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Designed active-site library reveals
thousands of functional GFP variants

Jonathan Yaacov Weinstein 1, Carlos Martí-Gómez2, Rosalie Lipsh-Sokolik 1,
Shlomo Yakir Hoch 1, Demian Liebermann3, Reinat Nevo1, Haim Weissman4,
Ekaterina Petrovich-Kopitman5, David Margulies 6, Dmitry Ivankov 7,
David M. McCandlish2 & Sarel J. Fleishman 1

Mutations in a protein active site can lead to dramatic and useful changes in
protein activity. The active site, however, is sensitive to mutations due to a
high density ofmolecular interactions, substantially reducing the likelihood of
obtaining functional multipoint mutants. We introduce an atomistic and
machine-learning-based approach, called high-throughput Functional Librar-
ies (htFuncLib), that designs a sequence space in which mutations form low-
energy combinations that mitigate the risk of incompatible interactions. We
apply htFuncLib to the GFP chromophore-binding pocket, and, using fluor-
escence readout, recover >16,000 unique designs encoding as many as eight
active-site mutations. Many designs exhibit substantial and useful diversity in
functional thermostability (up to 96 °C), fluorescence lifetime, and quantum
yield. By eliminating incompatible active-sitemutations, htFuncLib generates a
large diversity of functional sequences. We envision that htFuncLib will be
used in one-shot optimization of activity in enzymes, binders, and other
proteins.

Protein active sites comprise molecular-interaction networks that are
critical to function. Due to the molecular density of the active site,
however, the majority of mutations destabilize the protein1 or lead to
dysfunction2, and functional multipoint mutants are exceptionally
rare3,4. Thus, active sites are among the most evolutionarily conserved
protein sites5. Furthermore, experimental lab-evolution studies that
aim tomodify protein activity typically discovermanymoremutations
outside the active site than within it6; yet, understanding whether and
how remote mutations change activity is often elusive7,8. Although
active-site mutations have the greatest potential to alter function, in
practice, sensitivity to mutation has severely limited access to active-
site functional variants in natural and lab evolution, deep mutational
scanning9,10, and computational protein design11. Therefore, as a rule,
lab-evolution studies comprise multiple cycles of mutagenesis and

selection that are customized specifically for each desired functional
trait12–14. Such iterative processes are time consuming and likely to
severely undersample the space of functional sequences.

Furthermore, epistatic interactions between mutations can
severely restrict the chances of finding functional multipoint
mutants15; that is, a mutation may be tolerated only in combination
with one or more additional mutations16–18, drastically reducing the
chances for the emergence of beneficial multipoint mutants15,19. This
dependence also severely limits our ability to predict the functional
impact of multipoint mutations even when the effects of single-point
mutations are known20,21, for instance, based on deep mutational
scanning3,4. Epistasis has critical implications for our understanding of
molecular evolution, including the emergence of viral and microbial
resistancemutations22 and the evolutionof newenzymatic andbinding
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specificities23. It also presents one of the primary obstacles to our
ability to design protein activities in basic and applied research1,24.

Here, we introduce a computational method called high-
throughput Functional Libraries (htFuncLib) to design large libraries
of active-site mutants that can be applied, in principle, to any protein.
Most current atomistic design methods, including our previously
described FuncLib method24, select designs that optimize desired
energy or structure criteria25,26. By contrast, htFuncLib searches for a
set of active-site point mutations that, when freely combined, yield
low-energy multipoint mutants. Our approach can be applied to an
arbitrarily large set of positions to generate diverse and complex
libraries that encode millions of designs. htFuncLib thus accesses
sequence spaces that have so farbeen interrogated through randomor
semi-random mutagenesis and selection methods. Yet, unlike such
methods, htFuncLib generates libraries that are preselected compu-
tationally to enrich for stable, folded, and potentially active designs.

Results
Principles for designing combinatorial active-site diversity
We applied htFuncLib to Green Fluorescent Protein (GFP). GFP and
other fluorescent proteins have attracted intense interest in evolution
studies due to their ubiquitous uses in molecular and cellular
biology27–29 and their straightforward optical readout30. GFP fluores-
cence depends on the chemical environment of the chromophore,
including electrostatics and torsional freedom about the bond that
links its aromatic rings31 and is therefore sensitive to mutations in the
chromophore-binding pocket. Most previous large-scale screens tar-
geted the entire protein or consecutive segments of it for
mutation3,4,30,32. GFP is a β-barrel, however, and the chromophore is

buried within the protein core. Therefore, most mutations targeted
solvent-exposed regions that are unlikely to impact spectral proper-
ties. Unlike these previous studies, we apply htFuncLib solely to posi-
tions that line the chromophore-binding pocket. Because active-site
mutations may reduce protein stability, we chose as a starting point a
previously designed version of enhanced GFP, PROSS-eGFP, that
exhibited elevated resistance to thermal denaturation33. In this pre-
vious design, positions in the chromophore-binding pocket, except
Tyr145Phe and Thr167Ile, were immutable. In applying htFuncLib, we
also allowed design in these two positions.

Our working hypothesis is that epistatic interactions most fre-
quently arise from three molecular sources (Supplementary Fig. 1): (1)
direct molecular interactions between proximal mutated amino acids;
(2) indirect interactions between amino acid positions due to back-
bone conformational changes; and (3) stability-mediated interactions
inwhich destabilizingmutations donot exhibit phenotypicdifferences
when introduced singly but reduce stability or expression levels when
combined1,7. htFuncLib addresses these sources of uncertainty in
designing multipoint combinatorial mutants, as described below.

The htFuncLib approach combines phylogenetic analysis, Rosetta
atomistic design calculations26,34, and a machine-learning analysis to
nominate mutations that are mutually compatible when combined
freely with one another (see “Methods” for details). Using Fig. 1 as a
visual guide for applying htFuncLib to GFP, we started by manually
selecting 27 active-site positions likely to impact functional properties
based onprevious studies of GFP or proximity of thesepositions to the
chromophore (Fig. 1A). htFuncLib then computed all single-point
mutations and selected the ones likely to be tolerated against the
background of the original amino acids in all other positions34. In this

Fig. 1 | Steps in applying htFuncLib to GFP. A Fourteen positions designed by
htFuncLib are shown (PDB entry: 2WUR). B Red and blue backgrounds indicate
representative neighborhoods centered around GFP amino acid positions 181 and
61, respectively. C The sequence space of each neighborhood is partially enumer-
ated. Sequence representation of the two neighborhoods shown in (B). Only vari-
able positions are shown for clarity. Color bars represent Rosetta energies.
D EpiNNet top-ranked mutations are selected as the enriched sequence space. An
atomistic verification step scores thousands of random combinations from the

EpiNNet-enriched and the filtered sequence spaces. Nearly all designs in the
EpiNNet sequence space are predicted to be more stable than PROSS-eGFP, com-
pared to almost none in the filtered sequence space. Red triangles mark mutable
positions, and the number of mutations in each position is marked under the bar.
E The designed library is cloned using Golden-Gate assembly38 of oligos that con-
tain the desired mutations, expressed in E. coli cells, and F sorted by FACS. Icon
created using BioRender.
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selection step, we retain mutations that are likely to be present in the
diversity of sequence homologs and that are moreover predicted not
to destabilize the native state according to atomistic design
calculations35. The atomistic calculations contain the chromophore to
ensure that themutations donot abrogate contacts thatmaybecritical
to fluorescence. In addition, these calculations apply harmonic coor-
dinate constraints to backbone atoms during whole-structure mini-
mization, thereby penalizing backbone deformations that may lead to
indirect epistatic interactions (Supplementary Fig. 1B).

