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The effectiveness of global protected areas
for climate change mitigation

L. Duncanson 1 , M. Liang1, V. Leitold1, J. Armston1, S. M. Krishna Moorthy1,
R. Dubayah 1, S. Costedoat 2, B. J. Enquist3,4, L. Fatoyinbo 5, S. J. Goetz 6,
M. Gonzalez-Roglich7, C. Merow 8, P. R. Roehrdanz 2, K. Tabor 5,9 &
A. Zvoleff2

Forests play a critical role in stabilizing Earth’s climate. Establishing protected
areas (PAs) represents one approach to forest conservation, but PAs were
rarely created to mitigate climate change. The global impact of PAs on the
carbon cycle has not previously been quantified due to a lack of accurate
global-scale carbon stock maps. Here we used ~412 million lidar samples from
NASA’s GEDI mission to estimate a total PA aboveground carbon (C) stock
of 61.43 Gt (+/− 0.31), 26% of all mapped terrestrial woody C. Of this total,
9.65 + /−0.88Gt of additional carbonwas attributed to PA status. These higher
C stocks are primarily from avoided emissions from deforestation and
degradation in PAs compared to unprotected forests. This total is roughly
equivalent to one year of annual global fossil fuel emissions. These results
underscore the importance of conservation of high biomass forests for
avoiding carbon emissions and preserving future sequestration.

Earth’s ecosystems play a critical role in the carbon cycle, with
estimates of global terrestrial aboveground carbon (AGC) of
~308 Gt in 20101,2 and annual uptake of ~8 Gt CO2

3. The primary
causes of AGC loss are deforestation and forest degradation, while
vegetation carbon sinks are associated with afforestation and for-
est recovery. Several policy frameworks emphasize that habitat
conservation and restoration should contribute simultaneously to
biodiversity conservation and climate change mitigation4. These
frameworks include theUN Sustainable Development Goals (SDGs),
decisions under the United Nations Framework Convention on
Climate Change (UNFCCC) and the Convention on Biological
Diversity (CBD). To support goal setting and the implementation of
international strategies and action plans, guidance is needed to
identify how well-protected areas contribute to maximizing
synergies between conserving biodiversity and other ecosystem
services such as climate change mitigation5.

Forest conservation is a crucialmechanism for forestmanagement
toward climate change mitigation, and for curbing biodiversity loss6,7.
Protected areas are a foundation for global forest conservation efforts
and monitoring PA effectiveness is key for determining progress in
achieving the UN SDGs8. While most efforts to establish PAs have been
focused on biodiversity protection9, there are clear co-benefits of bio-
diversity and carbon conservation efforts, as older, biodiverse forests
also typically store more carbon5,6,10. PAs have been demonstrated to
effectively avoid forest cover loss in many regions11–13, as well as reg-
ulate temperature and local climate14, and potentially boost carbon
sequestration capacity15,16. Therefore, PA expansion may be a pathway
to bolster climate changemitigation17. Intact forests, especially tropical
forests, can sequester twice as much carbon than more human-
impacted forests and planted monocultures16,18. Protected forest areas
are thought to contribute a large fraction (~27%) of the net global GHG
sink3 but large uncertainties remain in the magnitudes of AGC stocks
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and fluxes in terrestrial ecosystems19,20. As a result, the degree to which
protected status contributes to avoided carbon emissions or enhanced
sequestration at a global scale remains highly uncertain.

Here, we analyzemillions of spaceborne lidar-derived estimates of
AGC fromNASA’s Global EcosystemDynamics Investigation (GEDI21) to
spatially quantify the carbon effectiveness of PAs and test the
assumption that these areas provide disproportionately more ecosys-
tem services through carbon storage and sequestration than non-
protected areas22. Previous attempts to quantify carbon content in PAs
hadhigh uncertainties and/or biases, as past satellite biomassproducts
are known to saturate in high biomass forests23, such as old-growth
PAs. GEDI is the first satellite lidar system designed specifically to map
forest structure, andprovides orders ofmagnitudemore3D samples of
Earth’s forests than have previously been available, capable of col-
lecting accurate data in even the densest and tallest forests23. GEDI
launched on December 5, 2018, and is collecting full-waveform lidar
samples from the International Space Station (ISS) between ~52°N and
52°S under the ISS orbit (Fig. 1). GEDI has three lasers operating at
1064 nm, each illuminated ~25m circular “footprints” (circular pixels)
to produce billions of high-resolution samples of surface elevation,
vegetation height, and foliage distribution. GEDI is not a mapping
mission, in that it does not collect data continuously over Earth’s sur-
face, but instead provides samples spaced ~60mapart along each laser
track, with ~600-m spacing between tracks. Therefore not every area of
every PA is mapped. 25m samples are aggregated to 1 km estimates of
Aboveground Biomass Density (AGBD, which is subsequently con-
verted to AGCD)24. At the time of writing, GEDI has collected sufficient
data to fill ~70% of all GEDI-domain 1 kmpixels. GEDI collects data from
the International Space Station (ISS), which covers all tropical and
temperate forests, as well as the southern boreal, but does not collect
data north of ~52° latitude. Thus, while the results in this paper are
global scale, they are not truly global as they omit PAs north of ~52°.

