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Unifying speed limit, thermodynamic
uncertainty relation and Heisenberg
principle via bulk-boundary correspondence

Yoshihiko Hasegawa 1

The bulk-boundary correspondence provides a guiding principle for tackling
strongly correlated and coupled systems. In the present work, we apply the
concept of the bulk-boundary correspondence to thermodynamic bounds
described by classical and quantum Markov processes. Using the continuous
matrix product state, we convert a Markov process to a quantum field, such
that jump events in the Markov process are represented by the creation of
particles in the quantum field. Introducing the time evolution of the con-
tinuous matrix product state, we apply the geometric bound to its time evo-
lution. We find that the geometric bound reduces to the speed limit relation
when we represent the bound in terms of the system quantity, whereas the
same bound reduces to the thermodynamic uncertainty relation when
expressed based on quantities of the quantum field. Our results show that the
speed limits and thermodynamic uncertainty relations are two aspects of the
same geometric bound.

The bulk-boundary correspondence is a guiding principle for solving
complex and strongly coupled systems1–3. The main idea of the bulk-
boundary correspondence is that the information on the bulk of a
system is encoded in its boundary. In particular, a system that is
complex with no apparent approaches for solving problems can be
mapped to a different system that becomes simpler to tackle. By using
the bulk-boundary correspondence, a strongly correlated quantum
field theory (conformalfield theory; CFT) ismapped to classical gravity
(anti-de Sitter space; AdS) at one dimension higher, where physical
quantities in the boundary are evaluated via those in the bulk space4–6,
which is referred to as the AdS/CFT correspondence.

In the present manuscript, we consider quantum and stochastic
thermodynamics7–10. They are associated with quantities such as heat,
work, and entropy that can be defined based on a stochastic trajectory.
Stochastic andquantumthermodynamic systemsexhibit behaviors that
occur far fromequilibriumandaredescribedby correlated and coupled
Markov processes. This fact leads us to consider that the bulk-boundary
correspondence might play a fundamental role in stochastic and
quantum thermodynamics. Recently, refs. 11,12 proposed the con-
tinuousmatrix product state representation that enables the realization

of the bulk-boundary correspondence in Markov processes. The con-
tinuous matrix product state relates a Markov process to the quantum
field, with the Markov process and the quantum field corresponding to
the boundary and the bulk, respectively. Using the continuous matrix
product state, we can investigate theproperties of a quantum field from
the point of view of the corresponding Markov process. In contrast, we
can study a Markov process by mapping it to a quantum field and
unveiling its properties. Indeed, the continuous matrix product state
has been employed in the thermodynamics of trajectory, where it has
been used to investigate phase transitions and the role of gauge sym-
metry in classical and quantum Markov processes13–15. Moreover, we
have recently employed the continuous matrix product state to derive
quantum thermodynamic uncertainty relations16–18.

In the present paper, we use the bulk-boundary correspondence
to examine thermodynamic bounds, such as thermodynamic uncer-
tainty relations16,19–40 (see ref. 41 for a review) and (quantum and
classical) speed limit relations42–54 (see ref. 55 for a review). The speed
limit relation concerns a trade-off relation between the speed of time
evolution and thermodynamic costs, and was first introduced in
quantum dynamics42–48. Recently, the concept has been generalized
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to classical Markov processes as well50–54. It states that faster time
evolution should be accompanied by higher thermodynamic costs,
such as dynamical activity and energy. The thermodynamic uncer-
tainty relation gives the fundamental limit for the precision of ther-
modynamic machines and states that higher precision can only be
achieved at the expense of higher thermodynamic costs. Thermo-
dynamic uncertainty relations have become important not only from
a theoretical point of view but also from a practical standpoint, such
as the estimation of entropy production frommeasurements56–60. As
noted above, the continuous matrix product state has been applied
to classical and quantum Markov processes. These approaches use
the quantum field representation for analyses, but its time evolution
has not been explicitly incorporated. In the present manuscript, we
introduce a time evolution operator into the continuous matrix
product state. The space of the continuous matrix product state is
one dimension higher than that of the original Markov process, and
the original Markov process exists at the boundary thus, it is referred
to as bulk. We apply the concept of the geometric speed limit
inequality to the bulk space to derive speed limits [Eqs. (24) and (39)]
and thermodynamic uncertainty relations [Eqs. (30) and (40)]. In the
resulting speed limit relations, the distances between the initial and
the final states are bounded from above by terms comprising clas-
sical or quantum dynamical activities. In the case of the thermo-
dynamic uncertainty relations obtained in this work, we show that
the precision of an observable that counts the number of jumps is
bounded from below by costs composed of classical or quantum
dynamical activities. We establish a duality relation in that the speed
limit and the thermodynamic uncertainty relation can be understood
as two different aspects of the geometric speed limit inequality.
Specifically, when we bound the geometric inequality with the
quantities in the Markov process, the inequality reduces to classical
and quantum speed limits [Eqs. (24) and (39)]. In contrast, the geo-
metric inequality becomes the thermodynamic uncertainty relations
[Eqs. (30) and (40)] whenwe bound the geometric inequalitywith the
quantities in the quantum field. This duality is demonstrated for both
classical and quantum Markov processes. We also consider the Hei-
senberg uncertainty relation in the bulk space to show that the Hei-
senberg uncertainty relation reduces to the thermodynamic
uncertainty relation in the Markov process.