After filtering, htFuncLib applies atomistic modeling to evalu-
ate the energy of combinations of tolerated point mutations.
Because complete enumerationof the spaceof potentialmultipoint
mutations in a large active site is computationally intractable, we
focus calculations on combinations of mutations within neighbor-
hoods of proximal positions (Fig. 1B, C, Supplementary Datasets 1
and 2) which are the most likely to give rise to direct epistatic
interactions (Supplementary Fig. 1A). In a companion paper, we
show how to select combinations of enzyme backbone fragments
that form low-energy combinations when freely combined using a
machine-learning-based approach called EpiNNet36. Here, we
extend EpiNNet to select low-energy combinations of mutations
across all spatial neighborhoods within the chromophore-binding
pocket. The multipoint mutants within each neighborhood are
classified according to their energies into favorable (Rosetta ener-
gies lower than PROSS-eGFP) and unfavorable (highest-energy 50%,
Fig. 1D). We then train the neural network to predict the energy-
based classification of favorable and unfavorable designs. Finally,
the trained network ranks the single-point mutations according to
their likelihood to be found in low-energy multipoint mutants, and
the top-ranked mutations are selected for library construction.
EpiNNet comprises a single fully connectedhidden layer.Therefore,

unlike some current linear-regression based techniques for pre-
dicting favorablemultipointmutants37, EpiNNet canmodel some of
the nonlinear relationships between mutations that determine the
energy outcome. Such nonlinear interactions may be dominant in a
highly epistatic region such as an active site. The resulting library is
enriched inmutually compatible (low-energy) mutations, such that
bothdirect and stability-mediated epistasis (Supplementary Fig. 1A,
C) are addressed. Following design, we clone the library using
Golden-Gate assembly38 (Fig. 1E) and apply FACS sorting and deep
sequencing to identify active designs (Fig. 1F).

Multipoint mutants from the EpiNNet-enriched sequence space
exhibit, on average, dramatically lower computed energies than those
in the original filtered sequence space (Fig. 2A), suggesting that
EpiNNet increases the fraction of folded and stable designs. Further-
more, in a representative case, following the selection steps, only 14
positions (out of the 27 we selected initially) were selected for design
with a sequence space of 107, compared to experimentally intractable
1035 sequences for the space encompassing every mutation at 27
positions and 1019 following the phylogenetic and single-mutation
energy filters (Supplementary Datasets 3 and 4).

Thus, unlike conventional protein design methods25,26, htFuncLib
does not search for the most optimal mutants according to energy or
structural criteria. Instead, the astronomically large space of combi-
natorial mutations in an active site is reduced to a tractable size
through phylogenetic, structural, and energy-based analysis. Then,
mutations thatmay destabilize the protein in combination with others
are removed by analyzing the energies of combinatorial mutations.
htFuncLib assumes that active-site stability is a primary constraint for
discovering functional multipoint mutants1,39,40. Additional functional
constraints are encoded by verifying that the mutants form favorable
interactions with the chromophore.

Fig. 2 | htFuncLib selects mutations that combine to form low-energy designs.
A Energy distributions of the EpiNNet-enriched sequence space, the sequence
space filtered by energy and phylogenetic criteria (Filtered), and unfiltered (all 20
amino acids at each position). >95% of mutants in the EpiNNet-enriched combi-
natorial sequence space exhibit higher stability than PROSS-eGFP, compared to
<0.6% for the other spaces. 12,000 randomly selected sequences weremodeled to
generate each distribution. The dashed line signifies PROSS-eGFP energy.
B Distributions of the energy difference between multipoint mutants and the sum
of their constituent point mutations. Up to 1000 random combinations of muta-
tions were modeled and scored for each distribution. Box bounds and the white
circle signify the first, second and third qurartiles. Whiskers represent 1.5 times the

inter-quartile range. C The number of functional designs according to FACS
screening of libraries comprising an increasing number of top-ranked EpiNNet
mutations is plotted as a function of the total number of designs detected in the
deep-sequencing data. Points are color-coded according to the number of muta-
tions that constitute the library. For example, a library of 25 top-ranked EpiNNet
mutations that comprise ~104 designs would yield approximately 103 functional
ones (dashed blue lines). The diagonal is the best fit to the data points.DOverlay of
all mutations of the 25 top-ranked EpiNNet mutations from (C). Despite the rela-
tively small size of this library, it contains radical mutations, including Tyr145Met
and Gln69Pro. Data are provided as a Source Data file.
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Design of a multiplexed GFP active-site library
The spectral properties of GFP depend on chromophore packing,
electrostatics, and hydrogen-bond networks around the
chromophore27. Since hydrogen-bond networks are extremely sensi-
tive to structural perturbations, we designed two libraries: nohbonds,
which excluded positions that directly hydrogen bond to the chro-
mophore, and hbonds, which included such positions. We manually
selected 27 and 24 positions for design in each library, respectively,
applied htFuncLib to these positions, and generated 11 million and
930,000 designs for each library, respectively. Both libraries are
complex: some positions allow only subtle mutations, and others,

including e.g., Gln69 and Tyr145, exhibit high diversity and radical
mutations (Supplementary Figs. 2 and 3, Supplementary Dataset 5).
According to Rosetta atomistic modeling, both libraries are highly
enriched for low-energy mutants compared to the GFP starting point.
For instance, nearly 99% and more than 67% of the nohbonds and
hbonds designs, respectively, exhibit lower Rosetta energies than the
progenitor PROSS-eGFP (Fig. 2A). By contrast, the energies of multi-
point mutants from the sequence space prior to EpiNNet enrichment
are significantly worse than PROSS-eGFP, with >99% and >96% exhi-
biting higher energies for nohbonds and hbonds, respectively
(Fig. 2A). The unfavorable energies of combinatorial mutants in the
sequence space before EpiNNet selection reflect the high epistasis in
the active site. By contrast, the EpiNNet-enriched sequence space
significantly improves the fraction of low-energy and, thus, potentially
stable and foldable active-site designs. Additionally, combinations of
EpiNNet-selected mutations exhibit lower energies than expected
from an additive contribution of the constituting point muta-
tions (Fig. 2B).

