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Carbon mitigation potential afforded by
rooftop photovoltaic in China

Zhixin Zhang 1,2,3, Min Chen 1,4,5,6 , Teng Zhong 1,3,5, Rui Zhu7,
ZhenQian 3, FanZhang8, YueYang3, Kai Zhang3, PaoloSanti 9, KaicunWang10,
Yingxia Pu2,5,11, Lixin Tian12,13, Guonian Lü 1,3,5 & Jinyue Yan 14,15

Rooftop photovoltaics (RPVs) are crucial in achieving energy transition and
climate goals, especially in cities with high building density and substantial
energy consumption. Estimating RPV carbon mitigation potential at the city
level of an entire large country is challenging given difficulties in assessing
rooftop area. Here, using multi-source heterogeneous geospatial data and
machine learning regression, we identify a total of 65,962 km2 rooftop area in
2020 for 354 Chinese cities, which represents 4 billion tons of carbon miti-
gation under ideal assumptions. Considering urban land expansion and power
mix transformation, the potential remains at 3-4 billion tons in 2030, when
China plans to reach its carbon peak. However, most cities have exploited less
than 1% of their potential. We provide analysis of geographical endowment to
better support future practice. Our study provides critical insights for targeted
RPV development in China and can serve as a foundation for similar work in
other countries.

Countries around the world are cooperating extensively1 to tackle the
global challenge of climate change due to greenhouse gas emissions.
Currently, as one of the top CO2 emitters of the world, with annual
carbon emissions in 2020 exceeding 10 billion tons2, China hasmade a
series of carbon mitigation efforts3,4. At the 75th session of the United
Nations General Assembly, China committed to reach its carbon peak
by 2030 and achieve carbon neutrality by 20605. As a major energy
producer with high fossil coal dependency, China’s power sector
accounts for approximately half of the country’s energy-related carbon

emissions6. Solar photovoltaic systems have been recognized as a
promising technology that can decarbonize the power sector7, with an
estimated potential to meet 25–49% of the global electricity demand
by 20508. In 2020, China’s cumulative installed PV capacity reached
253GW, accounting for one-third of the world’s capacity9. Recently,
distributed photovoltaic (DPV) systems are preferred, due to their
broad applicability, ease of local implementation, lower peak demand,
and fewer transmission problems10; the share of DPV systems installed
nationwide rose from 13% in 2016 to 31% in 202011. The very large
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building stock in China, which has experienced an urbanization and
construction boom in recent decades12, suggests favorable site con-
ditions for the development of DPV systems13. Also, the integration of
PV with existing infrastructure offers new features for the develop-
ment and implementation of renewable distributed power
generation14,15. To better understand the development potential of
RPVs and the contributions of the system to carbonmitigation efforts,
nationwide assessments are urgently needed.

Evaluating China’s RPV carbon mitigation potential at the city
level is critical for targeted sustainable energy planning16,17. A few PV
application studies at the city level have been presented as case stu-
dies, with more in-depth analyses based on field investigation18. How-
ever, there are over 300 prefecture-level cities in China, each with
different geographical conditions and socioeconomic characteristics.
The existing studies of a single city are limited to local development
and therefore cannot beused as adequate references for other cities in
China19. Notably, RPV systems are deployed in a decentralizedmanner,
which increases the complexity of their assessment20, with the greatest
inaccuracy attributed to the delineation and calculation of building
rooftops21. In previous studies, detailedmapping data of rooftop areas
were acquired via high-resolution remote sensing and at high infor-
mation processing costs; therefore, this data is difficult to obtain for
the majority of cities in China22. Most of the existing multicity studies
apply easily accessible national statistics, such as floor area and land
use, to indirectly determine the rooftop area11,23,24. These methods are
effective when the data for rooftop area is not available; however,
the accuracy of the assessments is limited by the quality of the input
data25. In addition, national statistics are generally aggregated at the
provincial or higher level, which leads to substantial gaps in city-level
assessments26,27. Detailed geospatial data with higher accuracy is
essential to estimate the RPV potential. Therefore, there is a need to
develop newmethods to address the lack of data for the total rooftop
area on a national scale.