Results
Continuous matrix product state
Let us consider a quantum Markov process described by a Lindblad
equation. Classical Markov processes are included in quantumMarkov
processes as particular cases (see Eq. (16)). Let ρ(s) be a density
operator of the system at time s. We assume that ρ(s) is governed by
the time-independent Lindblad equation:

d
ds

ρðsÞ =LðρðsÞÞ= � i Hsys,ρðsÞ
h i

+
XM
m= 1

DðρðsÞ, LmÞ, ð1Þ

where Lð�Þ is a Lindblad super-operator, Hsys is the system Hamilto-
nian, Dðρ,LÞ � LρLy � fLyL,ρg=2 with Lm being the mth jump operator
(there are M jump operators, {L1, L2,…, LM}), [•, •] is the commutator
and {•, •} is the anti-commutator. Here, we assume that Hsys and Lm are
time-independent. Suppose that the dynamics start at s =0 and ends at
s = τ (τ >0).Whenwe apply a continuousmeasurement to the Lindblad
equation, we obtain a record of jump events, given by

Γ � ½ðs1,m1Þ, ðs2,m2Þ, . . . ,ðsK ,mK Þ�, ð2Þ

where K is the number of jump events and sk and mk∈ {1, 2, …, M}
specify the time and type of the kth jump event, respectively. The
record of these jump events Γ is termed the trajectory. For a given
trajectory, ρ(s) is governed by a quantum Markov process referred to

as the stochastic Schrödinger equation. By averaging all possible
measurements in the stochastic Schrödinger equation, we can recover
the original Lindblad equation [Eq. (1)].

We now consider the bulk-boundary correspondence in the con-
tinuous measurement of the Lindblad equation. The bulk-boundary
correspondence relates a Markov process to the quantum field, and
this correspondence ispossible through a representation known as the
continuous matrix product state11,12. When we apply the continuous
measurement to Eq. (1), we obtain a trajectory Γ [Eq. (2)]. The quantum
field that records the trajectory is defined as

∣Γi � ϕy
mK

ðsK Þ � � �ϕy
m2
ðs2Þϕy

m1
ðs1Þ∣vaci, ð3Þ

where ϕm(s) is a field operator having the canonical commutation
relation ½ϕmðsÞ,ϕy

m0 ðs0Þ�= δmm0δðs � s0Þ; ϕy
mðsÞ creates a particle of type

m at s and ∣vaci is a vacuum state. The time evolution of the mea-
surement record and the state of the principal system can be repre-
sented by the continuous matrix product state:

∣ΦðtÞ�=Uðt;Hsys,fLmgÞ∣Φð0Þ�, ð4Þ

where Uðt;Hsys,fLmgÞ is an operator parametrized by t and the opera-
tors Hsys and {Lm}:

Uðt;Hsys,fLmgÞ �T exp �i
Z t

0
ds Hsys � Ifld
h�

+
X
m

iLm � ϕy
mðsÞ � iLym � ϕmðsÞ

� �##
:

ð5Þ

Here the initial state is ∣Φð0Þ�= ∣ψð0Þ�� ∣vaci with ∣ψð0Þ� being the
initial state in the system, T is the time ordering operator and Ifld is
the identity operator in the field. ∣ΦðtÞ� records the jump events
within the interval 0 ≤ s ≤ t. Figure 1 shows an intuitive illustration of
the bulk-boundary correspondence in Markov processes. Figure 1a
shows an example of a Markov process, where the horizontal and
vertical axes denote the time s and the state of the Markov process,
respectively. By using the bulk-boundary correspondence, all
information concerning measurement is recorded by creating
particles in the quantum field by applying ϕy

mðsÞ to ∣vaci. The bulk-
boundary correspondencemaps the system to a quantum field that is
one dimension higher than the original one, as depicted in Fig. 1b. In
Fig. 1b, the original time evolution of theMarkov process is shown by
the s axis while the extra dimension t in the bulk space represents the
time evolution of the continuous matrix product state. In Fig. 1b, the
boundary at t = τ represents the original Markov process, and thus
the space of Fig. 1b is the bulk space. Any information that can be
obtained from the original Markov process can be derived from
Eq. (4). Let us define

ρΦ
sysðtÞ � Trfld½∣ΦðtÞ� ΦðtÞ�

∣�, ð6Þ

where Trfld is the trace with respect to the field. ρΦ
sysðtÞ satisfies

ρΦ
sysðtÞ= ρðtÞ, where ρ(t) is the density matrix in Eq. (1). The quantum

field that encodes all information about the jump events is given by

ρΦ
fldðtÞ � Trsys½∣ΦðtÞ� ΦðtÞ�

∣�, ð7Þ

where Trsys is the trace with respect to the system. See Supplementary
Note 1 for details of the continuous matrix product state.

Scaled quantum field
We now consider the time evolution of the continuous matrix pro-
duct state. Since the operator defined in Eq. (5) is already a unitary
operator, it seems satisfactory to employ it as its time-evolution
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operator. However, such an approach appears to be problematic, as
explained below. We will be interested in the fidelity between two
continuous matrix product states at different times, 〈Φ(t2)∣Φ(t1)〉 for
t1 ≠ t2. However, since the integration ranges for ∣Φðt1Þ

�
and ∣Φðt2Þ

�
are different, as indicated by Eqs. (4) and (5), it is not possible to
evaluate the fidelity (Fig. 1b). In the present work, instead of using the
continuous matrix product state defined by Eq. (4), we employ the
scaled representation:

∣ΨðtÞ�=U τ;
t
τ
Hsys,

ffiffiffi
t
τ

r
Lm

( ) !
∣Ψð0Þ�, ð8Þ

where ∣Ψð0Þ� � ∣ψð0Þ�� ∣vaci. Here, we use ∣ΦðtÞ� and ∣ΨðtÞ� to
represent the genuine [Eq. (4)] and the scaled [Eq. (8)] continuous
matrix product state representations, respectively. Since ∣ΨðtÞ� and
∣ΦðtÞ� aredifferent states,we show justification for using ∣ΨðtÞ� instead
of ∣ΦðtÞ� as follows. Let us define