The two libraries were cloned using Golden-Gate assembly into
Escherichia coli cells, with transformation efficiency greater than 5 ×
107. Deep-sequencing analysis of the unsorted libraries shows high
uniformity in the distribution of multipoint mutations, verifying that
the assembly process exhibits low bias (Supplementary Fig. 4). The
cells were FACS-sorted using two selection gates: (405 nm excitation,
525 nm emission; referred to as AmCyan405/525) and (488, 530nm;
referred to as GFP488/530; Supplementary Fig. 5). Following selection,
plasmids were purified and cloned into fresh cells and resorted using
the same gating strategy to reduce sort errors. Following each sort, we
collected several individual clones for sequencing and functional
measurements, obtaining 62 unique designs, 50 of which were func-
tional. Furthermore, the presorted library and the output from the
second sortwere subjected to deep-sequencing analysis. Todetermine
thresholds for selecting positive hits from the deep-sequencing data,
we analyzed the enrichment values of the 62 designs we collected
during sorts. Relatively loose criteria (enrichment in the selected
population relative to the presorted population >1) captured 45
functional designs with only a single false positive (Supplementary
Table 1). Applying these thresholds, we identified 14,242 and 1926
unique designs in the sorted nohbonds and hbonds libraries, respec-
tively (0.13% and 0.21%, respectively; see Supplementary Fig. 6 for
distribution of read counts in the selected libraries). We also retro-
spectively evaluated the fraction of functional GFP variants in libraries
that were constructed from top-ranked EpiNNet-selected mutations.
We found that up to library sizes of 104−105, approximately 10% of the
multipointmutantswere functional, andonly above a library size of 105

did the fraction of functional variants decay substantially (Fig. 2C, D).
These results are encouraging as they suggest that focusing htFuncLib
on top-ranked mutations may yield highly functional libraries in
experimental systems that are not amenable to high-throughput
screening.

Combining the positive hits from both libraries yields 16,155
unique, putatively active GFP designs. These include 1167 designs that
exhibit ≥8 mutations relative to GFP (Fig. 3A). Many of the active
designs exhibit radical mutations, including Thr203His (13%),
Gln69Met (9%), Ser205Asp (9%), Gln94Leu (8%), and Tyr145Met (8%)
(Supplementary Dataset 6). The large number of functional active-site
multipoint mutants is striking compared to previous engineering and
design strategies applied to eGFP, which showed a steep decline in
active mutants with the number of mutations and no active mutants
with ≥5mutations in the chromophore-binding pocket4,41 (albeit, these
studies did not focus diversity on the active site). The vast majority of
the mutations observed in those studies were in the more tolerant
solvent-exposed surfaces. By contrast, the current designs are entirely
within the chromophore-binding pocket where they aremore likely to
affect functional properties (Fig. 3A). The large number of active high-

Fig. 3 | htFuncLib exposes a large spaceof functionalmultipoint active-siteGFP
variants. Deep sequencing of htFuncLib libraries sorted by fluorescence revealed
over 16,000 potentially active designs. A Frequency and number of functional
variants with a given number of mutations (top and bottom, respectively).
htFuncLib-NGS - all sequences obtained from deep sequencing of the sorted
designs; htFuncLib-RF - the entire sequence space labeled by the random forest.
The avGFP dataset was derived from Sarkisyan et al.4. The amacGFP, cgreGFP, and
ppluGFP datasets were derived from Somermeyer et al.3. Lines represent fits to the
data (points) according to Eq. 2 (see “Methods” and Supplementary Table 2). Data
excluded sequences with mutations outside of the chromophore pocket.
B Distance-preserving dimensionality reduction analysis shows the relationships
between GFP variants in FPBase35, Sarkisyan et al.4, eUniRep41, and htFuncLib. The
plot approximates the number of mutations between any pair of mutants41,75.
PROSS-eGFP (and eGFP, which are nearly identical in the designed positions, Sup-
plementary Dataset 7) are marked by a cross for reference. Individually char-
acterized htFuncLib designs are marked by purple circles. The number of
sequences represented for each category is marked in parentheses. Variants with
mutations outside the chromophore pocket were included, but these mutations
were ignored when calculating distances. Data are provided as a Source Data file.
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order multipoint designs in our dataset confirms our working
hypothesis that a stable starting scaffold (eGFP-PROSS) and the
htFuncLib enrichment of mutually compatible mutations dramatically
increase the yield of functional active-site multipoint mutations. Fur-
thermore, htFuncLib generates many more functional multipoint
active-site designs relative to random mutagenesis (Fig. 3A). Finally,
compared to all known descendants of Aequorea victoria GFP (avGFP)
in the fluorescent protein database (FPBase)35 and variants character-
ized in focused and high-throughput studies, htFuncLib explored dif-
ferent regions of the sequence space (Fig. 3B).

Random forest modeling of GFP genotype-phenotype map
To gain insight into what determines the functional outcome of mul-
tipoint mutants in the htFuncLib designs, we trained a random forest
model using the functional annotations derived from the deep-
sequencing data for the nohobnds library. We chose this type of ana-
lysis because it is easily interpretable, less prone to overfitting than
other approaches, andwell suited formixed categorical and numerical
data. As features for training, we used the mutation identities, geo-
metric and physicochemical properties, and conservation scores. The
best-performing model exhibits 84% accuracy in predicting functional
versus non-functional designs in a balanced test (Supplementary Fig. 7,

Supplementary Table 3). The most important single feature for pre-
dicting functionality is the mean conservation score, calculated as the
sum of differences in the conservation scores between PROSS-eGFP
and mutated identities (ΔPSSM, Supplementary Fig. 8). In fact, this
single parameter exhibits an area under the ROC curve of 87%, com-
pared to 93% for the random forest. This result provides a compelling
verification for the approach of combining sequence conservation
with atomistic protein design which underlies htFuncLib and other
successful protein design methods developed in recent years26.

To further understand the qualitative features of the sequence-
function relationship learned by the random forest, we used a tech-
nique for visualizing complex fitness landscapes42. In this technique,
the distance between sequences reflects the time it would take for a
population to evolve from one sequence to another under selection to
maintain a fluorescent phenotype as predicted by the random forest
model (see “Methods”). We found that the main structure of the
landscape could be represented by a two-dimensional visualization,
where each axis captures a different qualitative feature of the GFP
genotype-phenotype map (Fig. 4A). The first axis (diffusion axis 1)
mainly distinguishes functional from non-functional sequences (79%
of sequenceswith diffusion axis 1 values greater than 1were functional,
while only 0.01% were functional if they had diffusion axis 1 values less