Currently, urban construction in China is in a phase of rapid
development. Studies on urban information acquisition are constantly
emerging and being improved with the support of new technologies
such as artificial intelligence, whichprovides newopportunities for the
establishment of refined urban measurements28–31. To address the
main data and computational bottleneck generally experienced in city-
level estimations, an accuratemethodof obtaining rooftop areas at the
scale of an entire large country is crucial. For this purpose, we intro-
duce an accurate machine learning-based regression analysis that
relied on multisource heterogeneous geospatial data, in particular a
vectorized rooftop area dataset, whichwasdeveloped by us previously
and covered 16% of the total area of China32. Our study quantifies the
RPV carbonmitigation potential of 354 Chinese cities, covering 88% of
the total area of the country in 2020. In addition, we clarify the geo-
graphical heterogeneity in the RPV carbon mitigation potential and
reveal the reasons for this variation through clustering analysis. Con-
sidering different scenarios of urban land expansion and power mix
transformation, we estimate the future changes of the potential in
2030, when China plans to reach its carbon peak. Additionally, the
current status of PV installation, energy consumption, and grid emis-
sions are introduced to support the sustainable exploitation of the
estimated potential.

Results
Study area and city representations
This study refines building rooftop area measurements from a large-
scale vector building rooftop area dataset thatwe created in a previous
work, the overall accuracy and F1 score of which are 98% and 83%,
respectively32. The dataset covers 16% of the total area of China, con-
taining cities with different administrative levels and geographical
locations that are economically, politically, andgeographically diverse.
Based on this dataset, the national rooftop area was obtained using a

machine learning-based regression model. The conversion of rooftop
area to solar potential was carried out using a surface solar radiation
dataset for China with a high-resolution (10 km), which performed
better than most conventional products33. To assess the carbon miti-
gation of the RPVs, we used a carbon mitigation factor, which mea-
sures the carbon mitigation when RPV systems replace the electricity
generated by existing and newly-built power plants in the local power
grid. The carbon mitigation factor was determined through the base-
line emission factors of China’s regional power grid34 (Supplementary
Notes 1–2 and Supplementary Table 1).

As the baseline emission factors of Hong Kong, Macau, Taiwan,
and Tibet were not available, the study area of this work included 354
Chinese cities, covering an area of over 8 million km2 (Supplementary
Note 3). Among them, the rooftop areas of 86 cities were obtained
based on the vectorized dataset, while those of the remaining 268
cities were extrapolated by regression analysis through multisource
heterogeneous geospatial data and machine learning (Fig. 1). In this
study, the RPV carbon mitigation potential was defined as the CO2

mitigation resulting from the replacement of grid electricity by elec-
tricity generated by RPV systems. The results were based on assump-
tions of rooftop availability of 35%, PV panel conversion efficiency of
20%, and overall RPV system efficiency of 80%. The main input and
output data for city-level assessments are provided in Supplementary
Data 1. To explain the variations due to different RPV system para-
meters and rooftop availability, we recorded a set of national RPV
carbon mitigation potentials in 2020 for different settings (Supple-
mentary Table 2). Additional assumptions and limitations in the
interpretation of themain results are documented in theMethods and
Discussion sections, respectively.

Extrapolation and validation of rooftop area
The extrapolation of the rooftop area was performed with cells as the
basic unit; each cell had an area of 10 km2. The study area was parti-
tioned into 1,045,022 square cells. The 86 cities having available
measured rooftop area values were selected as the sample area, with a
total of 191,370 cells (Supplementary Table 3). To build an extrapola-
tion regression model of the rooftop area, four indicators closely
related to urban construction, including road length, built-up area,
population size, and night light intensity were selected as explanatory
variables. Publicly accessible and high-quality data including vector
road networkdata fromOpenStreetMap (OSM)35, land cover data from
the Environmental Systems Research Institute (ESRI) (resolution of
10m)36, raster population data fromWorldPop (resolution of 100m)37,
and a nighttime lightmap fromEarthObservationGroup (resolutionof
500m)38 were used in this study (Fig. 2).

The selected explanatory variables were found to correlate well
with the rooftop area (Fig. 3). Sensitivity analysiswas also conducted to
prove the effectiveness of the selected variables (Supplementary
Note 4 and Supplementary Tables 4–6). We applied the random forest
algorithm to build a regression model based on the divided data. The
algorithm’s hyperparameters were adjustedby 10-fold cross-validation
(Supplementary Table 7), and finally to build a model that could pre-
dict the rooftop area accurately. In our tests, the regression model
based on the random forest algorithm provided better accuracy
(goodness of fit, R2) and less overall error (mean absolute error, MAE)
when compared with other models (Supplementary Note 5 and Sup-
plementary Table 8).