ρΨ
sysðtÞ � Trfld½∣ΨðtÞ� ΨðtÞ�

∣�: ð9Þ

In Eq. (8), Hsys and Lm are scaled by t/τ and
ffiffiffiffiffiffiffi
t=τ

p
, respectively, leading

to the Lindblad equation ∂sρðsÞ= ðt=τÞLðρðsÞÞ, which is the same as
Eq. (1) except for its time scale; the scaled operators yield the
dynamics, which is t/τ times as fast as the original dynamics. Due to the
scaling, the integration range in Eq. (8) is the same for all t∈ [0, τ],
making evaluation of the fidelity at different times possible. Moreover,
the system state (i.e., the state of the original Markov process) can be
obtained by both ∣ΨðtÞ� and ∣ΦðtÞ�:

ρðtÞ=ρΨ
sysðtÞ=ρΦ

sysðtÞ, ð10Þ

where ρ(t) is the density operator in the Lindblad equation (1). Equa-
tion (10) shows that, with respect to the state of the system, ∣ΦðtÞ� and
∣ΨðtÞ� provide the state consistent with Eq. (1).

It is helpful to assess the differencebetween ∣ΦðtÞ� and ∣ΨðtÞ�with
respect to a field observable. Let ρΨ

fldðtÞ be a density operator in the
field:

ρΨ
fldðtÞ � Trsys½∣ΨðtÞ� ΨðtÞ�

∣�: ð11Þ

In general, we cannot use ∣ΨðtÞ� instead of ∣ΦðtÞ� for a general mea-
surement in the quantum field. However, if we are interested in the
number of jumpevents, ∣ΦðtÞ� and ∣ΨðtÞ� yield the same statistics since
∣ΨðtÞ� is based on dynamics that are exactly the same as ∣ΦðtÞ� except
for the time scale. Since the jump events are recorded in thefield as the
creation of particles, information of the jump events can be obtained

by measuring the field with the number operator:

Nm �
Z τ

0
ϕy

mðsÞϕmðsÞds, ð12Þ

which counts the number of mth jumps during [0, τ]. When we are
interested in the state of the system (the state of the original Markov
process) and the number of jump events, ∣ΨðtÞ� and ∣ΦðtÞ� provide
exactly the same information. This property justifies the use of ∣ΨðtÞ�
in place of ∣ΦðtÞ�.

Thus far, our focus has been on the number operator Nm alone,
but more general observables can be considered. The number opera-
tor [Eq. (12)] admits the spectral decomposition:

Nm =
X
nm =0

nmΠnm
, ð13Þ

where the eigenvalue nm denotes the number of mth jumps within
[0, τ] and Πnm

is its corresponding projector. The first-level general-
ization of Nm is

N �
m �

X
nm =0

ηmðnmÞΠnm
, ð14Þ

where ηm(n) is a real function satisfying ηm(0) = 0. Thus, N �
m is a gen-

eralization ofNm asηm(n) = n recoversNm in Eq. (13). The second-level
generalization would be

N �
m �

X
nm =0

ξmðnmÞΠnm
, ð15Þ

where ξm(n) is an arbitrary real function.N �
m is the most general form

of observable that commutes withNm. Note thatN �
m andN �

m can also
be used for the scaled representation ∣ΨðtÞ� instead of ∣ΦðtÞ� (see the
Methods section).

Figure 1b, c depict the bulk spaces corresponding to ∣ΦðtÞ� and
∣ΨðtÞ�, respectively. In Fig. 1c, we see that ∣ΨðtÞ� is defined for s∈ [0, τ],
where the scaling factor of the space depends on t. In contrast, in the
case of Fig. 1b, the quantum field is defined for s∈ [0, t] while the
scaling factor does not depend on t.

Geometric bound in probability space
The previous section introduced the time evolution of the continuous
matrix product state. In this section, we consider the geometric
properties of its time evolution. These geometric properties have been
extensively employed in the quantum speed limit55. We first consider a

Fig. 1 | Bulk-boundary correspondence in a Markov process. a Trajectory of the
Markov process as a function of s within the time interval [0, τ]. Y1 and Y2 denote
states of the Markov process and sk is the time stamp of the kth jump event. b Bulk
space corresponding to the Markov process of a, generated by Eq. (4). The record
of jump events is represented by particle creation in the quantum field. The

boundary at t = τ represents theMarkov process of a. The axis of t specifies the time
evolution of the quantum field. c Bulk space corresponding to the Markov process
of a, generated by Eq. (8). In contrast to b, the space is scaled so that the quantum
field is defined for s ∈ [0, τ] for all t ∈ [0, τ].
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space of classical probability and thenmove to a space of the quantum
state in the next section.

Let us consider a classical Markov process with NS states
fY 1,Y 2, . . . ,YNS

g. The dynamics of the Markov process is governed by a
classical Markov process:

d
ds

Pðν, sÞ=
X
μ

W νμPðμ,sÞ, ð16Þ

where P(ν, s) is the probability of being Yν at time s and Wνμ is the
transition rate from Yμ to Yν with Wμμ = − ∑ν≠μWνμ. Taking
Hsys = 0, Lνμ =

ffiffiffiffiffiffiffi
W νμ

p
∣Y νihY μ ∣ and ρðtÞ=diag ½Pðν, tÞ�ν

� �
in Eq. (1), the

Lindblad equation is reduced to the corresponding classical Mar-
kov process, where f∣Y 1

�
,∣Y 2

�
, � � � ,∣YNS

ig constitutes an ortho-
normal basis with each ∣Y ν

�
corresponding to Yν. Here, the index of

the jump operator should be mapped as Lm → Lνμ by mapping
m → (ν, μ). Therefore, the mth jump in Eq. (1) corresponds to the
jump from Yμ to Yν in Eq. (16). Using the continuous matrix product
state, the probability of measuring a trajectory Γ and Yν at the end
time is