GEDI provides a richer dataset to quantitatively address questions
of forest C stocks and fluxes than have been previously available. We
use GEDI’s data to quantify the additional AGC stocks attributed to the
existence of PAs (termed “carbon effectiveness” of PAs) at a global
scale (within the GEDI domain). This is achieved through matching
each PA to ecologically similar unprotected areas, or counterfactuals
(based on climate, human pressure, land type, country, and other
factors). Our analysis is based on the richness of GEDI samples within
globally distributed terrestrial PAs, which allows us to assess the
enhanced value of C stocks in PAs relative to their unprotected
counterfactuals. In the GEDI domain, ~26% of aboveground C falls
within PAs, where avoided emissions from deforestation and degra-
dation are lower than in unprotected counterfactuals. A global esti-
mated 9.65Gt of avoided emissions are attributed to PA status. The
largest carbon effectiveness is found in tropical moist forests, speci-
fically in Brazil, although every continent exhibits higher aboveground
C stocks in PAs. These results underscore the importance of PAs in the
global carbon cycle and for climate change mitigation.

Results
Weestimate theGEDI-domain (N/S of 52° latitude) total protected area
woody AGC is 61.4Gt (+/− 0.31 Gt). While PAs represent ~11% of the
measured forested area (16.2Mkm2, Fig. 1), they store 26% (61.4 Gt) of
the total estimated AGC (235Gt24). This represents all aboveground
woody carbon stocks in PAs, not just those attributed to PA status
(termed additionally preserved AGC). Areas with PA status have, on
average, 28% more AGC than their matched unprotected sites, for a
total of 9.65 Gt (+/− 0.9 Gt) of additionally preserved PA AGC.

Why is there more biomass in protected areas than in similar
forests?
Most forested PAs (62.7%) had significantly higher AGC in 2020 than
matched unprotected areas. PAs were matched to unprotected areas

using a suite of ecological, anthropogenic pressure, and climate vari-
ables representing conditions in 2000 (Supplementary Table S1). We
therefore assume AGC densities in our samples within PAs and coun-
terfactuals were equal at that time. By then comparing 2020 GEDI
measurements between these protected/unprotected pairs, differ-
ences in 2020 represent approximately 20 years of change associated
with PA status. The observed differences in 2020 structure could be
explained by (i) less AGC loss in PAs compared to unprotected coun-
terfactuals resulting from deforestation and/or forest degradation
between 2000 and 2020, (ii) increased forest growth in PAs compared
to counterfactuals between 2000 and 2020, or (iii) PAs being pre-
ferentially established in higher biomass (C) areas before 2000.

Forest cover dynamics from the Landsat data record were ana-
lyzed from 2000 to 202025, and show more than half of PAs with
>2.5Mg/ha higher mean AGC also had lower rates of forest loss within
PAs than in unprotected counterfactuals (Supplementary Fig. S3).
Thus, the observed higher concentrations of AGC in PAs are attributed
primarily to avoided carbon emissions from deforestation, which is
supported by the optical data record (hypothesis i). In ~18% of PAs, the
forest cover change data in counterfactuals did not detect loss, while
GEDI still observes higher AGC in PAs. In these cases, we speculate
that degradation is occurring outside of PAs, but is not visible to
passive optical sensors that form the basis of the forest cover loss data
(e.g., small-scale logging, understory loss, etc.). This apparent degra-
dation signal demonstrates the importance of datasets such asGEDI to
detect subtle changes in carbon stocks that are not detectable with
previous satellite datasets26. Indeed, avoided degradation associated
with PAs has likely been missed in past studies analyzing reduced
carbon loss rates in PAs, and thus underestimated. Although we attri-
bute PAswherewe see higher AGCwithout reduced forest cover losses
as avoided degradation, PA vegetation in these cases may also be
exhibiting enhanced regrowth compared to unprotected forests
(ii)22,27. Our assertion of enhanced regrowth is supported by local and
regional studies assessing PA forest growth28,29. Based on these results,
we cannot definitively attribute the signal in this 18% of PAs to avoided
degradation, enhanced growth, or a combination of both. Regardless,
there is a clear signal of higher C densities here, and attribution of
higher C in these PAs would benefit from further investigation with
conservation practitioners, including fieldwork. Overall, we therefore
attribute our findings primarily to avoided emissions from deforesta-
tion and secondarily to a combination of enhanced growth and/or
avoided degradation (hypotheses i and ii).