The trained model was applied to the non-sampled areas in 268
cities to obtain the rooftop area prediction values. To validate the
extrapolation results, three representative cities were selected in each
of the six geographic regions of China to form a validation dataset
containing 18 cities and covering 134,29 cells. To obtain ground truth
data for validation, we used the deep learning semantic segmentation
method (applied in a previous work32) to extract the building rooftops
from high-resolution satellite images (Supplementary Note 6 and
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Supplementary Fig. 1). According to the comparison of the ground
truth and extrapolated data, the extrapolation model we established
exhibited good generalization capability and can provide refined data
for the development of large-scale RPV assessment. For each 10 km2

cell, the MAE was only 0.06 km2, and the majority of cells had an error
within −0.05–0.05 km2. At the city level, a cumulative error of −26 km2

was recorded in the validation area containing a total rooftop area of
2641 km2, indicating that the relative error was only −1%. The relative
error for each city did not exceed ±20% (Supplementary Table 9 and
Supplementary Fig. 2).

Assessment of current RPV carbon mitigation potential
Toclarify thedifferences in location conditions that determine theRPV
carbon mitigation potential, we classified the 354 cities into four
groups, based on three representative indicators: rooftop area, solar
radiation, andgrid emissionsusingK-means++ clustering. This enabled
us to analyze the heterogeneity of RPV potential across all the cities
and to understand its causes. One-way analysis of variance (ANOVA)39

was used to conduct pairwise comparisons between the different
clusters (Supplementary Table 10). Further, 94% of these comparisons
passed the significance test at the 0.01 level, indicating that the clus-
tering results reasonably reflect the differences between the cities.

As shown in Fig. 4, we observed a clear geographic agglomeration
of cities within each cluster, which indicated that the neighboring city
groups tended to have similar location conditions for the application
of RPVs. Cluster 1, which was geographically dispersed, contained
some of the largest cities in China in terms of population size,
including municipalities such as Shanghai, Beijing, and Tianjin, along
with provincial capitals or regional economic centers such as
Guangzhou, Suzhou, and Hangzhou. A large population size generally

implies a large building stock, and the average rooftop area of cities
within Cluster 1 amounted to 498 km2, approximately three times the
estimated average. The cities in Cluster 2 and Cluster 3 were mainly
distributed in the densely populated central and eastern regions,
occupying 62% of the total rooftop area. The cities in Cluster 2 dis-
played a relatively clean electricity mix, with a lower average grid
emission (693 g CO2/kWh) than that observed in Cluster 3 (837 g CO2/
kWh). The cities in Cluster 4 were mainly located in the sparsely
populated and underdeveloped western regions of China; among the
four clusters, the average rooftop area of the cities in this cluster was
the smallest (80 km2), but the solar radiation intensity was the highest
(1667 kWh/m2).

The assessed installed capacity, power generation, and carbon
mitigation potential of the RPVs are shown in Fig. 5. The 354 Chinese
cities exhibited a total RPV reduction potential of 4 billion tons (BT) in
2020, which is nearly 70% of the carbon emissions from the electricity
and heat sector. The potential of the cities ranges from 0.04 to 52
million tons (MT), with an average value of 11 MT. Thus, this study
contributes to a deeper understanding of this large variation at the city
level. The cities in Clusters 1–3 in the southeastern regions contributed
89% of the RPV carbonmitigation potential, which can be attributed to
the large population size and abundant building stock in these areas. In
particular, the top cities, in terms of carbon mitigation potentials all
appear in Cluster 1, with an average potential of 29MT. Comparing the
RPV carbon mitigation potential in these cities with that of the Three
Gorges Dam in 2020, the latter generated 112 TWh of electricity,
directly reducing 94 MT of CO2

40. This indicates that some cities in
Cluster 1, includingWeifang (52MT), Chongqing (47MT), and Linyi (46
MT), have an RPV carbon mitigation potential roughly half that of the
world’s largest hydroelectric plants. Due to higher grid emissions and

Fig. 1 | Overview of the study area and city representations. a Geographical
scope of the vectorized rooftop data, b solar radiation data, and c grid emission
data. d Scope of the study area extrapolated from 86 cities with measured rooftop

area values to other 268 cities in China. Data Credits: All the city administrative
boundaries are from Amap.
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better solar radiation conditions, cities in Cluster 3 showed greater
average potential (11 MT) than those in Cluster 2 (9 MT). Cities in
Cluster 4, which accounted for 40% of the total study area and gen-
erally displayed optimal solar insolation endowment, had the lowest
average potential (6 MT), due to the lack of rooftop area. The RPV
carbon mitigation potential per capita population and GDP were also
estimated, showing an increasing trend from the southeast to the
northwest (Supplementary Figs. 3, 4).