Fig. 4 | Global analysis of the GFP genotype-phenotype map shows high
mutational contiguity among functional sequences. A Low-dimensional visua-
lization of the sequence-function relationship predicted by the random forest
model (see “Methods”). Functional sequences are highlighted in different colors
according to whether they are predicted to fluoresce in the GFP488/530 channel
(green), AmCyan405/525 channel (blue), or both (gold). Lines join genotypes that are
separated by a single amino acid substitution. B Site-frequency logos of functional
sequences based on position along diffusion axis 2 (the three logos correspond to
diffusion axis 2 coordinates greater than −0.5, between −0.5 and −2.25, and less
than −2.25). C The proportion of functional sequences changes depending on the
amino acids at positions 65 and 69. Gray lines indicate single amino acid sub-
stitutions.DClose-upof the region containing a cluster of observed sequenceswith

unusual sequence properties. Highlighted dots indicate sequences that were
directly characterized as functional in the high-throughput experiments, and black
lines indicate single amino acid substitutions between these experimentally char-
acterized sequences (see Supplementary Fig. 9 for a visualization of all sequences
enriched in the high-throughput experiment). E Sequence logo representing the
coefficients of the logistic regression models trained on random forest predictions
to identify changes in allelic preferenceswhen using all sequences for training (top)
or only sequences within two mutations of the genotypes highlighted in (D) (bot-
tom). Coefficients are expressed as additive allelic contributions (i.e., Δlog2 odds
ratios) that have been mean-centered by site. Data are provided as a Source
Data file.
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than −1), capturing the fact that the functional sequences are highly
connectedwith each other and localized in sequence space rather than
consistingof isolatedfitnesspeaks separatedbyvalleys. The contiguity
between functional sequences suggests that the htFuncLib selection of
mutations that increase stability may generate a highly evolvable
library in which active variants are connected via mutational trajec-
tories that maintain function39,40. Additionally, the second axis (diffu-
sion axis 2) then largely separates functional AmCyan405/525 sequences
from functional GFP488/530 sequences.

Figure 4B provides more detail on the interpretation of diffusion
axis 2 by showing site-frequency logos for three different regions of
the fitness landscape. These frequency logos indicate that themain set
of functional sequences is largely separated into three groups: one
group with Thr65Ser and Gln69 consisting of AmCyan405/525 designs;
one group with Thr65 and Gln69 consisting of designs that fluoresce a
mixture of AmCyan405/525, GFP488/530, or both; and one group with Thr65
and Gln69Leu that consists of GFP488/530 designs. All three groups are
strongly supported by many different sequences directly assessed in
the sorting experiment (Supplementary Fig. 9). Strikingly, Thr65Ser
and Gln69Leu are highly incompatible: sequences that contain both
these mutations have a much lower chance of being functional
(Fig. 4C). As a consequence, evolutionary trajectories from Ser65/
Gln69 to Thr65/Leu69 that maintain functionality would tend to pass
through a Thr65/Gln69 intermediate.

In addition to these three main groups, which comprise the large
majority of the functional designs, the random forest analysis predicts
two long parallel tails of functional sequences spreading along diffu-
sion axis 1 and sweeping up along diffusion axis 2. The AmCyan405/525

tail is well-supported by the experimental data and is not an artifactual
prediction of ourmodel, as we observe a cluster of highlymutationally
connected designs thatwere also among themost strongly enriched in
AmCyan405/525 sorted cells (Fig. 4D, Supplementary Fig. 9, Supplemen-
tary Table 4). Moreover, in this cluster, all sequences contain an unu-
sual and rarely functional pairing of alleles Thr65/Gln69Ala (Fig. 4C),
and all except one contain Thr108Glu, which is also unusual among
other functional sequences (Fig. 4B). To investigate what distinguishes
these designs from the other fluorescent proteins in the library, we fit
an additive logistic regression model to the random forest output
using only sequences up to two mutations away from the cluster
highlighted in Fig. 4D (see “Methods”). We then compared the esti-
mated mutational effects on the probability of activity to those
obtained by fitting the same logistic regression model to the full
genotypic space (Fig. 4E). Although there are some commonalities in
the inferredmutational effects (e.g., Tyr145Met, which is the strongest
single-site predictor of functionality based on the random forest,
greatly increases the probability that a sequence is fluorescent under
both logistic regression models), positions 68, 69, 72 and 108 show
marked differences in amino acid preferences. For example, Thr72Ala
increases the odds ratio for functionality by approximately fourfold in
the general model but reduces the odds ratio by 13-fold in this alter-
native context. These results suggest that variants within this cluster
also differ in their functional constraints as compared to the majority
of fluorescent designs, although more detailed experiments would be
required to validate this qualitatively different solution to GFP
fluorescence.

Designs exhibit large and useful functional diversity
The above results, based on flow cytometry, identify designs that
maintain fluorescence, but they do not provide information on other
changes in functional properties, including finer-scale changes in
excitation and emission spectra. To examine these aspects of func-
tional diversity, we expressed, purified, and characterized a total of 88
unique designs, exhibiting at least two mutations from PROSS-eGFP
and typically at least two mutations from one another, and three
controls (eGFP, PROSS-eGFP, and superfolder GFP (sfGFP);

Supplementary Dataset 7). Twenty-four designs are cluster repre-
sentatives of the hits observed in the deep-sequencing data, 17 of
which (71%)were active.We also selected three designswithmutations
rarely found in the sorted populations, Glu222Gln/Leu and Leu44Met,
one of whichwas active. As an especially stringent test, we selected six
designs with the maximal number of mutations (12–14), but none of
these was functional. Furthermore, we selected 19 designs that were
predicted to be functional by the random forest analysis but were not
observed among the positive hits in the deep-sequencing analysis.
Surprisingly, 15 (79%) were active, confirming that a random forest
analysis based on deep-sequencing data of htFuncLib designs can be
used to recover false negatives—active designs that weremissed by the
experimental workflow. Additionally, we isolated designs from FACS
sorts that were gated for higher brightness or spectral shifts (Supple-
mentary Table 5) by applying sorting gates that combine two channels
(Supplementary Fig. 10). We also verified that 19 designs could be
transferred to the superfolder GFP (sfGFP) background43 to demon-
strate that the designs are compatible with a different chassis (Sup-
plementary Dataset 7).

Although we did not explicitly guide the design process to
improve any functional property (except native-state stability (Figs. 1D
and 2A)), we hypothesized that the large diversity in active-site
sequences would lead to observable functional differences. We first
analyzed GFP functional thermostability or the temperature at which
its fluorescence deteriorates to 50% of the maximal value, a critical
property for high-temperature or long-term experiments and “real-
world” applications44,45. Functional thermostability is remarkably vari-
able among the designs, 46–96 °C, compared to 84 °C for eGFP (Fig. 5A
and Supplementary Fig. 11). We noticed that the PROSS-eGFP parental
design is less stable than eGFP when functional thermostability is
measured (Fig. 5A) rather than thermal denaturation as in the PROSS-
eGFP design study33. Apparently, the PROSS-eGFP design is more
resistant to heat denaturation, but its fluorescence is more sensitive to
heat than eGFP. Quantum yield, which measures the efficiency of
emitting light absorbed by the chromophore, was also variable, ran-
ging between 0.16–0.82, compared to 0.55 for eGFP (Fig. 5A and
Supplementary Fig. 12). Surprisingly, across all the designs we tested,
functional thermostability and quantum yield were correlated (Pear-
son’s r =0.53, Supplementary Fig. 13). This correlation may stem from
the fact that both chromophore brightness and resistance to unfolding
increase with core packing density31,46. To our knowledge, this is the
first observation of such a correlation, demonstrating how a large set
of active-site variants can yield insights on sequence-structure-activity
relationships even in a well-studied protein. Moreover, the designs we
sorted specifically for spectral shifts indeed displayed significant shifts
in excitation spectra (Fig. 5B, and Supplementary Fig. 14).

