
Article https://doi.org/10.1038/s41467-023-38110-7

Teasing out missing reactions in genome-
scale metabolic networks through
hypergraph learning

Can Chen 1,4, Chen Liao 2,4 & Yang-Yu Liu 1,3

GEnome-scale Metabolic models (GEMs) are powerful tools to predict cellular
metabolism and physiological states in living organisms. However, due to our
imperfect knowledge of metabolic processes, even highly curated GEMs have
knowledge gaps (e.g., missing reactions). Existing gap-fillingmethods typically
require phenotypic data as input to tease out missing reactions. We still lack a
computational method for rapid and accurate gap-filling of metabolic net-
works before experimental data is available. Here we present a deep learning-
based method — CHEbyshev Spectral HyperlInk pREdictor (CHESHIRE) — to
predict missing reactions in GEMs purely from metabolic network topology.
We demonstrate that CHESHIRE outperforms other topology-based methods
in predicting artificially removed reactions over 926 high- and intermediate-
quality GEMs. Furthermore, CHESHIRE is able to improve the phenotypic
predictions of 49 draft GEMs for fermentation products and amino acids
secretions. Both types of validation suggest that CHESHIRE is a powerful tool
for GEM curation to reveal unknown links between reactions and observed
metabolic phenotypes.

As a mathematical representation of the metabolism for an organism,
the GEnome-scale Metabolic model (GEM) offers a comprehensive
gene-reaction-metabolite connectivity through two matrices: the
stoichiometricmatrix associatingmetabolites with their reactions; and
the reaction-gene matrix associating reactions with their correspond-
ing enzymes and genes1,2. GEMs are powerful computational tools to
predict metabolic fluxes in living organisms2,3. Used alone or inte-
grated with high-throughput data, GEMs can produce mechanistic
insights and falsifiable predictions that progressively advance various
disciplines in biomedical sciences4,5, including metabolic
engineering6,7, microbial ecology8, and drug discovery9. Recently, the
rapid growth inwhole-genome sequencing data10 has triggered a surge
in draft GEMsgenerated by automatic reconstruction pipelines11,12. Yet,
these draft models contain knowledge gaps and thus require com-
prehensive manual curation13,14, e.g., finding missing reactions due to

incomplete genomic and functional annotations. Therefore, the qual-
ity of initial draft GEMs has a profound impact on the time spent on the
manual curation, the refinedmodel quality, and ultimately its utility in
biomedical applications.

Numerous optimization-based gap-filling methods have been
designed to tease outmissing reactions in draft GEMs15–18. Despitewide
differences in their input data types, objectives, and algorithms, they
generally follow two steps: (1) find dead-end metabolites that cannot
be produced or consumed and/or some inconsistencies between the
draft model prediction and experimental data (e.g., growth profiles);
and (2) add a set of reactions to resolve the dead-end blocks and/or
inconsistencies16. Optimization-based methods often require data as
input to identify model simulation-data inconsistencies15,16. However,
experimental data is not readily available for non-model organisms,
thus limiting the utility of those tools. For example, most intestinal
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organisms are considered “uncultivable” and their functions remain
unknown19. Even for cultivable organisms, high-throughput pheno-
typic screening, i.e., searching for organisms with desired phenotypes,
relies on the analysis of microbial extracts or genetic modifications,
which can become complicated, time-consuming, and expensive.
Given the increasing availability of cultivable organisms and their
genomes, there is a pressing need for rapid and accurate in silico
predictions of metabolic phenotypes solely from genomic sequences.
Even though the predictions are theoretical, downstream experi-
mental validations could be mush less resource-demanding.

A few gap-fillingmethods that are entirely topology-based and do
not require phenotypic data as input include (1) classical methods that
restore the network connectivity based on flux consistency, such as
GapFind/GapFill20 and FastGapFill21; and (2) state-of-the-art machine
learning methods that exploit advanced machine learning techniques,
such as Neural Hyperlink Predictor (NHP)22 and Clique Closure-based
Coordinated Matrix Minimization (C3MM)23 (see “Supplementary
Note 1”). Machine learning methods frame the prediction of missing
reactions in a GEM as a task of predicting hyperlinks on a
hypergraph22–24. Compared to graphs where each link connects two
nodes, hypergraphs allow each hyperlink to connect more than two
nodes25–28 (see “Hypergraphs in Methods”). Notably, metabolic net-
works or any biochemical reaction networks have a very natural
hypergraph representation: eachmolecular species is a node and each
reaction is a hyperlink connecting all the molecular species
involved in it.

There are notable limitations associated with existing topology-
based machine learning methods. C3MM has an integrated training-
prediction process, which includes all candidate reactions (obtained
from a reaction pool) during training. Hence, it has limited scalability
(i.e., it cannot handle large reaction pools), and themodel has to be re-
trained for each new reaction pool. While the neural network-based
method NHP separates candidate reactions from training, it approx-
imates hypergraphs using graphs in generating node features, which
results in the loss of higher-order information. More importantly, both
methods were benchmarked against a handful of GEMs (lacking a
comprehensive test) and were only internally validated using artificial
gaps introduced by randomly deleting reactions from input GEMs
(lacking validations on predicting metabolic phenotypes, i.e., external
validation).