We found little evidence that PAs were placed in higher AGC
density forests (hypothesis iii). If PAs were being established in higher
AGC areas, their baseline (year 2000) AGC should be higher than
counterfactuals. We used a pre-existing year 2000 AGC map to test
this3, and found that recently established PAs (established in or after
2000) had little differences in AGC between PA and matched unpro-
tected area in the year 2000 (Supplementary Fig. S4). Older PAs did
have significantly higher 2000 AGB values than matched areas, and
this difference increasedwith time since establishment. Thesefindings
are in line with expectations of PAs adding additional AGC through
time, rather than being preferentially located in carbon-dense loca-
tions. We therefore conclude that preferential establishment in high
AGC areas does not explain our observations of higher AGC densities
in PAs in 2020.

The Amazon dominated the global signal
The starkest contrast between protected and unprotected counter-
factuals was found in South America, specifically the Tropical and
subtropical moist broadleaf forest biome in the Brazilian Amazon
(Fig. 2). This supports recent results related to the effectiveness of PAs
in Brazil for avoiding deforestation30,31, and quantifies the climate
change impact of Brazilian PAs at 3.54Gt AGCmore than unprotected
counterfactuals, representing 36.6% of the global signal. Again, this
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Fig. 1 | Global-scale vegetation 3D structure data from NASA’s GEDI mission.
The GEDI-domain PAs cover a range of biomes (A). GEDI AGBD (B), canopy cover
(C), canopy height (D), and Plant Area Index (PAI, E) were analyzed for all PAs and

unprotected counterfactuals to establish the forest structure implications of PAs.
World base map made with Natural Earth.
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supports our hypothesis that differences between PA and unprotected
AGC are primarily associated with avoided emissions from forest loss
and degradation, as Brazil experienced the highest national forest loss
rates of any country during the analysis period12. It is also noteworthy
that while South American PAs have the greatest avoided carbon
emissions (additionally preserved AGC), they cover roughly the same
geographic extent as African PAs (Table 1). Avoided emissions are a
factor of both (a) deforestation rates outside of PAs and (b) the C
densities of forests being lost. Therefore while Africa hosts a similar
total area of PAs, thesehave, on average, lowerCdensities than in Latin
Americaor tropicalAsia32, and are smaller (themedianPA area in Africa
is 85 km2 compared to South America’s 127 km2), which may result in
increased disturbance. In addition, there is a larger increase in
anthropogenic pressure in both PAs and counterfactuals in the Afro-
tropics than in South America, whichmay be reflected in the relatively
lower carbon effectiveness we saw in African forests33. Indeed, Africa
has the largest proportion of PAs with no additionally preserved AGC
(Supplementary Fig. S5).

PA additionally preserved AGC varied considerably by biome, and
while the signal was unsurprisingly highest in tropical moist forests,
the dominant biome varied by continent (Fig. 2). The Amazon dom-
inates the global signal in carbon effectiveness. Tropical moist forests
also dominate Asia’s signal, given high forest loss rates in Southeast
Asia. Conversely, African PA effectiveness was dominated by tempe-
rate and tropical/subtropical grasslands, savannas, and shrublands.
Indeed, Africa is the only continent where the PA effectiveness is not
highest in a forest-dominated biome, suggesting that PAs in wood-
lands, grasslands, savannas and shrublands may be reducing land
conversion, e.g., to agriculture, reducing charcoal degradation34, or
bolstering woody encroachment35,36 and thus curbing net carbon
emissions in these systems. Yet tropical dry forests and woodlands are
under less protection than forests both in Africa (less than one-fourth
protected) and worldwide (less than one-third protected)37. With an
estimated population of 320million inhabiting such landscapes in the
2000s and an average of 2.4% increase per annum in sub-Saharan
Africa38,39, these ecosystems are facing higher human development
pressure than humid forests. Therefore, our results substantiate

the critical roles of protected areas in dry forest and woodland
ecosystems.