PðΓ,ν, tÞ � hΨðtÞ∣ð∣Y ν

�
Y ν

�
∣� ∣Γi Γh ∣Þ∣ΨðtÞi: ð17Þ

Let us consider the time evolution of the continuous matrix pro-
duct state. Its time evolution corresponds to the t axis in Fig. 1c.
Applying the projector ∣Y ν

�
Y ν

�
∣� ∣Γi Γh ∣, we can consider the time

evolution of the probability distribution PðΓ,ν, tÞ as a function of t. For
such a time-evolving probability distribution, by using ref. 61, the fol-
lowing relation holds:

1
2

Z t2

t1

dt
ffiffiffiffiffiffiffiffiffi
I ðtÞ

p
≥LP PðΓ,ν, t1Þ,PðΓ,ν, t2Þ

� �
, ð18Þ

where I ðtÞ is the classical Fisher information defined by

I ðtÞ �
X
Γ,ν

PðΓ,ν, tÞ � ∂2

∂t2
lnPðΓ,ν, tÞ

 !
, ð19Þ

and LP is the Bhattacharyya angle:

LP p1ðxÞ,p2ðxÞ
� � � arccos Bhat p1ðxÞ,p2ðxÞ

� �� 	
: ð20Þ

In Eq. (20), Bhat(p1(x), p2(x)) is the Bhattacharyya coefficient:

Bhat p1ðxÞ,p2ðxÞ
� � �X

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞp2ðxÞ

p
: ð21Þ

Herep1(x) and p2(x) are arbitrary probability distributions, and Eq. (20)
quantifies the distance between the two probability distributions.
Equation (18)was used in refs. 51,52 to obtain thermodynamic trade-off
relations in classical Markov processes. Note that the probability state
in refs. 51,52 is the actual state. This corresponds to P(ν, s), whose time
evolution is the s axis in Fig. 1c. The state considered herein concerns
the path probability space PðΓ, ν, tÞ, whose time evolution is shown by
the t axis in Fig. 1c. A straightforward calculation shows that I ðtÞ can be
written as

I ðtÞ= AðtÞ
t2

, ð22Þ

with AðtÞ being the dynamical activity62:

AðtÞ �
Z t

0
ds

X
ν,μ,ν≠μ

Pðμ,sÞW νμ: ð23Þ

AðtÞ quantifies the average number of jumps within [0, t] (see Sup-
plementary Note 2).

The Bhattacharyya coefficient satisfies the monotonicity with
respect to any classical channel. Using the monotonicity and Eq. (22),
we can write (see Methods)

1
2

Z τ

0

ffiffiffiffiffiffiffiffiffiAðtÞ
p

t
dt ≥LPðPðν,0Þ,Pðν,τÞÞ: ð24Þ

Equation (24) is the first result of this paper, showing that the distance
between the initial and final probability distributions in a classical
Markov process has anupper bound comprising the dynamical activity
AðtÞ. Equation (24) is reminiscent of the classical speed limit obtained
in ref. 50. The bound in ref. 50 compared the initial and final prob-
ability distributions by means of the total variation distance. Equation
(24) is a direct classical analog of the geometric quantum speed limit45.

In Eq. (24), we obtained the lower bound for the right-hand side in
terms of the quantity in the system (P(ν, s) in the Markov process). We
next obtain a lower bound using the quantity in the quantum field,
which leads to a classical thermodynamic uncertainty relation. We
notice that the right-hand side of Eq. (18) can be bounded from below
by the distance between PðΓ,t1Þ and PðΓ,t2Þ, where
PðΓ,tÞ �PνPðΓ,ν,tÞ. However, in general, obtaining PðΓ,tÞ requires a
large amount of measurement that is impractical. Thus, as an alter-
native, we use a time-integrated observable and bound the right-hand
side of Eq. (18) with the statistics of the time-integrated observable.
Consider the observable in the continuous measurement of the Lind-
blad equation [Eq. (1)]:

CðΓÞ �
X
m

αmNmðΓÞ, ð25Þ

whereNmðΓÞ counts the number of mth jumps in a given trajectory Γ,
and αm is a real parameter defining the weight of the mth jump. The
Hermitian observable corresponding to Eq. (25) in the quantum field is
written by

C �
X
m

αmNm, ð26Þ

whereNm is the number operator defined in Eq. (12). Equation (26) is
the weighted sum of jump events during the time interval [0, τ]. Let us
define

hCit � Trfld ρΨ
fldðtÞC

� 	
, ð27Þ

½½C��t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2it � hCi2t

q
, ð28Þ

where ρΨ
fldðtÞ is defined in Eq. (11). hCit and ½½C��t correspond to themean

and standard deviation of the number of jump events during the time
interval [0, t] in the original Markov process. In Eqs. (14) and (15), we
have defined N �

m and N �
m, the generalization of the number operator

Nm. We also define generalizations of C as follows:

C� �
X
m

αmN �
m, C� �

X
m

αmN �
: ð29Þ

Relations that hold for C� should be satisfied by C�, and those that hold
for C� should also be satisfied by C (see the Methods section).

Applying the inequality relation for the Bhattacharyya coefficient
to Eq. (18), we obtain a thermodynamic uncertainty relation for
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0 ≤ t1 < t2 ≤ τ (see the Methods section for details):

½½C���t2 + ½½C���t1
hC�it2 � hC�it1

 !2

≥
1

tan 1
2

R t2
t1

ffiffiffiffiffiffiffi
AðtÞ

p
t dt

� 
2 , ð30Þ

which holds for ð1=2Þ R t2t1 ffiffiffiffiffiffiffiffiffiAðtÞ
p

=t dt ≤π=2. Equation (30) is the second
result of this paper andholds for an arbitrary time-independent classical
Markov process. In refs. 17,37, we derived thermodynamic uncertainty
relations that hold for arbitrary classical Markov chains. However, the
thermodynamic cost terms in refs. 17,37 are not thermodynamic
quantities, whereas the thermodynamic cost in Eq. (30) is the dynamical
activity. Let us employ t1 = 0 and t2 = τ in Eq. (30). Since there is no jump
for t =0,hC�it=0 =0 and ½½C���t=0 =0, and we obtain