Herewe develop amethod called CHESHIRE (CHEbyshev Spectral
HyperlInk pREdictor) to overcome the limitations of existing machine
learning methods. CHESHIRE only requires a metabolic network for
training and outputs confidence scores for candidate reactions from a
reaction pool. For internal validation, we show that CHESHIRE out-
performs NHP and C3MM in systematic tests of recovering artificially
removed reactions from 108 BiGG29 models and 818 AGORA8 models.
For external validation, we assess the ability of CHESHIRE to predict
metabolic phenotypes. Using 49 draft GEMs reconstructed from
commonly used pipelines (CarveMe11 andModelSEED30), we show that
CHESHIRE improves the theoretical predictions of whether fermenta-
tion metabolites and amino acids are produced by these GEMs.

Results
A brief overview of CHESHIRE
CHESHIRE is a deep learning-based method that predicts missing
reactions in GEMs using topological features of their metabolic net-
works without any inputs fromexperimental data (other than genomic
sequences). For eachmetabolic network (Fig. 1a), we use a hypergraph
(Fig. 1b) to model its structure, where each hyperlink represents a
metabolic reaction and connects participating reactant and product
metabolites. CHESHIRE takes the incidence matrix of the hypergraph
and a decomposed graph (built from the hypergraph of existing or
candidate reactions) as input. The former contains boolean values
indicating thepresenceor absenceof eachmetabolite in each reaction.

The latter consists of fully connected subgraphs (each subgraph
represents a reaction with all its metabolites connected) formed by
positive and negative reactions during training and by candidate
reactions during prediction (Fig. 1c, d). Positive reactions are those
existing in themetabolicnetwork,while negative reactions are fake (do
not exist) and created formodel-balancing purposes (often referred to
as negative sampling). Note that only positive reactions are used to
construct the incidence matrix.

The learning architecture of CHESHIRE has four major steps:
feature initialization, feature refinement, pooling, and scoring (Fig. 1e,
f). For feature initialization, we employ an encoder-based one-layer
neural network31 to generate a feature vector for eachmetabolite from
the incidence matrix (see “Feature initialization in Methods”). This
initial feature vector encodes the crude information of topological
relationship of a metabolite with all reactions in the metabolic net-
work. For feature refinement, to capture the metabolite-metabolite
interactions, we use Chebyshev spectral graph convolutional network
(CSGCN)32 on the decomposed graph to refine the feature vector of
each metabolite by incorporating the features of other metabolites
from the same reaction (see “Feature refinement in Methods”). For
pooling (i.e., integrating node- or metabolite-level features into
hyperlink- or reaction-level representation), we utilize graph coarsen-
ing methods to compute a feature vector for each reaction (repre-
sented by a fully connected subgraph in the decomposed graph) from
the feature vectors of its metabolites. We combine two pooling func-
tions, a maximum minimum-based function (as used in NHP22) and a
Frobenius norm-based function33 to provide complementary infor-
mation of metabolite features. Finally, for scoring, we feed the feature
vector of each reaction into a one-layer neural network to produce a
probabilistic score for the reaction that indicates the confidence of its
existence (see “Pooling and scoring inMethods”). In the training phase,
the resulting scores are compared to the target scores (one for positive
reactions and zero for negative reactions) with a loss function for
updating the model parameters (Fig. 1e, see “Training algorithm in
Methods”). Compared with NHP which shares a similar architecture,
CHESHIRE exploits a simple encoder31, a sophisticated CSGCN32, and a
practical Frobenius norm-based pooling function33 (see “Difference
between CHESHIRE and NHP in Supplementary Note 2”). For hyper-
parameters of CHESHIRE, see “Hyperparameter selection inMethods”.

Internal validation of CHESHIRE using artificially intro-
duced gaps
The goal of internal validation is to test the ability of CHESHIRE to
recover artificially introduced gaps (i.e., removing existing reactions in
metabolic networks).We comparedCHESHIREwith the state-of-the-art
machine learning methods NHP and C3MM as they have been
demonstrated to display superior performances over previous gap-
filling (or hyperlink prediction) methods. We also included Node2Vec-
mean22,34 (referred to as NVM below) as a baseline method. The
learning architecture of NVM is relatively simple. It uses Node2Vec (a
random walk-based graph embedding method that generates node
features) and mean pooling (averaging node features) to generate
metabolite and reactions features, respectively, without feature
refinement (see “Node2Vec-mean in Supplementary Note 1”).

Below we performed two types of internal validation based on
artificially introduced gaps (Fig. 2a). For both types, metabolic reac-
tions in a given GEMwere first split into a training set and a testing set
over 10 Monte Carlo runs. All the deep learning-based methods
(CHESHIRE, NHP, and NVM) require negative sampling of reactions.
We created negative reactions at 1:1 ratio to positive reactions for the
training and testing sets, respectively, by replacing half (rounded if
needed) of the metabolites in each positive reaction with randomly
selected metabolites from a universal metabolite pool (Fig. 2a, see
“Negative sampling inMethods”). In thefirst type of internal validation,
the training and testing sets of positive reactions and their derived
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Fig. 1 | CHESHIRE workflow. a Schematic representation of a metabolic network.
b Hypergraph representation of the metabolic network. The hypergraph is
undirected where each hyperlink connects metabolites that participate the same
reaction. c Negative sampling of the metabolic network. Solid and dashed boxes
represent positive and negative reactions (e.g., N1, N2), respectively.
d Decomposed graph of the metabolic network, where each reaction (either
positive or negative) is treated as a fully connected subgraph (solid and dashed
lines represent positive and negative reactions, respectively). e The architecture of
CHESHIRE during training. The deep neural network takes the incidence matrix