At a global scale, forests dominate the carbon effectiveness of
PAs (Table 1 and Fig. 2). A singular exception is mangrove forests,
which show a near zero effect of PA on AGC stocks. This may be due
to a few factors. First, many mangroves globally are below 5m in
height, therefore, GEDI may miss a large portion of mangrove bio-
mass both in protected areas and outside of them, which likely limits
our analysis. Second, mangrove PAs may either be ineffective at
protecting AGC aswe know thatmangroves are extremely vulnerable
to human pressure. Specifically, we found lower AGC in protected
mangrove areas in Indonesia andMalaysia, which also harbormost of
the mangrove cover in mangrove PAs worldwide (25% of global
mangrove extent and C is in Indonesia alone, as well as most of the
deforestation). Finally, deforestation rates have declined in all man-
groves since the year 200040 and 50% or more of global mangrove
cover was already lost by 2000, limiting remaining unprotected
mangrove areas available for cutting. Our mangrove results contrast
with studies demonstrating effective PAs for curbing mangrove loss
in Indonesia41. However, our results may be related to complicated
and challenging mangrove management42, and are supported by
results of a global mangrove study40 which indicated increased
pressure on Indonesian-protected mangroves in particular, provid-
ing evidence that some PAs may be ineffective at protecting man-
grove AGC. It is possible that mangrove AGC is being degraded while
canopy cover remains intact, but further research specifically into
C-rich mangrove ecosystems in PAs is critical.

Most countries (78%) in the GEDI domain have higher AGC stocks
in PAs compared to counterfactuals. The top 20 countries in terms of
PA effectiveness at preserving carbon (Fig. 3) are either (a) geo-
graphically large, (b) host forests with high AGC, and/or (c) have high
forest loss rates of unprotected forests (Fig. 4). Many of the top 20
countries fall in tropical dense forested areas such as the Amazon
(Brazil, Venezuela, Peru, Bolivia), the Congo Basin (DRC), or Southeast
Asia (Thailand, Indonesia, Cambodia, Malaysia). Outside the tropics,
highly ranked countries tend to be geographically large (Australia,
USA, Chile, France, Spain), or clustered in Eastern or Southern Africa,

Fig. 2 | Total additionally preserved AGC aggregated by continent and biome.
PAs effectively preserve additional AGC across continents and biomes, with forest
biomes dominating the global signal, particularly in South America. The additional

preservedAGC (Gt) inWWFbiome classes (total Gt + /− SEM*area).World basemap
made with Natural Earth. The full set of analyzed GEDI data are represented in this
figure (n = 412,100,767).
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where our results show biggest impacts outside of forests (Tanzania,
Mozambique, Zambia).

PAs are characterized by taller, denser, higher biomass forests
While we focused primarily on an analysis of forest AGC, similar trends
were found for other GEDI-based forest structure variables, including
maximumandmeancanopy height, Plant Area Index (PAI), and canopy
cover (Fig. 5). As GEDI predicts AGBD (which we convert to AGCD) as a
function of height metrics43, similar effectiveness was anticipated
between AGC and height. However, canopy cover and PAI, which are
independent structural data products, were also higher within PAs
than outside PAs. This suggests forest structure beyond carbon is
being negatively affected in the absence of protected status, which
correlates with habitat suitability and biodiversity44. Further, forest
structure (e.g., complexity, cover) is known to influence regional

hydrology45 and be tightly linked to climate and soil characteristics46.
These results therefore highlight co-benefits of PAs between carbon
and biodiversity10.

Discussion
Our results highlight the critical importance of protected areas to help
mitigate climate change. Aboveground carbon flux is only one way
forests influence climate change, while forest loss also influences
albedo, evaporative flux, belowground biomass etc., which are also
likely impacted by protected status22. This study focused specifically
on the avoided C emissions associated with preservation of woody
aboveground C stocks, and thus likely underestimate the full climate
impact of PA status. While our findings support results from past
studies which analyze the effectiveness of PAs for preventing forest
loss10,28,47,48, our results extend past studies using next-generation
satellite data to directly quantify enhanced stocks and/or avoided
carbon emissions from deforestation and degradation with great
consistency and accuracy. The majority of PAs exhibited avoided
emissions compared to unprotected counterfactuals. In some areas,
we see a relatively small difference between PA and matched AGB

Fig. 3 | In the top 20 countries with the most carbon-effective PAs, most AGC
remain unprotected. The top 20 countries in total PA additionally preserved AGC,
ranked by total national AGC (A) and the proportion of national AGC stored in PAs
(B). More than half of the national AGC have protected status for six countries,
while most AGC does not have protected status for the remaining 14.

