma R package (v3.52.4). Genes with log2FC less
than 0.5 or FDR greater than 0.05 are filtered.

Pathway enrichment analysis
The Metascape web tool (https://metascape.org)88 is used to perform
the enrichment analysis of pathways and biological processes, wherein
the differentially expressed genes of each subpopulation (log2FC >
0.5, FDR <0.05) are selected. The gene set enrichment analysis
(GSEA)89 is performed using the fgsea R package (v1.18.0), whose
hallmark gene sets are downloaded from the Molecular Signatures
Database (MSigDB v7.4)90 using msigdbr R package (v7.4.1).

Survival analysis
For survival analysis, RNA‐seq and clinical data of melanoma patients
(cancer study id: skcm tcga) are obtained fromTCGAusing the cgdsr R
package (v1.3.0). The samples are divided into two groups along with
low (25%) and high (75%) target genes expression for all patients, and
then survival curves of these two groups of patients are estimated by
the Kaplan–Meier method using the survival R package (v3.2-13).

Signature enrichment score calculation
The signature enrichment scores are calculated using the “AddMo-
duleScore” function in Seurat R package (v4.1.0)43 with default para-
meters. For T cell exhaustion and TSK, the signature genes are
obtained from the original publications by Zheng et al.63 and Ji et al.44,
respectively. For COVID-19, the signature genes are defined as the
differentially expressed genes between the control and COVID-19
groups of GeoMx DSP targeted ST data.

Article https://doi.org/10.1038/s41467-023-38121-4

Nature Communications |         (2023) 14:2484 14

https://metascape.org


Spatial transcriptomics data deconvolution analysis
For the human melanoma, the mouse kidney, and the human SCC, we
use RCTD20 to deconvolve the cell type proportions of each spot in
spatial transcriptomics data. The “CELL_MIN_INSTANCE” parameter is
set to 5 and all other parameters follow the default values.

Spatially resolved cell–cell interactions analysis
For the human SCC scRNA-seq data, TSKs, fibroblasts, and endothelial
cells are extracted to perform spatially resolved cell–cell interactions
analysis using SpaTalk R package (v1.0)65 with default parameters. The
complete lists of inferred ligand–receptor interaction pairs which are
conserved in three different pseudo-spaces (utilizing three biological
replicates of patient 2 as the spatial reference respectively) can be
found in Supplementary Data 5.

GeoMx DSP targeted spatial transcriptomics data analysis
The single-sample gene set enrichment analysis (ssGSEA) is performed
to generate an enrichment score of myeloid cells for each ROI in the
control and COVID-19 groups using the GSVA R package (v1.44.5). the
gene set signatures are defined as the differentially expressed genes of
myeloid cells identified by Seurat43 (log2FC>0.5, FDR <0.05). The
CIBERSORTx73 web tool is used to estimate the abundance of myeloid
cells for each ROI in the control and COVID-19 groups. All parameters
follow default values.

Statistics
Python (version 3.8.5) and R (version 4.1.0) are used for the statistical
analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original data used in this paper can be accessed through the fol-
lowing links: (1) 10X Visium data of the “human dorsolateral prefrontal
cortex (DLPFC) [http://spatial.libd.org/spatialLIBD/]41; (2) STARmap
data of the “mouse primary visual cortex V1 [https://zenodo.org/
record/7830764#.ZDpObi-1HUI]42; (3) “Spatial Transcriptomics” data
of the “human HER2 breast cancer [https://zenodo.org/record/
5511763#.Y6kMduxBzUI]45; (4) single-cell RNA-seq data and “Spatial
Transcriptomics” data of the human skin squamous cell carcinoma
(SCC): GEO accession: “GSE14424044”; (5) single-cell RNA-seq data of
the mouse intestine: GEO accession: “GSE10941346”; (6) 10X Visium
data of the mouse intestine: GEO accession: “GSE16974991”; (7) single-
cell RNA-seq data of themouse liver: GEO accession: “GSE8449847”; (8)
10X Visium data of the “mouse liver [https://www.livercellatlas.org]92;
(9) single-cell RNA-seq data of the “mouse neocortex [https://portal.
brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-
seq]“48; (10) single-cell RNA-seq data of the mouse kidney: GEO
accession: “GSE12979849”; (11) 10XVisiumof themousekidney [https://
www.10xgenomics.com/resources/datasets]; (12) Slide-seq v2 data of
the “mouse kidney [https://cellxgene.cziscience.com/collections/
8e880741-bf9a-4c8e-9227-934204631d2a]“93; (13) single-cell ATAC-
seq data of the mouse cortex: ArrayExpress: “E-MTAB-1126481”; (14)
single-cell RNA-seq data and “Spatial Transcriptomics” data of the
“human embryonic heart [https://data.mendeley.com/datasets/
mbvhhf8m62/2]“29; (15) single-nucleus RNA-seq data of the “middle
temporal gyrus (MTG) of the human cortex [https://portal.brain-map.
org/atlases-and-data/rnaseq/human-mtg-smart-seq]30; (16) single-
nucleus RNA-seq data of the “multiple cortical areas (MTG, ACC,
V1C,M1C, S1C and A1C) of the human cortex [https://portal.brain-map.
org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-
seq]”; (17) single-cell RNA-seq data of the human melanoma: GEO
accession: “GSE72056”31; (18) “Spatial Transcriptomics” data of the

“human melanoma [https://www.spatialresearch.org/resources-
published-datasets/doi-10-1158-0008-5472-can-18-0747/] or [https://
zenodo.org/record/7830764#.ZDpObi-1HUI]54; (19) single-cell RNA-
seq data of the “human lung of lethal COVID-19 [https://singlecell.
broadinstitute.org/single_cell/study/SCP1219]32; (20) 10X Visium of the
normal human lung: GEO accession: “GSE178361”66; (21) GeoMx DSP
targeted ST data of the “human lung of COVID-19 [https://doi.org/10.
5281/zenodo.4635285]”72. All other relevant data supporting the key
findings of this study are available within the article and its Supple-
mentary Information files or from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
The scSpace algorithm and related analysis are available at GitHub94.
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