and the decomposed graph (d) as input, and consists of an encoder layer, a Che-
byshev spectral graph convolutional layer with K filters (resulting in K channels), a
pooling layer with two pooling functions, and a final scoring layer. The output
confidence scores are compared to the target scores for updating model para-
meters. The gray dots represent the hidden neurons. f The architecture of CHE-
SHIRE during prediction. The neural network takes the incidence matrix and a
decomposed graph built from candidate reactions as input and outputs con-
fidence scores for candidate reactions based on the trained model parameters.
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Fig. 2 | Internal validation using artificially introduced gaps. a Flowchart of
internal validation. Two types of internal validation were performed. The former
mixes artificially removed positive reactions and their derived negative reactions as
candidate reactions, while the latter uses artificially removed positive reactions and
real reactions from a universal reaction database as candidate reactions.
b–e Boxplots of the performance metrics (AUROC, Recall, Precision, and F1 score)
calculated on 108 BiGG GEMs (each dot represents a GEM) for CHESHIRE vs. NHP,
C3MM, andNVM. f–iReaction recovery rate of CHESHIRE vs. NHP, C3MM, andNVM
for gap-filling the BiGG GEMs using genus-specific reaction pools. The comparison
was performed on 73 BiGG models which have over 1000 reactions and whose

genera are present in the genus-specific reaction pools, by adding the top 25, 50,
100, and N reactions with the highest confidence scores (N is the number of arti-
ficially removed reactions). j–m The same as (f–i) but using the entire BiGG uni-
versal reaction pool. 83 BiGG models with over 1000 reactions were tested, and
C3MM was excluded due to the issue of scalability. Each data point represents the
mean statistic over 10 Monte Carlo runs. Boxplot: central line represents the
median, box limits represent the first and third quartiles, and whiskers extend to
the smallest and largest values or atmost to 1.5× the interquartile range, whichever
is smaller. Two-sided paired-sample t-test: exact p-values are provided. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-38110-7

Nature Communications |         (2023) 14:2375 4



negative reactions were combined and used for training and testing,
respectively. For fair comparison, we also introduced negative reac-
tions to the testing set of C3MM. In the second type of internal vali-
dation, every step remains the same except that the testing set was not
mixedwith its derivednegative reactions butwith real reactions froma
universal database.

To perform the first type of internal validation, we tested CHE-
SHIRE on a total of 108 high-quality BiGG GEMs (see “BiGG models in
Supplementary Note 3”) with 60% training and 40% testing. CHESHIRE
achieves the best performance in different classification performance

metrics, including the Area Under the Receiver Operating Character-
istic curve (AUROC), Recall, Precision, and F1 score (the harmonic
mean of Recall and Precision) (Fig. 2b–e). A threshold score of 0.5 was
used to determinewhether a test reaction is true or false. Compared to
the overall second-best method NHP, CHESHIRE has a significantly
higher level of Precision (P < 10−4, two-sided paired-sample t-test) and
Recall (P < 10−16), suggesting that CHESHIRE recovers the majority of
true reactions without sacrificing its ability to distinguish true from
fake reactions. For all the performancemetrics, the wide distributions
indicate that the performance of CHESHIRE (as well as the other three
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methods) is GEM-dependent, even though they are all high-quality
models. The most easily gap-filled GEM is a reconstruction from
Phaeodactylum tricornutum CCAP 1055/1 (model iLB1027_lipid), where
CHESHIRE is able to achieve AUROC=0.92, Recall = 0.89, Precision =
0.82, and F1 score = 0.86 on the testing set. Notably, CHESHIRE is not
sensitive to the threshold score, the negative sampling strategy, and
the negative sampling ratio in this validation, where its performance
still prevails over the other methods (Supplementary Fig. 1–3, see
“Threshold scores, Negative sampling strategies, and Negative sam-
pling ratios in Supplementary Notes 4”). We also performed the same
type of internal validation on a larger set of metabolic networks, i.e.,
818 AGORA models from the Virtual Metabolic Human database8, and
observed similar results (Supplementary Fig. 4).

To perform the second type of internal validation, we tested
CHESHIRE on the same BiGG GEMs with 90% training and 10% testing
using genus-specific and the universal BiGG reaction pools (see
“Construction of BiGG genus-specific reaction pools and Construction
of BiGGuniversal reaction pool in Supplementary Note 3”). The former
has a relatively small size (200–800 reactions) per GEM, while the
latter has almost 17,000 reactions. Since the number of reactions with
similar biochemistrymechanisms and thus nearly identical confidence
scores scale up with the size of candidate reaction pool, a loose
threshold of 0.5may still predict hundreds or thousands of candidates
as missing reactions. Instead of using a fixed cutoff threshold, we
added the top 25, 50, 100, andN reactions with the highest confidence
scores (N is the number of artificially removed reactions). We found
that CHESHIRE achieves the highest recovery rate at the four cutoffs
for both types of reaction pools (Fig. 2f–m). Notably, by adding the top
25 reactions from the genus-specific reaction pools, CHESHIRE iden-
tifies more than 40% (on average) artificially removed reactions, sig-
nificantly outperforming the other three methods (Fig. 2f; P < 10−16,
two-sided paired-sample t-test). While the performance of CHESHIRE
declines whenmore reactions were added, it is still significantly better
than the second-best method C3MM at the top N cutoff (Fig. 2i;
P <0.05). Furthermore, as expected, using the entire BiGG universal
reaction pool would undermine the performances of recovery rate for
all the methods. CHESHIRE nevertheless accomplishes the best per-
formance compared to NHP and NVM (Fig. 2j–m; P < 10−5).