Table 1 | The additionally preserved AGC is the difference
between the AGC observed in PAs and ecologically similar
unprotected counterfactuals

Additional PA
C (Gt)

Total above-
ground C in
PAs (Gt)

Total PA
area
(Mkm²)

Globe

Globe 9.64 + /−0.9 61.41 + /−0.3 16.15

Continent

South America (SA) 4.94 + /−0.47 29.12 + /−0.16 4.49

Asia (AS) 1.38 + /−0.59 9.08 + /−0.21 2.05

Africa (AF) 1.2 + /−0.17 9.58 + /−0.07 4.33

North America (NA) 0.86 + /−0.33 5.99 + /−0.1 2.32

Oceania (OC) 0.65 + /−0.32 2.26 + /−0.09 1.65

Europe (EU) 0.61 + /−0.13 5.37 + /−0.05 1.32

Biome

Tropical and subtropical
moist broadleaf forests

5.93 + /− 1.59 37.53 + /−0.48 4.46

Temperate broadleaf and
mixed forests

1.39 + /−0.64 7.8 + /−0.22 1.39

Tropical and subtropical
grasslands, savannas and
shrublands

0.81 + /−0.31 5.25 + /−0.11 3.17

Temperate Coniferous
Forest

0.4 + /−0.13 3.13 + /−0.07 0.55

Tropical and subtropical
dry broadleaf forests

0.3 + /−0.06 1.13 + /−0.02 0.32

Mediterranean Forests,
woodlands and scrubs

0.28 + /−0.09 0.93 + /−0.06 0.55

Deserts and xeric
shrublands

0.25 + /−0.22 1.06 + /−0.09 2.88

Boreal forests/Taiga 0.16 + /−0.24 1.73 + /−0.03 0.74

Temperate grasslands,
savannas and shrublands

0.05 + /−0.08 0.26 + /−0.02 0.36

Flooded grasslands and
savannas

0.04 + /−0.03 0.22 + /−0.02 0.28

Tropical and subtropical
coniferous forests

0.03 + /−0.03 0.51 + /−0.01 0.10

Mangroves 0.01 + /−0.08 0.22 + /−0.03 0.09

Tundra −0.01 + /−0.02 0.09 + /−0.01 0.74

Montane grasslands and
shrublands

−0.01 + /−0.15 1.19 + /−0.04 0.55

This AGC is aggregated at a biome, continental, and global scale. The total PA AGC stock and
total area of PAs in million km2 (Mkm2) are also reported. Note GEDI’s biomass (C) products only
account for aboveground woody C, even in non-forest ecosystems (i.e., trees and shrubs, not
herbaceousCor soil C stocks). In addition,NorthAmerica and Europeareunderestimated as PAs
north of ~52° latitude were not included in this study.
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levels, which suggests either reduced effectiveness of PAs, or lower
pressure on forests regardless of PA status. In these countries, our data
cannot determine whether PAs are ineffective or anthropogenic
pressure is low, and results should be interpreted in the context of
national data. The correspondence between high effectiveness of PAs
for AGC preservation in regions with high forest loss rates (e.g.,
Brazil49, Southeast Asia50) clearly highlights that maintaining and
expanding PAs, particularly in high C forests, is essential for achieving
global carbon mitigation goals.

Our analysis used a satellite lidar dataset to quantify the carbon
effectiveness of protected areas, which has not previously been pos-
sible with the accuracies or spatial resolution enabled by the GEDI
mission. Further, GEDI is sensitive to structural change in forests that
do not cause full canopy cover removal, and thus past studies likely
have not accounted for avoided degradation in PAs. Time series
satellite records3 indicate that these findings are related to avoided
emissions fromdeforestation, but several important caveats should be

noted. First, we do not account for leakage (i.e., deforestation pres-
sures that move away from protected areas), and it is possible that
background deforestation rates would be lower if not enforced in
protected areas51. However, evidence shows that leakage is unlikely to
negate ourfindings52,53. Secondly,wedonot analyzewhich type of PA is
the most effective, analyze PAs by governance type, or subdivide PAs
into multiple classes, but instead focus on a necessarily simplified
global analysis. Results from Tanzania suggest that multiple designa-
tions of PAs bolster carbon effectiveness, but that analysis of the
impact of PA designation likely varies by nation54.GEDI data might be
crucial for Indigenous Territories, which may be at higher risk for
degradation55, but also may be more resilient to deforestation
pressure56.