Assessment of future RPV carbon mitigation potential
Understanding the future changes in China’s RPV carbon mitigation
potential is important for a deeperunderstandingof its contribution to
the country’s dual carbon goals. Although the available data did not
allow us to fully consider all the factors thatmay cause future changes,
we selected two key factors: urban land expansion and energy mix
transformation, on which we analyzed the future changes by relating
our findings to the literature. For this assessment, we chose 2030, the
year when China plans to reach its carbon peak.

China’s rapid urbanization, population growth, and its popula-
tion’s increasing disposable income will lead to the continuous
expansion of its building stock41. The increase in building stock will
further enhance the potential for RPV development, the impact of
whichwas not fully considered yet. Notably, urban building design and
planning in China follows uniform national standards, and urban
building density is strictly controlled by the government42,43. More-
over, in most existing studies, the ratio of building rooftop area to
built-up area ranged from 0.15–0.3044. Therefore, in this study, we

assumed that this ratio would remain stable until 2030, and thus, the
growth of rooftop areas was projected, based on the expansion of
urban land. The future urban land data was obtained from a global
study that considered different future social development pathways,
indicating that the urban land expansion rate in China will range from
9% to 14% from2020 to 203045 (SupplementaryTable 11). Basedon this
range, this study sets low and high-speed scenarios for urban land
expansion from 2020 to 2030 (Table 1).

The potential of RPVs to reduce carbon emissions in China is
largely influenced by the country’s current electricity mix. The next
question in the future is: How will the impact of RPV on carbon emis-
sions change as China’s power sector goes green? The Chinese gov-
ernment has set ambitious greenhouse gas mitigation targets for the
next few decades and is committed to restructuring its energy mix.
According to anenergy sector roadmap to carbonneutrality inChina46,
the current carbon intensity of China’s electricity sector decreases at
an average annual rate of 1%. Andwith the goal of carbonneutrality, the
rate will rise to 3% in the 2020 s. Based on this projection, we set the
announced pledges (APS) scenario and stated policies (STEPS) sce-
nario for energy mix transformation from 2020 to 2030.

Depending on the urban land expansion scenarios, compared to
the 2020 data, China’s rooftop area is estimated to grow by
5937–9235 km2 in 2030, indicating an increase in thepotential installed
capacity (416–646GW) over the decade. In the future, RPV will
undoubtedly make a substantial contribution to China’s projected
target of 400GW of installed PV capacity by 2030. In the APS energy
mix transformation scenario, where the grid emissions drop sharply,
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the carbon mitigation potential of the RPV is reduced by more than
20%, even when considering the potential increase in the installed
capacity. However, in the STEPS scenario, the grid emissions remained
at a high level, with the final estimated potential being slightly higher
or lower than that in 2020. This also means that for China, the RPV
mitigation potential will gradually reduce with the penetration of
renewable energy and the decarbonization of the power sector.
However, RPV may still be considerable over the next decade.

Exploitation of RPV carbon mitigation potential
To understand how to exploitation the theoretical potential for the
transformation of China’s energymix and to help achieve the country’s
carbon mitigation targets, we conducted in-depth quantitative and
qualitative analyses (Fig. 6). The quantitative analysis ranked the
priority of cities to develop RPVs in quartiles, using the volume and
intensity of carbon mitigation as indicators. The qualitative analysis
explored the development of the theoretical potential, in terms of the
current PV installation, energy consumption, and carbon emissions.
The analyses were conducted on a provincial basis, deepening the
understanding of the transition from theory to practice.