Taken together, the two types of internal validations demonstrate
that CHESHIREoutperformsother topology-basedmethods andhence
is more promising for predicting missing reactions in draft GEMs.

External validation of CHESHIRE via phenotypic prediction
Compared to internal validation that tests the predictions by using
artificially removed reactions as the ground truth, external validation
tests whether gap-filled GEMs by CHESHIRE has improved perfor-
mance compared to draft GEMs in terms of their predictions of phe-
notypic data (Fig. 3a, see “Supplementary Note 5”). This test is
biologically meaningful. After all, a major rationale for reconstructing
GEMs of microorganisms is to provide theoretical predictions of their
metabolic phenotypes35.

Briefly, CHESHIRE is trained on the entire reaction set of a draft
GEM, and candidate reactions (taken from a reaction pool, e.g., the
BiGG database29) are ranked based on both confidence and similarity
scores. The confidence score, returned by CHESHIRE, quantifies the
probability of a candidate reaction being present in the GEM. The
similarity score measures the maximum correlation between a candi-
date reaction and all existing reactions in the GEM. Given our rationale
that dissimilar reactions are more likely to be functionally com-
plementary to the existing ones, all candidate reactions whose con-
fidence scores ≥ 0.9995 are ranked by their similarity scores (least
similar to most similar). The top 200 reactions are added to the draft
GEM to produce a gap-filled GEM (see “Generation of GEMs in Sup-
plementary Note 5”). Particularly, any reaction causing energy-
generating cycles (EGCs)36 is included if EGCs can be eliminated by
changing its flux bounds and otherwise skipped. Given a culture
medium (see “Culturemedia compositions in Supplementary Note 5”),
the simulated phenotypes of both draft and gap-filled GEMs (see
“Simulations of metabolic phenotypes in Supplementary Note 5”) are
then compared to experimental observation for validation.

We applied the workflow to a compiled dataset including fer-
mentation profiles of 9 metabolites from 24 bacterial organisms
(Supplementary Table 1, see “Fermentation metabolite test data in
SupplementaryNote 3”) grownunder anaerobic conditions12. The draft
GEMsof those organismswere reconstructed using a recent automatic
reconstruction pipeline CarveMe11. The same set of performance
metrics as used in the internal validation was used, except that AUROC
was replaced by AUPRC (the Area Under Precision-Recall Curve) for
unbalanced datasets. We compared four different groups of models:
the draft GEMs reconstructed from CarveMe (CarveMe), gap-filled
GEMs by adding the top 200 reactions predicted by CHESHIRE and
NHP (CHESHIRE-200 and NHP-200), and gap-filled GEMs by randomly
adding 200 reactions from the universal BiGG reaction pool (Ran-
dom-200).

Weobserved a high variability across the draft CarveMemodels to
predict fermentation profiles. One model correctly predicts all phe-
notypes (F1 = 1.0) but 14 others fail to predict any (F1 = 0.0). Adding the
200 NHP-predicted reactions barely improves the phenotypic pre-
dictions and the improvement is even worse than that after randomly
adding 200 reactions (Fig. 3b–e). To the contrary, CHESHIRE-200
increases the mean performances significantly (Fig. 3b–e; Supple-
mentary Fig. 5a, b; P <0.01, two-sided paired-sample t-test) and, in
particular, the F1 score for 11 of the 24 draft GEMs. Compared across
the 9 fermentation metabolites, the biggest improvement of CHE-
SHIRE over CarveMe draft models was observed on acetic acid fol-
lowed by lactic acid production. Among the 24 draft GEMs, CHESHIRE
increases the correct predictions of acetic acid and lactic acid phe-
notypes from 8 to 17 and 14 to 20, respectively. Finally, we demon-
strated that the improved performance is not simply due to more
reactions by showing a significantly better performance of CHESHIRE-
200 than that of Random-200 (P <0.05, two-sided paired-sample
t-test).