Our analysis focused on abovegroundwoody carbon but does not
account for belowground carbon (BGC) or the future added seques-
tration frommaintaining higher AGC within PAs22. Therefore, our AGC
totals only account for part of PAs’ full current and future effectiveness

Fig. 4 | PA carbon effectiveness by country. Nationally aggregated additionally
preserved AGC (A) is a function of the national total stored GEDI AGBD in PAs (B),
the average C effectiveness of PAs in a country (difference between PA AGC and

matched unprotected AGC, C), and the total PA area per country (D). World base
map made with Natural Earth.
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for AGC preservation. In addition, we do not account for the future
protection andenhancementof carbon sequestrationpotential related
to leaving PA AGC intact. Our results summarize the aggregate of
avoided emissions and forest growth over the past two decades (post-
2000), but these protected forests will continue to absorb carbon in
the future, and thus we have made conservative estimates of their
importance for avoiding carbon emissions, provided they remain
intact57.

Protected areas are effective for preventing carbon emissions
related to deforestation and degradation, and as they store a sub-
stantial proportionof Earth’s forest aboveground carbon, preservation
of these regions is an essential Natural Climate Solution7. These areas
are particularly critical in regions of the world experiencing high rates
of deforestation. We also demonstrate that other forest structure
metrics related to habitat (forest height, canopy cover, and PAI) are
also preserved by PAs, suggesting effective co-benefits of PAs include
both climate and biodiversity. Our work demonstrates that the pro-
tected area targets highlighted by the United Nations Convention on
Biological Diversity will benefit the UNFCCC goals such as the Glasgow
COP26 Leaders’ Declaration on Forests and Land Use commitment to
end deforestation by 2030. We provide a quantitative and globally
consistent demonstration of the success of PAs to mitigate climate
change and reiterate the multiple benefits of expanding these areas.

Methods
We used NASA’s Global EcosystemDynamics Investigation (GEDI) data
to quantify the effectiveness of PAs at preserving forest structure and
aboveground carbon. We used statistical matching to link PA 1-km
pixels to pixels outside of PAs with similarity in terms of their ecology,
environment, and human pressure using data layers from the year
200054. These control pixels, ormatchedunprotected counterfactuals,
allowed us to compare 2020 conditions between areas that would
theoretically have the same biomass distributions in 2000 except for
the presence of forest conservation through PA designation. We
extracted distributions of GEDI forest structure measurements within
PAs and matched counterfactuals, and quantified the differences
between the two. Figure 6 provides a visual representation of the
methods applied in this paper.

Global ecosystem dynamics investigation mission overview and
datasets
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is a lidar
mission aboard the International Space Station (ISS) which has been
collecting high-resolution (25m) samples of 3D vegetation structure
since 2019. GEDI produces a suite of forest structure products both at
the 25m sample resolution, and a gridded 1 km resolution. GEDI’s lidar
waveforms are processed to generate estimates of vegetation height
metrics, terms “Relative Height” (RH) metrics representing the vertical
distribution of foliage in each 25m footprint (the area illuminated by
each laser beam sample)58. RH100 represents the maximum canopy
height per sample, while RH50 roughly represents mean height.
Waveforms are also processed to estimate %canopy cover, and Plant
Area Index (PAI),which is roughly the same as LeafArea Index (LAI) but
includes woody material59. Finally, Aboveground Biomass Density
(AGBD) is estimated for each footprint by fitting models between
thousands of globally distributed sets of waveform metrics and field
plot measurements43. These models are parametric Ordinary Least
Squares models that predict AGBD as a function of RH metrics. They
are divided by continent and Plant Functional Type (PFT), and are
broadly consistent, typically predicting AGBD as a function of RH98
(maximum height) and a lower RH metric, representative of roughly
mean canopy height. The height, cover, PAI and AGBD products used
in this study are from thefirst 18months ofmissiondata, betweenApril
2019 and September 2020, and represent a total of >400 million 3D
structure samples. The AGBD estimates are translated into AGCD by
multiplying by 0.49 (the global average conversion from dry woody
AGBD to AGCD). GEDI presents the first-ever global-scale satellite
dataset designed specifically for measuring forest structure, and
overcomes limitations for forest height, cover, and AGB mapping in
dense forests where previous maps have little sensitivity to AGB19.

International union for conservation of nature datasets
The World Database of Protected Areas (WDPA) is a joint project
between the United Nations Environment Programme (UNEP) and the
International Union for Conservation of Nature (IUCN), and represents
the most comprehensive global database of terrestrial and marine
protected areas. The database is compiled and managed by the World

Fig. 5 | Differences in AGBD, forest height, canopy cover, and PAI between PAs
andmatchedunprotected areas. PA status resulted in increased forest height and

density, showing generally similar trends (higher values within the PA) across
structural metrics and continents. World base map made with Natural Earth.