½½C���2τ
hC�i2τ

≥
1

tan 1
2

R τ
0

ffiffiffiffiffiffiffi
AðtÞ

p
t dt

� 
2 , ð31Þ

which holds for ð1=2Þ R t2t1 ffiffiffiffiffiffiffiffiffiAðtÞ
p

=t dt ≤π=2. Equations (30) and (31) are
previously unknown relations. Note that Eqs. (30) and (31) should hold
for C defined by Eq. (26), since C� and C� are generalizations of C. In
addition, Eq. (30) can derive known classical thermodynamic uncer-
tainty relations, as shownbelow. Let εbe a sufficiently small parameter.
Considering t1 = τ − ε and t2 = τ in Eq. (30), Eq. (30) reduces to (see the
Methods section for details)

½½C���2τ
τ2 ∂τhC�iτ
� �2 ≥

1
AðτÞ : ð32Þ

Equation (32) is equivalent to the bound in ref. 23. Both Eqs. (31) and
(32) hold for an arbitrary time-independent Markov process, but the
denominator in the left-hand side of Eq. (32) is not the time-integrated
observable but rather the time derivative of its average value. The left-
hand side of Eq. (31) can be defined through the time-integrated
observable hCiτ , and so can be interpreted as the precision. For the
steady state condition, Eq. (32) reduces to

½½C��2τ
hCi2τ

≥
1

AðτÞ , ð33Þ

which is the thermodynamic uncertainty relation derived in refs. 21,23.
Therefore, Eq. (30) is a generalization of the well-known classical
bounds.

Geometric bound in quantum space
Thus far, we have considered the classical probability space. We now
move to the quantum space and obtain the geometric bound for the
continuous matrix product state. We consider the time evolution of
∣ΨðtÞ�, which is induced by the unitary in Eq. (8). We analyze the
dynamics through the quantum speed limit55. Similar to Eq. (18), the
bound for fidelity is given by the relation45,63:

1
2

Z t2

t1

dt
ffiffiffiffiffiffiffiffiffiffi
J ðtÞ

p
≥LDð∣Ψðt1Þ

�
,∣Ψðt2Þ

�Þ, ð34Þ

where J ðtÞ is the quantum Fisher information64

J ðtÞ � 4 h∂tΨðtÞ∣∂tΨðtÞi � ∣h∂tΨðtÞ∣ΨðtÞi∣2� 	
, ð35Þ

and LD is the Bures angle defined by

LDðρ1,ρ2Þ � arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fidðρ1,ρ2Þ

q� 

, ð36Þ

with Fid(ρ1, ρ2) being the quantum fidelity65:

Fidðρ1,ρ2Þ � Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ2

pq� �2

: ð37Þ

Here, ρ1 and ρ2 are arbitrary density operators and the fidelity satisfies
0 ≤ Fid(ρ1, ρ2) ≤ 1. Since ∣ΨðtÞ� is a pure state, the fidelity reduces to
Fidð∣Ψðt1Þi,∣Ψðt2ÞiÞ= ∣hΨðt2Þ∣Ψðt1Þi∣2. LD quantifies the distance
between two density operators and is widely employed in quantum
speed limits55. Equation (34) is also commonly used in quantum speed
limits55. The quantum Fisher information J ðtÞ can be computed using
the two-sided Lindblad equation introduced in ref. 66 (see Supple-
mentary Note 3).

For the classical case, the Fisher information I ðtÞ reduces to the
dynamical activity AðtÞ [Eq. (23)]. However, it is difficult to represent
the quantum Fisher information J ðtÞ by a well-known physical quan-
tity. Therefore, from Eq. (22), we may define the quantum general-
ization of the dynamical activity by

BðtÞ � t2J ðtÞ, ð38Þ

where the classical Fisher information I ðtÞ in Eq. (22) is replaced with
the quantum counterpart. In the present manuscript, we refer to BðtÞ
as the quantum dynamical activity.

The fidelity obeys the monotonicity relation with respect to any
completely positive and trace-preserving map65. Using the mono-
tonicity, we obtain (see the Methods section for details)

1
2

Z τ

0

ffiffiffiffiffiffiffiffiffiBðtÞp
t

dt ≥LDðρð0Þ,ρðτÞÞ: ð39Þ

Equation (39) is a continuousmeasurement caseof the quantumspeed
limit reported in ref. 45. Regarding a quantum speed limit in open
quantum dynamics, ref. 46 considered Lindblad dynamics and
employed relative purity as a distancemeasure. Equation (39) itself can
be derived from Eq. (34) via the monotonicity of the quantum fidelity.
Although there are infinitely many ways to describe open quantum
dynamics through purification, we will show that the quantum dyna-
mical activity BðτÞ in Eq. (39) plays a central role in a quantum ther-
modynamic uncertainty relation derived as follows. The speed limit
relations derived in Eqs. (24) and (39) do not explicitly include time τ.
However, by rearranging terms, we can obtain lower bounds for the
evolution time τ (see the Methods section).