Fig. 3 | External validation by predicting metabolic phenotypes. a Flowchart of
external validation. The predicted phenotypes from CHESHIRE-gapfilled GEMs are
validated by comparison to experimental observation. For phenotypes correctly
predicted by gap-filled GEMs but missed by draft GEMs, we also identify the causal
reactions from CHESHIRE-predicted set that improve the phenotypic prediction
using Mixed Integer Linear Programming (MILP). b–i Performance (AUPRC, Recall,
Precision, and F1 score) of CHESHIRE and NHP in filling gaps in (b–e) 24 bacterial
GEMs for fermentation metabolite production and (f–i) 25 bacterial GEMs for
amino acid secretions. NVM was not included here due to its poor performance in
internal validation. C3MM was not considered either because of the issue of scal-
ability. “CarveMe” represents the draftmodels reconstructed fromCarveMe. “NHP-
200” and “CHESHIRE-200” represent draft models plus 200 reactions predicted by
NHP and CHESHIRE, respectively (reaction confidence scores averaged over 5

Monte Carlo runs). For “Random-200'', 200 randomly selected reactions from the
universal BiGG database were added to the draft models (performance averaged
over 3 Monte Carlo runs). Boxplot: central line represents the median, box limits
represent the first and third quartiles, and whiskers extend to the smallest and
largest values or at most to 1.5× the interquartile range, whichever is smaller. Two-
sided paired-sample t-test: exact p-values are provided. j–m Examples of
CHESHIRE-predicted reactions (red arrows) that causally gap-fill the observed
phenotypes of acetate production (j), lactate production (k), and amino acid
secretions (l, m). Abbreviations of cofactors: adenosine triphosphate (ATP); ade-
nosine diphosphate (ADP); adenosine phosphate (AMP); phosphate (Pi); inorganic
pyrophosphate (PPi); Coenzyme A (CoA); oxidized/reduced nicotinamide adenine
dinucleotide (NAD+/NADH); oxidized/reduced nicotinamide adenine dinucleotide
phosphate (NADP+/NADPH). Source data are provided as a Source Data file.
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To test whether the improvement of CHESHIRE over CarveMe-
reconstructed draft models is generalizable to GEMs from other
sources, we performed the same fermentation test on ModelSEED-
reconstructed draft models. Similar results were observed, where
CHESHIRE-200 improves the predictions over draft models, and draft
models plus randomly selected 200 reactions (Supplementary Fig. 6).
NHP, again, shows no improvement. Our results suggest that CHE-
SHIRE enables consistent improvement of phenotypic prediction over
GEMs reconstructed from different pipelines.

The fermentation test comprises nine metabolites that are very
close to central carbon pathways. To test if CHESHIRE can fill other
types of gaps, we assessed CHESHIRE for predicting secretions of
amino acids, substrate utilization for growth, and gene essentiality.
The dataset of amino acid secretions measures production profiles of
20 amino acids for 25 bacterial GEMs (Supplementary Table 2, see
“Amino acid secretion test data in Supplementary Note 3”). This
dataset is highly unbalanced with 478 positive phenotypes and 22
negative phenotypes. Similar to the fermentation test described
above, CHESHIRE-200 outperforms Random-200 (F1 score: P < 10−5,
two-sided paired-sample t-test), and NHP-200 shows no improvement
at all (Fig. 3f–i; Supplementary Fig. 5c, d). In particular, CHESHIRE
increases the correct predictions of 67 amino acid secretions that are
knowledge gaps in draft GEMs. Despite the significant improvement,
the recall remains very low at about 20%, suggesting many remaining
false-negative gaps.

Each of the substrate utilization and gene essentiality tests con-
tains 5 GEMs (Supplementary Table 3, see “Substrate utilization test
data and Gene essentiality test data in Supplementary Note 3”). The
utilization of various carbon-, nitrogen-, phosphorus-, and sulfur-
substrates for growth were tested using Biolog phenotype arrays37 in a
high-throughput manner. Essential genes were identified using gene
knockout experiments and a gene is essential if its deletion abolishes
growth. When tested on both datasets, CHESHIRE, however, fails to fill
gaps in nearly all 5 GEMs, except for the growth phenotypes ofBucillus
subtilis where CHESHIRE-200 increases the F1 score of CarveMe draft
model from 0.58 to 0.87 (Supplementary Fig. 7). Notably, NHP fails in
all the tests, including the growth phenotypes of B. subtilis.

To understand how CHESHIRE gap-fills the GEMs, we used Mixed
Integer Linear Programming to infer which reaction(s) from the top
200 candidates that causally fill the gaps (Fig. 3a, see “Causal reaction
inference in Supplementary Note 5”). The gap-filling guided by CHE-
SHIRE corrected 10 false-negative predictions by adding a single acetic
acid transport reaction between intracellular and extracellular via
proton symporter, e.g., Prevotella bergensis DSM 17361 (Fig. 3j). This is
not surprising as the poor performance of draft GEMs ismostly due to
poor annotation of transporter genes38–40. Beside false negatives,
CHESHIREcanalso identify false-positive predictions. For example, the
draft GEM of Anaerobutyricum hallii has lactate dehydrogenase and
can theoretically produce or use lactate for growth when lactate is
present in the culture medium. The draft model predicts lactate pro-
duction, since lactate utilization is dispensable for maximal biomass
production. However, this prediction contradicts experimental data.
CHESHIRE-200 fills this gap by adding two NAD(P)H-mediated redox
reactions (Fig. 3k) that enable maximization of growth rate by con-
suming lactate. Supported by previous reports of lactate
consumption41,42, this example shows that CHESHIRE can identify
missing reactions that have consequences on distant fermentation
pathways via a global and systematic effect. For gaps in amino acid
secretions, causal reaction inference indicates that these gaps were
solved by adding amino acid transportation reactions (Fig. 3l, m).