Article https://doi.org/10.1038/s41467-023-38073-9

Nature Communications |         (2023) 14:2908 7



Conservation Monitoring Centre of UNEP (UNEP-WCMC), in colla-
boration with governments, NGOs, academia, and industry. Each pro-
tected area in the WDPA must meet the IUCN definition of a clearly
defined geographical space, recognized, dedicated and managed,
through legal or other effective means, to achieve the long-term con-
servation of nature with associated ecosystem services and cultural
values60 and the Protected Planet data standards (see WDPA User
Manual 1.6). IUCN classifies protected areas based on management
category (I–VI, with increasing human intervention), governance type
(i.e., who holds authority and accountability), status year, designation,
and various other attributes. The WDPA is available online through
ProtectedPlanet.net and is updatedmonthly. In this study, we used the
September 2020 version of the WDPA, with a total of 262,804 pro-
tected areas (240,713 polygons and 22,091 points) covering 245
countries and territories (Fig. 7). We only used PAs from terrestrial,
vegetated ecosystems within GEDI’s area of coverage. The WWF
biomes corresponding to the PAs analyzed in this study are shown in
Fig. 2 and Table 1. In the accounting of total AGB in protected areas,
overlapping protected areas are only counted once.

Matching algorithm
To determine the effectiveness of PAs, wematched 1 km sample pixels
within PAs to 1 kmsample pixels outside of any PAs by controlling for a
series of geophysical and socioeconomic characteristics (Supplemen-
tary Table S1). The choice of 1-km resolution for analysis is due to
limitations in the spatial resolution of matching covariates and

computational resources. In addition, this resolution aligns with sta-
keholder and policy maker needs and with scientific products, such as
the GEDI L4B 1-km gridded aboveground biomass24. A 10 km buffer
around any PA borders was also implemented to avoid mixed pixels
and remove potential spillover effects e.g., encroachment at the PA
boundaries or potential leakage into neighboring forests61–63. There-
fore no locations within the 10 km buffer of any protected area were
considered for matching. Only 1-km PA pixels entirely within PA
boundaries were considered. By comparing the vegetation structure in
PAs and theirmatched unprotected counterfactuals, we addressed the
fact that PAs were usually non-randomly distributed and assessed the
conservation strategy’s efficacy in storing biomass and carbon. To
assign counterfactual 1 km pixels to PA 1 km pixels, we required exact
matching of several covariates: land cover category, country, ecor-
egion and biome. In addition, we used propensity score matching for
quantitative covariates: geophysical, climatic and social variables, in
elevation, slope, mean precipitation, min and max temperature, dis-
tance to city, distance to roads, travel time to city, population count,
and population density (Supplementary Table S1). Counterfactuals
were assigned where all exact matching was satisfied, and then to the
maximum propensity score value from the quantitative covariates.
Once a counterfactual pixel was matched to a PA pixel, it was removed
from the potential control dataset (without replacement). The pro-
pensity scores were based on a logistic regression model, adopted
from the methods described in refs. 64–66. We implemented a
threshold of a minimum of 5 GEDI shots per 1 km matched pixel to

Fig. 6 | Visualizationof studymethodology. Protected area effectiveness is quantifiedby comparing distributions ofGEDI vegetation structuremeasurementswithin PAs
and matched control pixels.
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ensure reasonable representationof the forest structure of a given cell.
Although the number of GEDI shots in each 1 kmpixel varies due to the
sampling nature of GEDI (Supplementary Fig. S1), the difference in
number of samples per cell does not influence our results as we
averaged the structural metrics in all 1 km pixel pairs within each PA
and set of PA counterfactual cells for assessing PA effectiveness. The
performance of the matching algorithm was evaluated by inspecting
the distributions of propensity scores after each step of matching
following54. To reduce computational time in the propensity score
matching, we set a caliper54,66 to constrain the degree of difference
between potential controls and treatment by requiring an overlap in
the range of propensity scores for treatment and potential control
datasets. This matching algorithm is thoroughly detailed in a com-
plementary study focused on Tanzanian PAs54.