Next, we consider a quantum thermodynamic uncertainty relation
that follows directly from Eq. (34). Again, we consider the observables
C, C� and C�. Similar to the classical case [Eq. (30)], we obtain the
thermodynamic uncertainty relation for 0 ≤ t1 < t2 ≤ τ (see theMethods
section for details):

½½C���t2 + ½½C���t1
hC�it2 � hC�it1

 !2

≥
1

tan 1
2

R t2
t1

ffiffiffiffiffiffi
BðtÞ

p
t dt

� 
2 , ð40Þ

which holds for ð1=2Þ R t2t1 ffiffiffiffiffiffiffiffiffiBðtÞp
=t dt ≤π=2. This relation is a quantum

analog of Eq. (30) and constitutes the third result of this manuscript.
Equation (40) holds for arbitrary time-independent quantum Markov
processes. Similar to Eqs. (24) and (30), the quantum dynamical
activity BðτÞ plays a fundamental role in both Eqs. (39) and (40),
indicating that BðtÞ is a physically important quantity. Although we
previously derived thermodynamic uncertainty relations that hold for
arbitrary quantum Markov chains in refs. 17,37, the thermodynamic
cost terms in refs. 17,37 are not thermodynamic quantities as in the
classical case. Since Eq. (40) is the same as Eq. (30) except that AðtÞ is
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replaced byBðtÞ, we can obtain quantumcounterparts of Eqs. (31)–(33)
in the same manner. Equation (31) with AðtÞ replaced by BðtÞ is a
quantum thermodynamic uncertainty relation that holds for arbitrary
time-independent quantum Markov processes. In particular, Eq. (33)
with AðtÞ replaced by BðtÞ is equivalent to the quantum thermo-
dynamic uncertainty relation derived in ref. 16, which was derived
using the quantum Cramér–Rao inequality. In ref. 16, we calculated
BðτÞ for τ→∞ to show that BðτÞ is given by a sum of the classical
dynamical activity and the coherent contribution, which is induced by
the effective Hamiltonian.

In speed limits and thermodynamic uncertainty relations, the
bounds require the condition ð1=2Þ R t2t1 ffiffiffiffiffiffiffiffiffiAðtÞ

p
=t dt ≤π=2 (classical) or

ð1=2Þ R t2t1 ffiffiffiffiffiffiffiffiffiBðtÞp
=t dt ≤π=2 (quantum). It is helpful here to examine

the physical meaning of the conditions. When the system is in a
steady state, the dynamical activity is AðtÞ= at, where a is a pro-
portionality coefficient. Consequently, ð1=2Þ R τ0 ffiffiffiffiffiffiffiffiffiAðtÞ

p
=t dt =

ffiffiffiffiffi
at

p
,

which transforms the constraint into τ ≤π2=ð4aÞ. Therefore, physi-
cally, the conditions can be identified as the constraint for τ,
demonstrating that the predictive power of the bounds is limited to
a prescribed time determined by the system’s dynamics. This lim-
itation on τ can be ascribed to the geometric speed limit relations. In
Eqs. (18) and (34), the range of values for the left-hand side is [0, ∞)
while that for the right-hand side is [0, π/2]. Therefore, although the
geometric speed limit relations hold for τ→∞, predictive power is
lost for finite time values.

The derivations above assume the initially pure state
ρð0Þ= ∣ψð0Þ� ψð0Þ�

∣. Using the purification, we can show that the speed
limits and thermodynamic uncertainty relations hold for an initially
mixed state (see Supplementary Note 4). Thus far, we have been
concerned with the theoretical aspects of the bounds. We numerically
test the speed limits and the thermodynamic uncertainty relations and
verify the bounds (see Supplementary Note 5).

Discussion
The results represented by Eqs. (24), (30), (39), and (40) show that the
speed limits and the thermodynamic uncertainty relations can be
understood as two different aspects of Eqs. (18) and (34). When we

bound the right-hand sides of Eqs. (18) and (34) with the quantities in
the principal system, that is, the probability distribution P(ν, s) or the
density operator ρ(s), the inequalities reduce to the classical and
quantum speed limits expressed by Eqs. (24) and (39), respectively. On
the other hand, when we bound the right-hand sides of Eqs. (18) and
(34) with the field quantity, hC�it and ½½C���t , we obtain the classical and
quantum thermodynamic uncertainty relations, expressed by Eqs. (30)
and (40), respectively. Therefore, the speed limits and the thermo-
dynamic uncertainty relations can be derived from the common
ancestral relation. Figure 2 shows an intuitive illustration of the logical
connections explained above. Note that we previously derived the
classical speed limit and thermodynamic uncertainty relation in a
unified way in refs. 28,67. However, refs. 28,67 derived the classical
speed limit as a short time limit of the thermodynamic uncertainty
relation, whereas the derivation here does not use such a distinct
setting for the speed limit.

Thus far, we have considered a time-independent Markov pro-
cess, meaning that Hsys and Lm are not dependent on time. Here, we
examine a time-dependent case with the time-dependent operators
Hsys(s) and Lm(s). It is possible to introduce a time-dependent analog of
∣ΨðtÞ� introduced in Eq. (8). Using the time-dependent representation,
we can derive speed limits and thermodynamic uncertainty relations
similar to Eqs. (24) and (30), where the dynamical activity is replaced
by the generalized dynamical activity (Supplementary Note 6).

We have considered geometric speed limit relations in the bulk
space. As shown in Eq. (8), since the time evolution of the composite
system comprising the system and the quantum field admits closed
quantumdynamics, any relation that holds in the closed system should
hold for the composite system as well. We here consider a con-
sequence of the Heisenberg uncertainty relation68,69, which is themost
fundamental uncertainty relation in quantum mechanics, in Eq. (8). It
can be shown that the Heisenberg uncertainty relation reduces to the
thermodynamic uncertainty relation (Supplementary Note 7). It
should also be noted that this correspondence is a consequence
of the relation between the Cramér–Rao inequality and the
Heisenberg uncertainty relation, as reported by ref. 70. The Heisen-
berg uncertainty relation is a fundamental inequality to derive the

Fig. 2 | Relationof obtained inequalities. aWhenwe bound the right-hand side of
Eq. (18) by the system and field quantities, we obtain classical speed limits and
classical thermodynamic uncertainty relations, respectively. b Similar relation for

the quantum case. In a, b, variable and function definitions are presented in Sup-
plementary Note 8.
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Mandelstam-Tamm quantum speed limit42. Our result shows that the
Heisenberg uncertainty relation also plays a fundamental role in the
thermodynamic uncertainty relation when considering the bulk-
boundary correspondence of the Markov process.