To assess the false positives added byCHESHIRE-200, we counted
the number of fermentation products and amino acids that were
added by CHESHIRE but not observed experimentally. For the fer-
mentation test, CHESHIRE adds a phenotype in 27 simulations (i.e.,
combinations of genome and metabolite), where 15 are true positives

and 12 are false positives. For the amino acid test, all 67 simulations
that predicted a gain of phenotype are true positives. These results
suggest that the risk of introducing false positive phenotypes may
depend on the model and phenotype. We further assessed whether
these false positives may be linked to the bias of CHESHIRE to score
specific types of reactions higher than the others. For nearly all enzy-
matic functional classes (see “Enzymatic functional class of reactions in
Supplementary Note 5”), we found a huge variability in the rankings of
reactions catalyzed by enzymes that belong to each individual class
(Supplementary Fig. 8). Relatively, reactions catalyzed by dinucleosi-
detriphosphatase, hydratase, and cyclase are scored higher on
average.

Discussion
Optimization-based GEM gap-filling has been long considered as a
process of fitting a GEM to observed data43. This problem is typically
formulated by amixed-integer linear programming thatminimizes the
number of added reactions under the constraint that the observed
phenotypes are satisfied. Therefore, the majority of GEM gap-filling
methods falls short of predicting metabolic gaps in both network
connections and functions without knowing experimental phenotypes
a priori. FastGapFill, as one of a few exceptions, fits a specific task of
gap-filling to resolve dead-ends and blocked reactions21. Previous
studies44–46 have shown that FastGapFill exhibits a poorperformance in
filling artificially introduced gaps. Although gap-filling with experi-
mental data is critically important, it is limited to understanding the
gene-reaction-phenotype mappings in conditions where the data was
collected. The environmental conditions are combinatorially complex;
as a theoretical tool, the primary purpose of GEMs is to rapidly offer
theoretical predictions of metabolic activities over a large array of
environmental conditions where data has not been collected.

We therefore present a method CHESHIRE which uses deep
learning techniques to resolve gaps in GEMs at reaction and pheno-
typic levels solely based on network topology. It is completely unsu-
pervised without any input phenotypic data and thus improper to be
compared to data-driven optimization-based methods directly. The
performance of CHESHIRE has been rigorously examined through
both internal and external validations over GEMs of a large set of
microorganisms. Compared to previous gap-filling methods, CHE-
SHIRE adopts the concept of hypergraphs with advanced graph con-
volutional networks to accurately learn the geometrical patterns of
metabolic networks and predict missing metabolic reactions without
inputs from any experimental data. In addition, CHESHIRE is compu-
tationally efficient than C3MM and NHP (Supplementary Table 4, see
“Complexity analysis in Supplementary Note 2”). Most importantly,
CHESHIRE has been validated on realistic biological datasets. To our
best knowledge, suchbenchmarkhas not beenperformed for previous
topology-based gap-filling methods. We showed that CHESHIRE sig-
nificantly improves the phenotypic predictions of fermentation pro-
ducts and amino acids secretions over a total of 49 draft GEMs
reconstructed from a mostly used automatic reconstruction pipeline
CarveMe11. Despite the success, we found that substrate utilization and
gene essentiality are gap-filling resistant cases for CHESHIRE and,
broadly, the topology-based gap-filling methods. Even in this worst
scenario, CHESHIRE shows better performance than the competitive
method NHP in the prediction of substrate utilization for B. subtilis.
Since only 5 GEMs were used in each of the two tests, a comprehensive
assessment of CHESHIRE over a larger GEM collection may be more
informative of how much CHESHIRE struggles with these tasks.

Although CHESHIRE advances phenotypic predictions, the use of
a universal pool and the top 200 reactions risk of adding reactions that
do not exist (falsepositives). Correct predictions of phenotypes donot
necessarilymean correct inference ofmissing reactions. It is likely that
different enzymes carry the same metabolic functions (e.g., fermen-
tationmetabolism) fromdifferent substrates.While adding reactions is
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expedited by increasingly advanced machine learning methods, it is
still a heavily manual task to trim reactions that are wrongly added.
This challenge, termedas content removal, hasbeen recognized as one
of the two fundamental bottlenecks for GEM quality improvement47.
This bottleneck is largely overlooked and highly time-consuming: a
significant amount of time is required to identify which reactions
should be removed. Initial community-driven efforts have been made
to mitigate this challenge, including building new GEM quality stan-
dards such as MEMOTE48 and developing novel frameworks for GEM
quality assessment and improvement.

In this study, we have taken initial steps towards further reduction
of the number of CHESHIRE-predicted reactions. First, CHESHIRE-200
conducted a comprehensive search of 236 metabolites to identify
metabolic phenotypes that can be potentially gap-filled by adding 200
reactions (see “Simulations of metabolic phenotypes in Supplemen-
tary Note 5”). The tool also provides information on the essential
reactions for each potential gap, allowing users to focus on the most
promising reactions without being overwhelmed by all the 200 reac-
tions. Moreover, we explored the feasibility of prioritizing reactions
with different cofactors (e.g., NADH) based on their prevalence in draft
GEMs (see “Generation of GEMs in Supplementary Note 5”). We found
that excluding candidate reactions involving less prevalent cofactors
led to improved performance for the secretion of fermentation pro-
ducts, but decreased performance for the dataset of amino acid
secretions (Supplementary Fig. 9). These contrasting trends suggest
that the relationship between missing reactions and cofactors may
depend on the secreted products and their biosynthetic pathways.
Importantly, the co-factor-based strategy enabledCHESHIRE to reduce
the number of added reactions to 100, while still significantly
improving gap-filledGEMsover draft GEMs (P <0.01, two-sidedpaired-
sample t-test). Thus, our preliminary cofactor analysis highlights a
promising future direction for metabolic network gap-filling.