The volume of carbonmitigation follows a top-down perspective,
where governments are typically more concerned with whether the
total local potential can support the goal of achieving the established
macro targets (Fig. 6a). The intensity of carbon mitigation follows a
bottom-up perspective, where businesses and individuals are typically
more concerned with whether the potential per unit can provide high
benefits (Fig. 6b). Taking, for example, the 11 prefectures in Shanxi
Province, Yuncheng contributed the most RPV carbon mitigation
potential, accounting for 18% of the provincial total, which is more
capable of relieving the provincial carbon mitigation pressure. Mean-
while, Shuozhou contributed thehighest RPVmitigation intensity,with
4% higher than the provincial average, which is more capable of

achieving higher environmental benefits when implementing an RPV
project. In addition, it is crucial to comprehensively consider the
volumeand intensity of carbonmitigation. Citieswith both lowvolume
and intensity of carbon mitigation potential (such as Tongren, Zigong
and Anshun) may face more pressure to implement RPV (Fig. 6c).

To demonstrate the gap between the theoretical and existing
installed capacity, the cumulative DPV installed capacity data for the
whole country in 2018 was used47, along with the 80% share of the RPVs
in the DPVs11. The comparison shows that 73% of the provinces/muni-
cipalities have developed <1% of their installed potential (Fig. 6d). This
indicates that, althoughChina has becomea leading country in absolute
global PV production and installed capacity, there is still plenty of room
for furthermarket expansion. To demonstrate the comparison between
the theoretical power generation and current electricity consumption,
provincial electricity consumption data for 2020 were used48. The
results indicated that 80% of the provinces/municipalities had power
generation potential that exceeded half of the local electricity con-
sumption (Fig. 6e). However, the development of RPVs in some regions
may not be enough to supplement the local electricity demand. To
demonstrate the comparison between theoretical carbon mitigation
and the current carbon emissions, local carbon emissions from the
electricity and heat sector in 2019 were used49. The results indicated
that, in the northern and northeastern power grids, the mitigation of
carbon emissions per unit of RPV power generation will be more pro-
nounced (Fig. 6f). From the perspective of power decarbonization, in
provinces/municipalities with high coal dependencies such as Ningxia
and Shanxi, where manufacturing and heavy industry are dense, the
development of DPVs can better facilitate local power transformation.

Discussion
This study provides a national assessment of RPV carbon mitigation
potential at the city level in China. Based on multisource

Fig. 3 | Relationship between inputs, distribution of errors, and performance
of the extrapolation model. a Road length, b proportion of built-up area,
c population size, and d nighttime light intensity relative to the rooftop area. The
Pearson correlation coefficients (CC) for these distributions are 0.75, 0.83, 0.52,
and 0.69, respectively (significant at the 0.0001 level). e When the trained model

was used to predict the validationdataset, the histogramdistribution of prediction
errors was bell-shaped, with most of the grids lying within −0.05–0.05 km2, and
with a mean absolute error (MAE) of 0.06 km2. f The machine learning regression
model based on the random forest approach provided sufficient prediction
accuracy with an R2 value of 0.83.
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Fig. 4 | Clustering analysis of cities, based on location conditions that deter-
mine the RPV carbon mitigation potential. a K-means++ clustering was per-
formed for the three types of location conditions that determine the RPV carbon
mitigation potential, and the 354 cities were categorized into four clusters with
statistically significant differences in rooftop area, solar radiation, and grid

emission. b The map and box plot display the spatial distribution and location
condition characteristics of cities in each cluster, respectively. The east–west
divisions portray the differences in the rooftop areas and solar radiation intensity,
and the north–south divisions portray the differences in the grid-level emissions.
Data Credits: All the city administrative boundaries are from Amap.
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Fig. 5 | Key indexes of the RPV carbonmitigation potential assessment for 354
Chinese cities in 2020. a Geographical distribution of the RPV installed potential,
b power generation potential, and c carbon mitigation potential for the 354 cities.
The left and right sides of the figure represent the results aggregated at the city and
cluster levels, respectively. The cities in Cluster 1 generally have the largest

population and a productive economy, representing the largest installed and
power generation scale, with a contribution of 29% of the total carbon mitigation
potential, while Cluster 4 accounted for only 11%. Data Credits: All the city admin-
istrative boundaries are from Amap.
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heterogeneous geospatial data and machine learning regression
method, the key data and computational limitations generally faced in
existing estimation are addressed. As part of the assessment, we cre-
ated (1) a national rooftop area dataset with high-resolution of 10 km2