Thermodynamic uncertainty relations were originally derived as
the inequality between current fluctuations and entropy
production19,20. As such it might be possible to obtain a unified bulk-
boundary approach for speed limits and thermodynamic uncertainty
relations for which the thermodynamic cost involves solely entropy
production. However, it is difficult to derive a unified bound for
entropy production. To derive the bound, we should introduce
another scaled continuous matrix product state that provides the
same information regarding the number of jump events and the sys-
tem state as the original dynamics while the Fisher information yields
entropy production.

In this paper, we studied the consequences of considering the
bulk-boundary correspondence in classical and quantum Markov
processes. These investigations could possibly be extended to employ
refined Heisenberg uncertainty relations, as shown in ref. 71, as an
example. Since any uncertainty relation that holds in closed quantum
dynamics should hold in the time evolution shown by Eq. (8), it can be
anticipated that other uncertainty relations can be derived using the
technique demonstrated herein.

Methods
Geometric bound
We employ the geometric bounds given by Eqs. (18) and (34) to obtain
speed limits and thermodynamic uncertainty relations.

In Eq. (18), the left-hand side gives the path length corresponding
to the dynamics parametrized by t∈ [0, τ] that connects the two states
under the Fisher information metric, while the right-hand side of Eq.
(18) corresponds to the geodesic distance between the two states61.
Similarly, in Eq. (34), the left-hand side gives the path length of the
dynamics ∣ΨðtÞ� under the Fubini-Study metric, while the right-hand
side of Eq. (34) is the geodesic distance between the initial ∣Ψðt1Þ

�
and

final ∣Ψðt2Þ
�
states under this metric.

It is helpful here to assess the uniqueness of the metrics. In
probability space, except for a constant factor, the Fisher information
metric is known to correspond to the unique contractive Riemannian
metric. In the case that a metric in the density operator space is con-
sidered, an infinite number of metrics is possible. The geodesic dis-
tance can be analytically calculated for several metrics, such as the
quantum Fisher information metric and the Wigner–Yanase informa-
tion metric, both of which fall into the Fubini-Study metric for pure
states. The continuous matrix product state is pure and so the Fubini-
Study metric J ðtÞ gives a unique metric48.

Number operator and observables
In the main text, we consider the observable CðΓÞ defined in Eq. (25).
For the classical Markov process defined in Eq. (16), using the corre-
spondence m→ (ν, μ), Eq. (25) can be written as

CðΓÞ=
X

ν,μ,ν≠μ

ανμNνμðΓÞ: ð41Þ

As an example, when αμν = � ανμ,CðΓÞ defines the time-integrated
current that is antisymmetric under time reversal. In particular, the
original thermodynamic uncertainty relation19,20 states that the
fluctuation of a time-integrated current such as this is bounded
frombelow by the reciprocal of the entropy production. In addition,
if αμν = − ανμ = 1 then CðΓÞ quantifies the amount of displacement,
which can be used to quantify the elapsed time on a Brownian
clock72.

In the main text, we define C� and C� in Eq. (29). When we repre-
sent these observables as functions of a trajectory Γ as was done in

Eq. (25), we have

C� �
X
m

αmηm NmðΓÞ
� �

, C� �
X
m

αmξm NmðΓÞ
� �

, ð42Þ

where the functions ηm and ξm are defined in Eqs. (14) and (15),
respectively. Since C� and C� are generalizations of C, they can recover
C as a particular case. Moreover, they can express observables that are
not covered by C. An example of C� that does not belong to C would be
ηðnÞ= sgnðnÞ, where sgn is the sign function. It gives a value of 1 when
there is more than one jump but a value of 0 otherwise. We also note
that C� satisfies hC�it=0 =0 and ½½C���t=0 =0, which is an important
property of C� used in the derivation of Eq. (31).

Derivation of speed limit relations
We derive a classical speed limit relation from Eq. (18). The Bhatta-
charyya coefficient satisfies monotonicity with respect to any classical
channel73. Since Pðν, tÞ=PΓPðΓ,ν, tÞ, the monotonicity yields

BhatðPðΓ, ν, t1Þ,PðΓ, ν, t2ÞÞ ≤ BhatðPðν, t1Þ, Pðν, t2ÞÞ: ð43Þ

Substituting Eqs. (22) and (43) into Eq. (18), we obtain the classical
speed limit of Eq. (24).

The quantum speed limit of Eq. (39) can be derived in a similar
manner. The fidelity obeys the monotonicity relation with respect to
an arbitrary, completely positive, and trace-preserving map65. Since
ρðtÞ=Trfld ∣ΨðtÞ� ΨðtÞ�

∣
� 	

from Eq. (10), the following relation holds:

Fidð∣Ψðt1Þ
�
,∣Ψðt2Þ

�Þ≤ Fidðρðt1Þ,ρðt2ÞÞ: ð44Þ

Using Eqs. (44) and the quantum dynamical activity BðtÞ [Eq. (38)], we
obtain Eq. (39).