We examined the design models for a molecular explanation of
the large observed differences in stability and quantum yield. For
instance, Tyr145Phe, seen previously to enhance stability and quantum
yield47, appeared in all five high stability/brightness designs but only in
one of the bottom 26 designs. Similarly, Thr203His, likely to stabilize
the chromophore throughπ-π stacking interactions48, is seen in all top
designs and none of the bottomones. Ser205Thr is in three of the top-
five designs and none of the bottom. By contrast to the twomutations
above, Ser205Thr is enriched in designs with high thermostability and
quantumyield thoughweare unawareof previous studies thatpointed
to its significance.

We also observed large variability in photostability, which is the
resistance of the chromophore to bleaching by bright light. Bleaching
is often a limitation in long-term live-imaging studies49, whereas it is an
advantage in assays such as fluorescence recovery after photobleach-
ing (FRAP), in which fast fluorescence decay enhances signal50. We
isolated two designs that exhibited higher photostability than GFP
(photostable.1 & photostable.2, with seven mutations each from
PROSS-eGFP) and many significantly less photostable designs (Fig. 5A
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and Supplementary Fig. 15). At the extremes, design fast.4 (6 muta-
tions) photobleaches tenfold faster than GFP, while the design pho-
tostable.1 requires 122% of that time. Finally, we also noted large
differences in fluorescence lifetime (Supplementary Fig. 16) and pH
sensitivity (Supplementary Fig. 17). Furthermore, several mutations
enriched in designs with altered pKa are either adjacent to His amino
acids or introduce anovel His (Thr203His). Interestingly, sevendesigns
exhibit different pH sensitivity profiles when excited at either 405 or
488 nm (Supplementary Fig. 17).

Discussion
Epistasis is a significant constraint on the emergence of new activities
in proteins andother biomolecules15. Until now, experimentalmethods
to address epistasis have relied on iterative cycles of diversification
and selection, but such processes do not efficiently cover the space of
functional variants. Computational methods have used evolutionary
couplings among pairs of positions51, but such analyses require deep
and diverse sequence alignments, which are not generally available.
Other approaches have used machine-learning models trained on
high-quality and large-scale mutational data to recommend

mutations37,52,53. By contrast, htFuncLib only requires a molecular
structure (or model) and a limited sequence alignment of homologs.
Its success in generating anorder ofmagnitudemore functional active-
site mutants than were previously known for GFP verifies our under-
lying assumption that energetically incompatible mutations are a sig-
nificant source of epistasis. Furthermore, because the designs are
diverse and only target the chromophore-binding pocket, they exhibit
potentially useful functional diversity in each of the properties we
assayed.

Our implementation of htFuncLib did not target a specific func-
tional outcome, except for protein stability and compatibility with the
chromophore. This implementation is especially suitable if multiple
different and potentially incompatible functional properties are
desired. For example, FRAP experiments require fluorescent proteins
that bleach quickly, whereas long-term imaging experiments require
slow bleaching, and we recovered designs that exhibited both prop-
erties from a single library. If a specific functional goal is desired and
the molecular underpinnings of that goal are known, they can be
imposed during the design process. The high stability and brightness
of the eGFP starting point are likely to be key to obtaining so many

Fig. 5 | Functional diversity among htFuncLib designs. A A subset of tested
designs clustered by sequence similarity. The dashed line marks eGFP, data are
presented as mean values ± standard deviations. n = 3 biologically independent
samples were used for quantum yield, thermostability, photostability and spectral
measurements. One experimental sample was used for fluorescence lifetime

measurements. B Selected excitation and emission spectra in light and dark hues,
respectively. The excitation spectra of several designs are considerably different
from eGFP (Supplementary Fig. 14). C, D Structural view of thermo.5 and slow.3.
Each design exhibits six mutations from PROSS-eGFP. PROSS-eGFP and designs
colored gray and orange, respectively. Data are provided as a Source Data file.
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functional variants3,54. Further research is needed to determine whe-
ther the combination of PROSS stability design55 and htFuncLib can
access such large spaces of functional variants in less robust starting
points. Previous applications of FuncLib to enzyme active sites
observed function in 30-90% of the experimentally tested
designs24,56–59. As expected, the application of htFuncLib to very large
libraries exhibits a lower hit rate but generates orders of magnitude
more functional designs. Therefore, FuncLib and htFuncLib are com-
plementary approaches: FuncLib is relevant to experimental systems
that are only amenable to low-throughput screening, as is the case for
many enzymes, and htFuncLib to ones that can be tested at medium-
to-high throughput, such as binders and fluorescent proteins.

In a companion paper, we demonstrate that the EpiNNet strategy
is general and can be extended to design large and highly functional
enzyme libraries comprising substantial backbone conformational
diversity, including insertions and deletions36. We envision that
htFuncLib will provide a platform for designing high-yield multipoint
mutation libraries in a range of applications, including optimizing
binding affinity60 and enzyme catalytic rate and selectivity.

Methods
Library design
Phylogenetic analysis. A phylogenetic analysis was conducted as
previously24,55,61 using all sequences in the lineage of avGFP according
to FPBase35. A total of 153 sequences were retrieved from FPBase, all
synthetic variants of avGFP. Briefly, sequences were clustered by cd-
hit62 and aligned using MUSCLE63. The resulting multiple sequence
alignment (MSA) was segmented by secondary structure elements. A
position-specific scoring matrix (PSSM)64 was then derived from the
MSA segments and concatenated to create a PSSM for the whole
sequence. The PSSM is used to filter mutations absent in the PSSM at
each position and to bias the Rosetta energy function towards muta-
tions favored by the PSSM (high PSSM score).

Refinement andmutational scan. PROSS-eGFP was modeled based
on a high-resolution X-ray structure of eGFP (PDB code: 2WUR
[https://doi.org/10.2210/pdb2wur/pdb]). The eGFP-PROSS model
was subsequently refined in Rosetta as described before55. Chro-
mophore pocket positions were then manually selected, 14, 16, 18,
42, 44, 46, 61, 64, 66, 68, 69, 72, 108, 110, 112, 119, 123, 145, 150,
163, 165, 167, 181, 185, 201, 220, 224 and 42, 44, 61, 62, 69, 92, 94,
96, 112, 121, 145, 148, 150, 163, 165, 167, 181, 183, 185, 203, 205,
220, 222, 224 for the hbonds and nohbonds libraries, respec-
tively. All positions are within 8 Å from the chromophore, and
their side chains are buried within the GFP β-barrel. All mutations
with PSSM scores >−2 were then scanned in silico, as previously
described24,55. Briefly, each mutation is modeled, refined, and
scored separately on the PROSS-eGFP background. This step
calculates the ΔΔG between the mutant and eGFP-PROSS.