grid, (2) a national RPV carbon mitigation potential dataset at the city
level. Furthermore, the scenarios of urban land expansion and power
mix transformation were considered, in order to understand the var-
iation in RPV carbon mitigation potential by 2030. The current status
of installed capacity, energy consumption, and grid emissions in China
was introduced to understand how to optimally exploit the potential.
Despite various favorable policies aimed at promoting DPV develop-
ment, local adoption of RPVs is still quite limited relative to long-term
national goals, and more targeted measures are required to increase
public awareness froma regional perspective. Thus, thefindings of this
study can help identify key factors for local RPV development through
trend simulation, impact analysis, and regional comparisons.

Our assessment has important implications for addressing the
dual challenges of sustainable development and climate change. First,
the total RPV carbon mitigation potential of the 354 cities in 2020 was
determined (4 BT), which amounted to nearly 70% of the carbon
emissions from the electricity and heat sector. This highlighted an
important aspect of solar resource development, suggesting a greater
use of building rooftops for the development of DPV systems in the
context of dual carbon goals; this can help China because it has limited
land space available for PV installation. Second, the regional analysis
indicated that approximately 89% of the potential was located in the
densely populated southeastern regions. This suggested that the
eastern cities, having higher demographic dividends, could be the first
to decarbonize the power generation infrastructure by deploying
RPVs. Third, as for the sparsely populated northwestern cities, they are
considered more suitable for centralized PV development. Fourth, for
highly industrialized cities with high coal dependency, it is more
important and necessary to develop RPVs and accelerate the con-
struction of a new energy-based power system.

Our city-level assessment provides quantitative indicators of the
volumeand intensity of carbonmitigation fromdifferent perspectives,
both top-down and bottom-up. This can help local governments,
companies, and individuals to identify locations suitable for the rapid
deployment of RPV systems and to promote energy justice. The
assessment also provides insightful findings and detailed datasets of
RPV potential, which can improve future models of carbon-neutral
scenarios and underpin important national energy policies. This will
undoubtedly benefit the exploration of the possibilities of a sustain-
able and inclusive low-carbon future.

The estimation results in this study portrayed the theoretical
maximum carbon mitigation potential of RPV systems in China. In our
main analysis, the resultswere basedon the assumption that 35%of the
rooftops were available for RPV installation. In the current literature,
reducing the total rooftop area to the available rooftop area is typically
accomplished by a rooftop scaling factor that represents the loss of
rooftop area due to orientation, slope, and obstacles, etc. Although the
conversion factor currently used has covered the above aspects, it is a
quantification of the average situation at the national level. City-level

availability may vary, for which we conducted supplementary studies
to provide more understanding (Supplementary Note 7 and Supple-
mentary Tables 15–17). In addition, we provided the variations in the
RPV carbon mitigation potential as an uncertainty analysis for the
combination of the rooftop availability and panel efficiency.

Notably, in conventional power systems, which are dominated by
fossil fuel-based generation, the power output can be adjusted
according to hourly, weekly, and seasonal fluctuations in load. How-
ever solar energy availability is dependent on weather conditions,
making this type of energy inflexible. To increase the future penetra-
tion of RPVs, there is a need in future studies to further explore how to
improve the flexibility of RPV energy production. For example, com-
bining RPVs with energy storage technology to achieve continuous
power supply at night and reduce stress on the power grid. Accord-
ingly, the complementarity between renewable energy sources is
another possible solution to enhance the stability of the power grid. In
fact, the Chinese government is making continuous efforts to advance
the efficient future deployment of PV systems.MostChineseprovinces
are currently promoting policies to equip PV energy storage facilities
at no less than 10% (and in some cities even 20%) of PV installed
capacity50,51. Additionally, more and more renewable energy pilots are
being built to explore new modes of solar-wind-hydro integration.

Economic factors are another important aspect to exploit the
technical potential of RPV. Although the scope of this work does not
include a detailed assessment of the economic feasibility at city scale,
the existing literature has provided a basic understanding. In 2020, the
initial investment cost of commercial and industrial DPV systems in
China is 3.38 Yuan/W. The levelized cost of energy (LCOE) for DPV
systems under the full investment model is 0.17, 0.20, 0.26, and 0.31
Yuan/kWh at 1800, 1500, 1200, and 1000 equivalent utilization hours,
respectively52. Without subsidies, commercial and industrial DPV in all
344 Chinese cities has achieved 100% user-side grid parity10, and
household DPV in 86% cities has been shown to be economically
viable11. In addition, China has implemented a series of large-scale
initiatives to systematically deploy PV projects to alleviate poverty in
rural areas53.