Alternative to content removal, the number of false positives can
be reduced by limiting the database size for candidate reactions.
Though at its infancy, database reduction is a valuable technology that
has broad utility for both optimization- and topology-based methods.
There aremanypossible routes of database reduction. First, a universal
database can be split into genus-, species-, or evenphylogroup-specific
databases by aggregating all reactions in GEMs that belong to indivi-
dual taxa. Despite the pioneering efforts in AGORAmodels, we are still
lacking a large-scale database of high-quality GEMs that cover a wide
range of taxonomicdiversity. Second, GapSeq12 points out a promising
direction to use genomic information for reducing a universal data-
base to a small subset of reactions supported by gene annotations. By
lowering the threshold for sequence homology, comparing protein
domains and sequence signatures, and mapping content to distantly
related organisms, more genes and candidate reactions can be
annotated47. Finally, we should not ignore the possibility that gapsmay
be filled by altering the directionality of reactions without adding new
ones. Neither the BiGG universal reaction database nor the current
version of CHESHIRE considers reaction directionality. Therefore,
CHESHIRE cannot fill gaps caused by wrong directions or reduce the
number of added reactions by merging reactions with the same stoi-
chiometry but different directionality. Further studies arewarranted to
incorporate reaction directionality in the CHESHIRE framework. A
systematic integration of available thermodynamic datawithGEMswill
reduce the number of gaps and thus the total number of incorrectly
introduced reactions. This deserves dedicated efforts, and we leave it
as a future work.

Methods
Hypergraphs
As a natural extension of graphs, hypergraphs are composed of
hyperlinks (also called hyperedges) which can join any number of
nodes25–28. Hypergraphs are superior in modeling the correlation of

practical data that could be far complex than pairwise patterns49.
Mathematically, an unweighted hypergraph H= fV,Eg where
V = fv1,v2, . . . ,vng is the node set and E = fe1,e2, . . . ,emg is the hyperlink
set with ep � V for p = 1, 2,…,m. Two nodes are called adjacent if they
are in the same hyperlink. A hypergraph is called connected if given
two nodes, there is a path connecting them through hyperlinks. An
incidence matrix of a hypergraph, denoted by H 2 Rn ×m, consists of
logical values which indicate the relationship between nodes and
hyperlinks. If a node vi is participated in a hyperlink ep, then the (i, p)th
entry of H, i.e., Hip, has value one. If not, it is equal to zero.

Feature initialization
In a transductive learning setting, the node attributes arenot provided.
It is thus necessary to generate the node features based on the
hypergraph structure solely. Given an incomplete hypergraphHwithn
nodes, we therefore propose an encoder-based approach to produce
node features by simply passing the incidencematrixH through a one-
layer neural network, i.e.,

xi = hard-tanh ðWenchi +bencÞ for i= 1,2, . . . ,n, ð1Þ

wherehi denotes the ith row of the incidencematrix,Wenc and benc are
the learnable parameters in the encoder, and hard-tanh is a nonlinear
activation function defined as

hard-tanh ðxÞ=
1 if x ≥ 1

�1 if x ≤ � 1

x otherwise

8><
>: : ð2Þ

Hard-tanh ismoreefficient to computewhilemaintainingor improving
the performance of deep neural networks (compared to tanh)50.
Incidence matrix of a hypergraph is able to capture multidimensional
relationships unambiguously while keeping low memory costs51.
Hence, we believe that our approach can provide more accurate initial
node features of a hypergraph with less computational costs.

Feature refinement
Feature refinement is themost critical component in CHESHIRE, which
is composed of normalization, dropout, and graph convolutional
networks. First, we decompose the hypergraph into a disjoint graph
with separate cliques formed by the hyperlinks. Two nodes in the
disjoint graph share the same feature space if originating from the
same node in the hypergraph. After obtaining the node features of the
disjoint graph, we feed the features to a graph normalization layer for
each clique. Suppose that the dimension of the feature vectors is denc.
Let xij denote the jth entry of the feature vector xi for node vi. Then the
element-wise normalized features are given by

~xij = γj
xij � αjμj

σj
+βj for j = 1,2, . . . ,denc, ð3Þ

where αj is a learnable parameter that controls howmuch information
need to keep in themean, γj and βj are the affineparameters, and μj and
σj are the mean and standard derivation of the features in each clique,
respectively. Graph normalization has proved to be advantageous in
training graph convolutional networks compared to other normal-
ization methods such as batch and layer normalization52. In order to
prevent overfitting, we further add an alpha dropout layer after the
graph normalization. The alpha dropout utilizes a scaled exponential
linear unit (SELU), which includes self-normalizing properties such as
maintaining the mean and standard derivation of the inputs and
avoiding exploding and vanishing gradients53. For convenience, we
drop the tilde notation and use xi as the updated features.