Spatial partitioning and sequence space selection. We split the
chromophore pocket into spatial neighborhoods, with each selected
position as a center of a distinct neighborhood. In order to capture
direct epistatic interactions, each neighborhood is extended to all
positions that interact directly with the neighborhood’s center. Here,
direct interaction is defined ashaving at least twoheavy atomswithin6
Å of the neighborhood’s central residue. Neighborhoods were manu-
ally examined, and positions that did not interact directly with the
neighborhood’s center were removed. By selecting neighborhoods
this way, we ensure overlap between proximal neighborhoods. These
overlaps ensure that no position–position interactions are missed.

Partial modeling and scoring. The number of designs encoded in
each neighborhood is calculated for each 4Gmut�wt threshold. The
energy threshold is selected to limit the number of unique variants to

under 1 million. In this particular case, the ΔΔG thresholds were set to
+5.5 and +6.0 Rosetta energy units (R.e.u.) for nohbonds and hbonds,
respectively. Neighborhoods with a sequence space smaller than
10,000 designs were fully modeled. For larger neighborhoods, only
10% of the sequence space was modeled. RosettaScripts65 and
command-line arguments for modeling calculations are in the Sup-
plementary Information.

Data aggregation and EpiNNet training. We train an EpiNNet neural
net model to predict which designs are more stable than PROSS-eGFP.
Specifically, designs that score better than the wild-type are labeled as
success (1), and the worse 50% are labeled as failed (0). Intermediate
designs are considered undetermined and discarded from subsequent
analysis. The resulting data are split into a training (80%) and a test
(20%) set.We then train amulti-layer perceptron classifier with a single
hidden layer the size of the number of selected positions. The classifier
is trainedonaone-hot encoded representation of the sequencedata to
classify whether a sequence is more or less stable than PROSS-eGFP.
The classifier is trained up to 2000 iterations. Next, we rank single-
point mutations according to the trained model: each single-point
mutation in the tolerated sequence space is fed into EpiNNet sepa-
rately and its score is recorded. The mutations are then ranked from
top to bottom according to their scores.Mutations are selected for the
library by iteratively adding the top-ranked mutations until the
resulting sequence space reaches the experimental limit of several
million sequences.

In silico testing of the enriched versus the original sequence
spaces. To ensure the resulting sequence space is enriched for low-
energy sequences, 10,000 random sequences from both the original
and enriched sequence spaces were modeled and scored (using the
same protocol as in the modeling step). The resulting score distribu-
tions were compared (Figs. 1D and 2A).

Random forest analysis. To augment the sequence data for machine-
learning prediction, we added several features based solely on the
sequence and not requiring atomistic calculations. These include the
amino acid identity at each variable position, the total number of
mutations compared to PROSS-eGFP, the number ofmutations at each
spatial neighborhood, and the number of mutations in specific areas.
In addition, for every variable position, the difference in the surface
accessible solvent area (SASA), PSSM score, and amino acid category
were also assigned (comparing the mutated amino acid and the
PROSS-eGFP identity). The mean and max values of each of these
parameters were added as well. Non-informative features and features
with low importance in initial random forest training were removed. A
prediction pipeline with two consecutive elements was trained. The
first predictor classifies sequences as either functional or non-
functional. The subsequent predictor classifies all functional sequen-
ces as either GFP, AmCyan, GFP/AmCyan, or non-functional. Both
models are gradient-boosting random forests from the LightGBM
library66.

Visualization methods. Visualization method as previously
described42. Briefly, we construct a model of molecular evolution
where a population evolves via single amino acid substitutions, and the
rate at which each possible substitution becomes fixed in the popu-
lation reflects its selective advantage or disadvantage relative to the
currently fixed sequence. More specifically, in our model, the rate of
evolution from sequence i to any mutationally adjacent sequence j is
given by

Qij =
Sij

1 � eSij

Article https://doi.org/10.1038/s41467-023-38099-z

Nature Communications |         (2023) 14:2890 8

https://doi.org/10.2210/pdb2wur/pdb


where Sij is the scaled selection coefficient (population size times the
selection coefficient of j relative to i), time is measured relative to the
amino acidmutation rate (eachpossible amino acidmutationoccurs at
rate 1), and the total leaving rate from each sequence i is given by
Qii = �P

j≠iQij . In the current context, sequences are either predicted
to be fluorescent or not, and so we set Sij = c if j is fluorescent and i is
not, Sij = � c if i is fluorescent and j is not, and otherwise Sij =0 so that
Qij = 1, corresponding to neutral evolution. For this analysis, we choose
c so that in the long-term, a population spends 60% of its time at
functional sequences, representing roughly a 60-fold enrichment of
functional sequences due to natural selection.

Given the rate matrix Q for our evolutionary model, we then
construct the visualization by using the subdominant right eigenvec-
tors associated with the smallest magnitude non-zero eigenvalues of
this rate matrix as coordinates. This produces a visualization that
reflects the long-term barriers to diffusion in sequence space, and, in
particular, clusters of sequences in the visualization correspond to sets
of initial states from which the evolutionary model approaches its
stationary distribution in the same manner, and multi-peaked fitness
landscapes appear as broadly separated clusters with one peak in each
cluster. Moreover, by scaling the axes appropriately, as is done here,
these axes canbe given units of sqrt(time), and it can be shown that the
resulting distances reflect evolutionary times under this model. In
particular, using these coordinates, the squared Euclidean distance
between arbitrary sequences i and j optimally approximates (in a
specific sense) the sum of the expected time to evolve from i to j and
the expected time to evolve from j to i. See ref. 42 for details. Calcu-
lations and plots were performed using gpmap-tools python library
(https://gpmap-tools.readthedocs.io/en/latest/).

Logistic regression and sequence logos. L2-penalized logistic
regression models were fit using scikit-learn67. Specifically, the global
model using all sequences was fit using non-penalized regression,
while the model in the neighborhood of the alternative functional
sequences highlighted in Fig. 4D was fit using L2-penalization under
one-hot encoding, using tenfold cross-validation to optimize the
hyperparameter controlling the strength of the regularization. The
regularization constant was chosen to be C = 0.5 as the strongest reg-
ularization before a drop in the cross-validated AUROC. Sequence
logos were plotted using logomaker68.