Even with its limitations and shortcomings, the current study
provides scholars with a national-level dataset to support future work.
Future studies could improve the accuracy of rooftop area prediction
by introducing more comprehensive explanatory variables and higher
resolution training data, thus enabling a more detailed national-level
assessment of RPV carbon mitigation potential. In order to better
understand the environmental benefits that RPV systems can provide
in the future, detailed assessments of the costs associated with ful-
filling their abatement potential are also relevant. Particularly, the
extensive integration of PV systemswith urban infrastructure is crucial
to diversify the exploitation of solar resources, and more forms of PV
systems can be considered in the next studies.

Methods
Assumptions and system parameters
We made unified assumptions for the RPV systems involved in this
study. According to recent literature review54, the system efficiency

Table 1 | Future changes in rooftop carbon mitigation potential under different urban land expansion and power mix trans-
formation scenarios

Power mix transformation
scenarios

Emission factor decline
rate from 2020 to 2030

Urban land expan-
sion scenarios

Rooftop area growth
rate from 2020
to 2030

Carbon mitigation
potential in 2030
(MT CO2)

Carbon mitigation potential
change from 2020 to 2030
(MT CO2)

STEPS 10% Low speed 9% 3730 −72

High speed 14% 3901 99

APC 30% Low speed 9% 2901 −901

High speed 14% 3034 −768
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Fig. 6 | Regional analysis for the sustainable development of RPVs. a City cap-
ability rating based on the volumeof RPV carbonmitigation.bCity capability rating
based on the intensity of RPV carbonmitigation. Levels 1 to 4 represent decreasing
capability. c Integrated features of carbonmitigation volumeand intensity, with the
High-High pattern representing the city in the top 50% for both indicators.

d Comparison of theoretical installed capacity and existing cumulative installed
capacity. e Comparison of theoretical power generation and current electricity
consumption. f Comparison of theoretical carbon mitigation and current carbon
emissions. Data Credits: All the city administrative boundaries are from Amap.
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correction parameters of module efficiency, light utilization, compo-
nent surface contamination, conversion efficiency, inverter efficiency,
line loss, transmission efficiency, and PV system availability were
determined (Supplementary Table 12). The average energy efficiency
ratio of the PV system was calculated as 0.8. According to the current
technical level of the PV industry55 the scale and performance para-
meters of PV applications were determined (Supplementary Table 13),
including a PV conversion efficiency of 20%, and a rated power per unit
area of the PV panel of 200W. We assumed that all the PV panels in a
system were fixed in a horizontal position.

Regression analysis of rooftop area
To relate the existing rooftop area of 86 cities to the whole country,
a regression model was developed. Road length, built-up area,
population size, and night light intensity were selected as the
explanatory variables. These variables were counted in grid cells and,
finally, aggregated into structured tables. The sample data of the
86 cities were first normalized and divided, with 90% of the data
used as the training data and 10% used as the test data. For the
regression method, we selected the random forest algorithm56. In
general, the random forest algorithm creates one model by com-
bining the results obtained from several well-built models, and the
final prediction is determined by averaging the prediction results
of all the models. The basic steps followed in this study are
explained below:
(1) Sampling: From the training dataset S, K datasets were generated

through sampling, with replacement, and each dataset was
trained to generate a decision tree.

(2) Growing: At each sub node, m features were randomly selected
from M attributes for growth based on Gini metrics.

(3) The test dataset was able to validate the model effect and gen-
eralization ability, as it was not involved in modeling. A 10-fold
cross-validation was performed with the test dataset, and the
hyperparameters of the algorithm, such as the number of
decision trees, were determined.

(4) Prediction: For the new dataset, the average of the prediction
results of all the decision trees was considered as the final output.

(5) The prediction of the new dataset was performed using the
trainedmodel, and the average of the prediction results of all the
decision trees was considered as the final output.