Derivation of thermodynamic uncertainty relations
Here, we derive classical thermodynamic uncertainty relations from
Eq. (24). Let us consider the Hellinger distance between two prob-
ability distributions p1(x) and p2(x):

Hel2ðp1ðxÞ,p2ðxÞÞ � 1
2

P
x

ffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
p2ðxÞ

p� �2
= 1� Bhatðp1ðxÞ,p2ðxÞÞ:

ð45Þ

We can assume that the probability distributions p1(x) and p2(x) are
defined for a set of real values. We can define the mean and standard
deviation of the distributions by χi ≡∑xxpi(x) and
σi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xx2piðxÞ � χ2i

q
, respectively. Given the mean and standard

deviation of p1(x) and p2(x), the lower bound of the Hellinger distance
is given by74:

Hel2ðp1ðxÞ,p2ðxÞÞ≥ 1�
χ1 � χ2
σ1 + σ2

� �2

+ 1

" #�1
2

: ð46Þ

We previously used Eq. (46) to derive a quantum thermodynamic
uncertainty relation in ref. 17. Knowing the entire trajectory Γ, we can
compute the statistics of the number of jump events. As an example,
for Γ = [(s1, m1), (s2, m2), (s3, m3)], we know that there are three jump
events at s1, s2, and s3 during the time interval [0, τ]. Therefore,
according to the monotonicity of the Bhattacharyya coefficient and
Eq. (46), we have

BhatðPðΓ,t1Þ,PðΓ,t2ÞÞ≤
hC�it1 � hC�it2
½½C���t1 + ½½C���t2

 !2

+ 1

2
4

3
5
�1

2

, ð47Þ
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where hC�it and ½½C���t are defined in Eqs. (27) and (28), respectively. For
0≤ ð1=2Þ R t2t1 dt

ffiffiffiffiffiffiffiffiffiI ðtÞp
≤π=2, Eq. (18) yields

cos
1
2

Z t2

t1

dt
ffiffiffiffiffiffiffiffiffi
I ðtÞ

p" #
≤Bhat PðΓ,ν,t1Þ,PðΓ,ν,t2Þ

� �
: ð48Þ

Combining Eqs. (43), (47) and (48), we obtain Eq. (30).
Similarly, we can derive quantum thermodynamic uncertainty

relations from Eq. (34). Regarding the quantum fidelity, a series of
inequalities holds, as were employed in ref. 17:

∣hΨðt2Þ∣Ψðt1Þi∣ ≤
P
Γ
∣hΨðt2Þ∣ΓihΓ∣Ψðt1Þi∣

≤
P
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðΓ,t1ÞPðΓ,t2Þ
p

= Bhat PðΓ,t1Þ,PðΓ,t2Þ
� �

:

ð49Þ

The triangle inequality is used in the first line, while the
Cauchy–Schwarz inequality is employed in the first to second lines.
From Eq. (34), for 0 ≤ ð1=2Þ R t2t1 dt

ffiffiffiffiffiffiffiffiffiffiJ ðtÞ
p

≤π=2, we have

cos
1
2

Z t2

t1

dt
ffiffiffiffiffiffiffiffiffiffi
J ðtÞ

p" #
≤ ∣hΨðt2Þ∣Ψðt1Þi∣: ð50Þ

Combining Eqs. (47), (49) and (50), we can derive Eq. (40).
Next, we derive the conventional thermodynamic uncertainty

relation, whichwas derived in ref. 23, fromEq. (30).We consider a time
interval [τ − ε, τ] for Eq. (30), where ε > 0 is an infinitesimally small
parameter. Then we obtain

½½C���τ + ½½C���τ�ε

hC�iτ � hC�iτ�ε

� �2

≥
1

tan 1
2

R τ
τ�ε

ffiffiffiffiffiffiffi
AðtÞ

p
t dt

� 
2 : ð51Þ

Since ε is sufficiently small, we have

dhC�it
dt

=
hC�it � hC�it�ε

ε
: ð52Þ

Moreover, we consider a perturbation expansion for ½½C���τ�ε:

½½C���τ�ε = ½½C���τ + εb1 + ε
2b2 + � � � , ð53Þ

where bi 2 R are expansion coefficients. Since ε≪ 1, considering the
Taylor expansion ðtanxÞ2 = x2 +Oðx3Þ, we obtain

tan 1
2

R τ
τ�ε

ffiffiffiffiffiffiffi
AðtÞ

p
t dt

� 
2
’ 1

2

R τ
τ�ε

ffiffiffiffiffiffiffi
AðtÞ

p
t dt

� �2

= AðτÞ
4τ2 ε

2:

ð54Þ

Substituting Eqs. (52)–(54) into Eq. (51), we obtain

2½½C���τ + εb1 + ε
2b2 + � � �

ε∂τhC�iτ

� �2

≥
4τ2

AðτÞε2 :
ð55Þ

Taking a limit of ε→0, we obtain Eq. (32). We can repeat the same
calculation for the quantum dynamical activity BðtÞ.

Speed limit relation as minimum evolution time
Speed limit relations are often provided as bounds for the minimum
evolution time. As detailed in ref. 75, from speed limit relations shown
in Eqs. (24) and (39), we can introduce two types of minimum evolu-
tion time. These can be explained using the quantum bound [Eq. (39)]
because ref. 75 addressed aquantumspeed limit relation. Thefirst type

of minimum evolution time τmin can be implicitly defined by

1
2

Z τmin

0

ffiffiffiffiffiffiffiffiffiBðtÞp
t

dt =LDðρð0Þ,ρðτÞÞ: ð56Þ

Here, τmin is the time required to reach the geodesic length between
ρ(0) and ρ(τ) traveling along the actual evolution path.

The second type of minimum evolution time can be obtained
directly from Eq. (39). Let us define the average evolution speed as
follows:

Vav �
1
τ

Z τ

0
dt

ffiffiffiffiffiffiffiffiffiBðtÞp
2t

: ð57Þ

Using Vav, we obtain the bound:

τ ≥ τav �
LD ρð0Þ,ρðτÞð Þ

Vav
: ð58Þ

Note that the evaluation of Eq. (58) requires information regarding τ
because Vav is typically dependent on τ. When considering a unitary
evolution inducedby a time-independentHamiltonian andpure states,
τmin = τav holds, but they do not agree in general dynamics. Note that
τmin and τav can be defined in the classical bound [Eq. (24)] in the same
manner.

Data availability
The data generated in this study are provided in the Source Data
file. Source data are provided with this paper.

Code availability
All codes used in this study are available from https://github.com/
yoshihiko-hasegawa/BulkBoundaryBounds.
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