Experimental procedures
Library cloning. Each designed library was cloned separately using a
Golden-Gate assembly38. A computational algorithm optimizes a set of
Golden-Gate overhangs to minimize the total cost of ordered oligos
required to cover all mutations in the library without introducing
unwanted mutations. This results in several variable and constant
segments, with and without mutations (Supplementary Dataset 8).
Constant segments were PCR amplified with primers adding BsaI
recognition sites. These and all other DNA fragments were purified
using (HiYield Gel/PCRDNA Fragments ExtractionKit, Real Genomics).
Variable segments were ordered as degenerate oligos (Single-stranded
IDT, DNA). The single-stranded oligos were double-stranded by a short
PCR with a single primer and purified (Roche, KAPA HiFi HotStart
ReadyMix). The concentration of each segment was measured using
NanoDrop One (Thermo Scientific). A Golden-Gate assembly was
conducted using the manufacturer’s specifications. Briefly, all seg-
ments are added at an equal amount, without the vector, and assem-
bled using T4-ligase and BsaI-HF-v2 using cycles of 16°C and 37°C
(New-England Biolabs, M202 and R3733, respectively). The resulting
assembly is PCR amplified (KAPA HiFi HotStart ReadyMix) to add the
final gates and assembled into a pBAD vector with appropriate gates.

FACS sorting. E. coli BL21 (DE3) (E. cloni EXPRESS BL21 (DE3), Lucigen,
#60300-1,) cells were transformed with the pBAD plasmids containing

the libraries and grown overnight. Transformation efficiency was
estimated by plating serial dilutions of the transformed bacteria,
ensuring that, for each library, the number of transformed cells was at
least tenfold higher than the designed library size. 1 µl from each
transformation was plated in dilution to estimate transformation effi-
ciency. Cells were diluted 1:200 in 2YTmedia (Sigma Aldrich, #Y2377),
grown to 0.6–8OD, induced using 0.2% arabinose (Sigma Aldrich,
#A3256), and shaken at 20 °C overnight. Induced cultures were
transferred to 4 °C for another night to allow maturation. Cells were
centrifuged at 1400 × g for 10min, decanted, and resuspended with
cold PBS (Sartorius #02-020-1A) twice. The cells were then sorted
using a FACSAriaIII (BD Biosciences) with a 70 µmdiameter nozzle and
a cell flow rate of 10,000–20,000 events per second. A preliminary
sorting gate was done on forward scatter (FSC) Vs. side scatter (SSC)
parameters to select single bacteria cells alongside the AlexaFluor488
(excitation at 488 nm, emission detection at 530 ± 15 nm) and AmCyan
(excitation at 405 nm, emission detection at 525 ± 25 nm) channels.
Sorted cells were collected in SOC media (Thermo Fisher, #15544034,
Thermo Fisher), grown overnight at 37 °C and transferred to 2YT
supplemented with ampicillin. Plasmids were extracted by mini-prep
(Qiagen, #27104). Plasmids from sorted populationswere extracted by
mini-prep, transformed and sorted again (using the same procedure)
to reduce false-positives.

Deep sequencing. Plasmids from presorted and sorted populations
were PCR amplified (KAPA HiFi HotStart ReadyMix) using primers to
generate 590 bp amplicons, containing all variable positions excluding
position 16 (forward primer: GGGCGATGCCACCTACGGCAAG and
reverse primer: GAGTGATCCCGGCGGCCTC). Amplicon libraries were
prepared at the Weizmann Institute’s Israel National Center for Per-
sonalized Medicine. Libraries were prepared from 20ng of DNA, as
previously described69. Libraries were quantified by Qubit (Thermo
fisher scientific) and TapeStation (Agilent). Sequencing was done on a
Miseq instrument (Illumina) using a V3 600 cycles kit (Illumina, # MS-
102-3003), using paired-end sequencing. Sequences were analyzed
using the LAST softwarepackage andpython70,71. Fastq sequenceswere
aligned to all designed oligos using the LAST align function. Sequences
were consequently filtered for low LAST scores, and assigned to the
best aligned oligo. Pair-end reads were identified using MiSeq UMIs
(unique molecular identifiers). Enrichment values were calculated as
the ratio between read frequencies in the sorted and appropriate
unsorted samples. The presorted libraries are too large to be com-
pletely covered by the deep-sequencing analysis. We, therefore, did
not expect to detect all combinations, specifically in the nohbonds
library. However, given that the transformation efficiency was greater
than 5 × 107, and >108 cells were sorted by FACS, it is likely that the
majority of the functional designswere recovered.We thus considered
all sequences found solely in the sorted samples to be enriched. The
sorted library will be deposited in AddGene upon publication.

Cloning of single designs. Genes encoding for selected designs were
ordered from Twist Bioscience and codon-optimized for E. coli. Genes
were inserted in the pET28 vector using BsaI restriction sites pre-
viously cloned using QuickChange. All plasmids were sequence ver-
ified. Designs selected directly from FACS sorting were transferred
from the pBAD vector into pET28 by PCR amplifying (KAPA HiFi Hot-
Start ReadyMix) the insert with primers and adding BsaI recognition
sites. Amplicons were purified and inserted into a pET28 vector with
BsaI insertion sites using Golden-Gate assembly (New-England Biolabs,
#M202 and #R3733, respectively). All plasmids were individually ver-
ified using Sanger sequencing.

Protein expression and purification. pET28 plasmids containing the
relevant insert were transformed into BL21 (DE3) (Thermo Fisher,
#EC0114) cells and grown overnight. Overnight cultures were diluted
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1:100 in 10ml conical tubes containing 2YT and 50ug/ml kanamycin
(Sigma Aldrich, #BP861), grown to OD=0.6–8, induced using 1mM
IPTG (Sigma Aldrich, #I6758), and shaken overnight at 20 °C. After
expression, samples were shaken at 4 °C to maximize chromophore
maturation. Samples were centrifuged at 2480 × g for 20min at 4°C
and resuspended in 1ml lysis buffer containing PBS, 0.01%Triton x100,
0.02% Benzonase, 0.1% protease inhibitor cocktail, and 0.1mg/ml
lysozyme (Sigma Aldrich, #9036-19-5, #E1014, #P2714, and #MAK405).
Samples were then sonicated and centrifuged at 18,400 × g at 4 °C for
45min. 500 µl Ni-NTA beads (EMD Millipore, #LSKMAGH10) per sam-
plewere resuspended in PBSand allocated into an appropriate number
of 1.7ml tubes. The supernatant of each sample was transferred to a
tube containing 500 µl Ni-NTA beads and 10mM imidazole (Sigma
Aldrich, #288-32-4). Samples were shaken at room temperature for 2 h
for binding, centrifuged at 1400 × g for 3min, and the supernatant was
removed. Beads were resuspended in PBS with 20mM imidazole and
shaken for 30min at room temperature. Samples were centrifuged
again at 1400 × g for 3min, and the supernatantwas removed. Samples
were eluted using PBS with 500mM imidazole, shaken for 1 h at room
temperature, and centrifuged at 1400 × g for 5min. The supernatant
was recovered and kept at 4 °C. Protein purity was estimated by SDS-
PAGE gel electrophoresis, and protein concentration was determined
using NanoDrop One (Thermo Scientific).