Second, we continue to refine the features with a CSGCN on each
clique (corresponding to a hyperlink in the original hypergraph).
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CSGCN exploits the Chebyshev polynomial expansion and spectral
graph theory to learn the localized spectral filters which can extract
local and composite features on graphs that encode complex geo-
metric structures32. Given a hyperlink ep 2 E, we refine the features of
node vi by

x̂i = hard-tanh
XK
k = 1

WðkÞ
convz

ðkÞ
i

 !
for vi 2 ep, ð4Þ

whereK is theChebyshevfilter size,WðkÞ
conv are the learnableparameters

in the CSGCN, and zðkÞi are computed recursively as

zð1Þi =xi, zð2Þi = ~Lxi, and zðkÞi = 2~Lzðk�1Þ
i � zðk�2Þ

i : ð5Þ

The matrix ~L is the scaled normalized Laplacian matrix defined as

~L=
2

λmax
L� I=

2
λmax

ðI�D�1
2AD�1

2Þ � I, ð6Þ

where L is the symmetric normalized Laplacian matrix of the clique
with the largest eigenvalue λmax, and D and A are the degree and
adjacency matrices of the clique, respectively. For convenience, we
drop the head notation and use xi as the updated features.

Pooling and scoring
We aggregate the refined node features within each clique/hyperlink
to produce a score. There are many pooling functions such as mean
pooling and maximum pooling. Here we use two different pooling
functions. Suppose that the dimension of the convolutional feature
vector is dconv and denote xij as the jth entry of xi. We propose to
employ a Frobenius norm-based (also known as the l2-norm) pooling
function to generate hyperlink features, which is defined as

yðnormÞ
p

� �
j
=

1
∣ep∣

X
vi2ep

x2
ij

0
@

1
A

1
2

for j = 1,2, . . . ,dconv: ð7Þ

Norm-based pooling functions are more efficient at representing
complex and nonlinear separating boundaries and has been widely
used in traditional convolutional neural networks33.

In order to achieve a better performance, we also incorporate the
maximum minimum-based pooling function22 defined as

ðyðmaxminÞ
p Þ

j
= max

vi2ep
fxijg �min

vi2ep
fxijg for j = 1,2, . . . ,dconv: ð8Þ

Therefore, the final score of a hyperlink ep is then given by

Sp = sigmoid WscoreðyðmaxminÞ
p ∣∣yðnormÞ

p Þ+bscore

� �
, ð9Þ

where “∣∣” denotes the vector concatenation operation, andWscore and
bscore are the learnable parameters in the scoring neural network.
Empirically, we found that the combination of the two pooling func-
tions can make full use of their own advantages, leading to a better
performance during internal validation.

Training algorithm
We train CHESHIRE with the following loss function

Loss =
1
∣E∣
X
e2E

σ
1
∣F ∣

X
f2F

Sf

0
@

1
A� Se

0
@

1
A, ð10Þ

where E is the set of positive hyperlinks, F is the set of negative
hyperlinks, and σð�Þ = log 1 + expð�Þð Þ is the logistic function22,54. We

chose the above loss function since it offers a better performance
compared to traditional classification loss functions such as cross
entropy loss. We exploit the highly efficient Adam optimization algo-
rithm to train CHESHIRE. During the training stage, CHESHIRE tries to
learn the weights of the deep neural network by minimizing the loss
function, which maximizes the scores for positive hyperlinks to be
higher than the average score for negative hyperlinks. During the
testing stage, CHESHIRE uses the learned weights to calculate a
probability score for an unseen hyperlink (from either a testing set or a
universal set).

Hyperparameter selection
The key hyperparameters of CHESHIRE are the encoder feature
dimension, the graph convolutional feature dimension, the Cheby-
shev filter size, the dropout probability, and the learning rate. We
used a universal hyperparameter set for CHESHIRE during internal
and external validations. We found that the performance of CHE-
SHIRE with a pre-selected universal hyperparameter set is close to
that obtained by grid search. This implies that CHESHIRE is not
sensitive to these hyperparameters. Therefore, we decided to use a
universal hyperparameter set for all the GEMs, which can also save a
great amount of computational resources. The encoder feature
dimension, the graph convolutional feature dimension, the Cheby-
shev filter size, the dropout probability, and the learning rate are set
to 256, 128, 3, 0.1, and 0.01, respectively. For hyperparameters of
NVM, C3MM, and NHP, see “Hyperparameter selection in Supple-
mentary Note 4”.

Negative sampling
In order to accurately predict missing reactions from a metabolic
network, it is necessary to sample negative reactions, i.e., reactions
that do not exist. We used the negative sampling strategy proposed
in22. Suppose that we have a hypergraph H= fV,Eg that captures a
metabolic network. For each (positive) hyperlink e 2 E, we generate a
corresponding negative hyperlink f, where half of the nodes in f are
from e (rounding is required for odd number of metabolites) and the
remaining half are from V � e (the set of nodes that are not in e). The
motivation behind the strategy is that it is extremely unlikely that half
of the metabolites from a valid reaction and randomly sampled
metabolites are participated in another valid reaction. We denote the
set of negative hyperlinks as F , in which the number of negative
hyperlinks are equal to the number of positive hyperlinks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study used publicly available data from publications of the sci-
entific literature and accessible repositories (see “Supplementary
Note 3”). Source data are provided with this paper.

Code availability
The source code for our computational framework is available at
Github55 [https://github.com/canc1993/cheshire-gapfilling].
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