Assessment of RPV carbon mitigation potential
The potential installed capacity of RPV systems is critical for the esti-
mation of their power production and the corresponding carbon
mitigations. For the installed capacity involved in this study, it was
assumed that 35% of the building rooftops were available for the
deployment of RPV systems57. Specifically, the conversion factor of
rooftop availability has considered the potential impacts of building
social function, geometric typology, slope & orientation, structural
quality, economic cost, and shadow & obstacle.

The potential installed capacity, Pinstall, was calculated using Eq.
(1), as follows:

Pinstall =PR × S×CRA ð1Þ

where PR is the rated power of the PV panel per unit area, S is the
rooftop area, and CRA is the conversion factor for calculating the
available rooftop area for PV installation.

The annual power generation, Ppower, of the RPV system was
estimated using Eq. (2):

Ppower =Psolar ×CPV ×K ð2Þ

where CPV is the conversion efficiency of the PV panel, K is the overall
efficiency of the PV system, and Psolar is the rooftop solar potential,

which can be further obtained by Eq. (3):

Psolar =
Xn1

i = 1

Si ×GIi
� �

ð3Þ

where Si is the area of the ith rooftop, GIi is the annual surface solar
radiation received by the ith rooftop, and n1 is the total number of
rooftops.

In this study, we focused on the power generation stage of the
power system without considering any other life cycle stages (such as
facility construction, transportation, and recycling). This is because
the life-cycle carbon emissions of RPV systems are much smaller than
the emissions prevented during the operational stage54. The baseline
emission factor of China’s power grids, which is used to account for
carbon mitigation from renewable energy projects, consists of the
operatingmargin (OM) and the buildmargin (BM) factors. TheOMand
BM factors measure the carbon emission intensity of existing power
plants in the grid and newly-built power plants, respectively. The
combined marginal (CM) factor of the weighted average of the OM
factor and the BM factor is generally used to express the carbon
emissions intensity of the gridduring electricity production. Since a PV
system is generally considered clean during the electricity production,
the CM factor, EFgrid1,CM,y, can be used as the carbonmitigation factor,
ERFPV, of the RPV system, tomeasure the carbon emissions prevented
by power generation using RPVs. The calculation was performed
according to Eq. (4)58, as follows:

ERFPV = EFgrid,CM,y = EFgrid,OM,y ×WOM + EFgrid,BM,y ×WBM ð4Þ

where EFgrid,OM,y is the OM factor, and EFgrid,BM,y is the BM factor.WOM

is the weight of the OM factor, andWBM is the weight of the BM factor;
the values were set to 0.75 and 0.25, respectively56.

According to the carbon mitigation factors of the RPV system for
different power grids, carbon mitigation, Pmitigation, was calculated
according to Eq. (5):

Pmitigation =Ppower × ERFPV ð5Þ

where Ppower is the annual power generation of the RPV system.

Clustering analysis for location conditions
For the three location conditions: rooftop area, solar radiation, and
grid emissions, which affect the RPV carbon mitigation potential, the
K-means++ clustering algorithmwas used to classify the 354 cities into
different clusters. The steps of the K-means++ algorithm are as
follows59:
(1) Randomly select a center u1 between data points.
(2) For each data point x that has not yet been selected, calculatePi = j

i = 1 d x,ui

� �
, the distance between x and the closest center that

has been selected.
(3) A new data point is randomly selected as the new center using a

weighted probability distribution, where the probability of the
selected point x is proportional to

Pi= j
i= 1 d x,ui

� �
.

(4) Repeat steps 2 and 3 until k centers have been selected (j = k).
(5) Calculate thedistancebetween the sample and each initial center,

and assign the sample to the corresponding cluster according to
the distance.

(6) Calculate the new center, i.e., the mean of each clus-
ter 1=∣Ci∣

P
x2Ci

x.
(7) Repeat steps 2 and 3 until all the clustering centers are stable.

Data availability
The data that support the findings of this study are provided in Sup-
plementary Data 1. The vectorized rooftop area data for 90 cities in
China60 are available at https://doi.org/10.11888/Geogra.tpdc.271702.
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Other data sources that are free to use are provided in the supple-
mentary materials (Supplementary Table 14).

Code availability
The Python scripts corresponding to rooftop area extrapolation and
urban clustering are available at https://github.com/ChanceQZ/Core-
code-of-carbon-mitigation-x-rooftop-solar-pv. The code can also be
accessed via https://doi.org/10.5281/zenodo.7766125 in Zenodo61.
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