Functional thermostability. Functional thermostability wasmeasured
similarly to SYPRO orangemeasurements72. 10 µMof each design were
diluted in PBS in triplicates and placed in a 96-well plate (20MicroAmp
Fast Optical 96W Reaction Plate, Thermo Fisher, and MicroAmp
Optical Adhesive Film). A ViiA7 real-time PCR instrument (Applied
Biosystems) was used to measure fluorescence during heating from
25–99.9 °C at 0.05 °C/s. Raw data were analyzed using Python to find
the temperature at which fluorescence was 50% of the max for
each well.

Fluorescence lifetime. Fluorescence lifetime measurements were
performed using a MicroTime200 optical setup. GFP samples were
placed as drops on top of 175 µm glass slides (Precision Cover Glass
No:1.5H, Marienfeld), mounted on an inverted microscope (IX83
inverted, Olympus) with a 60×water immersion objective (UPlanSApo,
Superapochromat, Olympus). A 485 nm pulsed-interleaved excitation
laser (LDH-D-C-485, PicoQuant) with a repetition rate of 20MHz
(50ns) was directed via a dichroicmirror (ZT473/594rpc, Chroma) and
focused ~10 µm into the sample. The fluorescence emission signal
passed through a 50 µm pinhole and an emission filter (HC520/35,
Semrock). Photons were focused into a single-photon avalanche diode
(SPCM-AQRH-14-TR, Excelitas) coupled to a counting module (Pico-
Harp 400, PicoQuant), and time-correlated single-photon counting
(TCSPC) histograms were generated. Each sample was measured for
1–5min with laser intensities between 2–20 µW, adjusted using OD
filters to reach a photon count rate of ~20 kHz. The profile for the
instrument response function (IRF) was obtained by measuring scat-
tered light from a mirror. The fluorescence decay curves were fitted
with a bi-exponential fluorescence decay model by iterative IRF-
reconvolution to extract the characteristic lifetimes andweights of the
GFP designs.

Photobleaching. Photobleaching was measured similarly as pre-
viously described73. A final concentration of 1 µM of each variant was
embedded in polyacrylamide gels (168 µl 30% acrylamide/bis-acryla-
mide, 25 µl PBS, 0.5 µl TEMED, and3 µl 10%APS (SigmaAldrich, #A3574,
#110-18-9 and #SML2389, respectively) and 57 µl fluorescent protein in
PBS) inside microscope slides (ibidi, µ-Slide 8-well). Slides were
mounted to Eclipse TI-E Nikon inverted microscope (Nikon Instru-
ments Inc., Melville, NY) with Plan Apo DIC 60X/1.4 NA objective and
equipped with a cooled electron-multiplying charge-coupled device

camera (IXON ULTRA 888; Andor). The measurement consisted of six
repetitions of exposure to the strongest available LED light at either
405 or 488 nm for 15min while capturing an image every five seconds.
Images were analyzed using ImageJ to recover themean intensity from
each frame. A bi-exponential function was fitted to normalized
brightness as a function of exposure time. Theweighted average of the
exponential coefficients was calculated. Outliers were removed, and at
least three measurements were used to calculate means and standard
deviations.

Fluorescence spectra and quantum yield. Proteins were diluted in
PBS to OD 0.05 at either 450 or 400nm in disposable fluorescence
cuvettes (ordered fromAlex RedNoCUV010015) in triplicates. ODwas
measured on a Cary 60 UV–Vis spectrophotometer (Agilent Technol-
ogies) from 300 to 650 nm. Both emission and excitation spectra were
measured with the same samples on a fluorescence spectro-
photometer (Varian Cary Eclipse). Quantum yield was calculated using
the relative method described in the literature73,74. Briefly, the ratio
between absorbance at the excitation wavelength and the integral of
emission spectra are measured for each sample and a standard with
known quantum yield. Fluorescein and 1-aminoanthracene were used
as standards for measurements at excitation wavelengths 450 and
400nm, respectively.

pH sensitivity. Buffers at pH ranging from 3.0 to 10 were prepared as
previously reported73. One hundred microliters of pH buffer were
placed in black flat-bottom 96-well plates (Greiner Bio-One, #655090),
and 2 µg of fluorescent proteins were added. Samples were incubated
at room temperature for 1 h, and fluorescence at both 405 and 488mn
and emission at 520 nm was measured for all wells (Tecan, Infi-
nite M Plex).

Multipoint mutants from other GFP datasets. To compare the GFP
variants considered here with that studied earlier, we extracted from
previous works (refs. 17,18) sequences and fluorescences of variants
having mutations in the chromophore pocket positions only (corre-
sponding to 2WURGFPpositions 14, 16, 18, 42, 44, 46, 61, 62, 63, 64, 66,
68, 69, 72, 92, 94, 96, 108, 110, 112, 119, 121, 123, 145, 148, 150, 163, 165,
167, 181, 183, 185, 201, 203, 205, 220, 222, 224). The four GFP variants
are Aequorea victoria GFP (avGFP4), Aequorea macrodactyla GFP
(amacGFP3), Clytia gregaria (cgreGFP3), and Pontellina plumata GFP
(ppluGFP3). Our reference GFP sequence was aligned to the alignment
of the avGFP, amacGFP, cgreGFP, and ppluGFP.

Fluorescence versus the number ofmutations in the active site. The
fluorescence F of different GFP variants was fit to the exponential-
decline and negative-epistasis function40:

F = exp �αn� βn2� �
, ð1Þ

Where n is the number of mutations. Equation (1) can be rewritten as:

F = exp �An� B
nðn� 1Þ

2

� �
, ð2Þ

WhereA=α � β represents robustness, andB=2β represents epistasis.
We required A ≥ 0 and B ≥ 0. The analysis is provided as a Jupyter
notebook ‘GFP_threshold_epistasis.ipynb’.

Statistics and reproducibility. Quantum yield and all spectral mea-
surements were conducted with n = 3 biological samples. Functional
thermostabilitywasmeasuredwithn = 3 biological repeats on separate
dates andplates. Fluorescence lifetimemeasurementswere conducted
once for all samples except for eGFP, whichwasmeasured three times.
Measurements were conducted until >10,000 photons were detected
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at the peak; Fluorescence lifetime of eGFP was measured with n = 3
biological samples, with mean 2.2 ± 0.1 (ns), indicating high reprodu-
cibility. Photostability was measured with n = 6 biological repeats,
except for eGFP which was measured in all tested slides; we excluded
bleaching curves for whichwe could not fit our equations with r2 < 0.9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sorted and presorted libraries, together with designs of special
interest, were deposited to AddGene (deposit number 81660). The
deep-sequencing data generated in this study have been deposited in
the Figshare database under accession code 21922365 [https://doi.org/
10.6084/m9.figshare.21922365]. Source data are provided with
this paper.

Code availability
Jupyter notebooks for the evolutionary analysis can be found at
https://bitbucket.org/cmartiga/gfp_core/src/master. Jupyter note-
books, including data, for other analyses and the htFuncLib algorithm,
are available at https://github.com/Fleishman-Lab/htFuncLib75.
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