We assume negligible spatial autocorrelation between PA and
counterfactual pixels, as GEDI’s AGBDproduct has been demonstrated
to exhibitminimal spatial autocorrelation67 at its 1-km resolution (each
1-km pixel is comprised of several AGBD samples spaced along track at
minimum60m). Analyzed PA pixels are also at aminimum 10 km from
counterfactuals matches. Other studies have examined the influence
of spatial autocorrelation between sets of PA and counterfactual
points on the perceived effectiveness of PAs to curb forest loss, and of
the approaches explored our matching algorithm most closely
resembles the independent matching presented in ref. 68, which was
found to be the least affected by spatial autocorrelation. While a
thorough analysis of potential spatial autocorrelation between coun-
terfactuals is outside the scope of this study, considering its global
scale, further attention to this matter is encouraged for national or
subnational studies.

Global ecosystem dynamics investigation data processing
We used data from GEDI’s footprint-level height product (GEDI02_A),
cover product (GEDI02_B), and biomass product (GEDI04_A). We
applied quality filters to each of these products to only include high-
quality forest structure data. We filtered any data where the GEDI02_A
quality_flag was equal to 1 and the sensitivity metric was at least 0.95
(i.e., GEDI’s lasers were capable of penetrating more than 95% canopy
cover for all data used in this study).

We then extracted forest structure metrics from quality-filtered
GEDI data from all matched 1 km pixels with GEDI data within PAs and
within matched unprotected areas. The total number of filtered GEDI
shots used in this analysis was 412,100,767. For eachGEDI sample, four
structure metrics (RH98, canopy cover, PAI, and AGBD) were aggre-
gated for comparison at a national, continental, andbiome level. AGBD

means and totals were converted to AGCD. The difference in mean
AGCD between protected areas and matched unprotected counter-
factuals was used to indicate the carbon effectiveness of PAs at the
given level of aggregation. The distribution of GEDI samples over a
single protected area in the Brazilian Amazon, with the associated
matched pixels, illustrates the sampling nature of this compar-
ison (Fig. 8).

Total biomass, uncertainty estimation and carbon expansion
We estimated the mean and total PA biomass (AGBD) and associated
uncertainty in each PA, and for the aggregation of all PAs at a country,
continent and biome scale using the statistical hybrid inference
approach developed for the GEDI mission24. This approach accounts
for uncertainty resulting from footprint biomass model parameter
error and the GEDI sampling design to produce an estimate of the
mean biomass and the standard error of the mean at any scale ≥1 km2.
This algorithm was applied for each PA to estimate a mean PA AGBD,
with an associated standard error. The total AGB for the area used the
mean multiplied by the non-overlapping PA area, with a confidence
interval generated using the standard error of the mean and weighted
by the size of each strata. The set ofmatched 1 kmpixels for all PAs and
unprotected counterfactuals in each biome and within every country
was aggregated. Themean difference and associated standard error of
the mean difference was computed at a country-by- biome scale. This
mean difference was also multiplied by the PA area to estimate the
total additionally preserved AGB attributed to the PA status. Results
were aggregated to a country, continent, biome, and global scale by
totaling the PA level estimated additionally preserved biomass and
associated uncertainties. For unmatched PAs, where there was insuf-
ficient GEDI data, we extrapolated from country-by-biome results to
estimate the total additionally preserved biomass. If county-by-biome
results were unavailable (e.g., in the case of rare entirely protected
biomes), extrapolation was from a continent-by-biome level. Conver-
sion of all AGB estimates to carbon used a conversion factor of 0.49,
the IPCC global average for conversion factor for woody biomass69.

Comparison of year 2000 aboveground carbon density
To test whether our results simply reflect preferential PA establish-
ment in areas of higher AGC, we analyzed a year 2000 AGCD product
and assessed whether year 2000 AGCD differed between PAs and
matched unprotected areas (insofar as can be gleaned from the only
available global year 2000 AGCD product3). The results found that the
PA age (or time since establishment) was positively correlated with the
difference in 2000AGCD, i.e., that there was a statistically significantly

Fig. 7 | Protected areas analyzed in this study. Areas with PA-level ecological
counterfactuals are shown in green, where PAs without matched counterfactuals
are shown inmagenta, and PAs with insufficient GEDI data inmatched unprotected
areas are shown in cyan. For green PAs, the C differences were computed at the

individual PA level, for cyan estimates were based on national averages, and for
magenta estimates were based on averages from the continental-biome level.
World base map made with Natural Earth.
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higher (P <0.05) AGCD in PAs than counterfactuals in the year 2000
AGCDproduct. However, this differencewas primarily exhibited in PAs
established well before the year 2000 (e.g., >100 years old, Supple-
mentary Fig. S4), where older PAs had larger differences in carbon
densities between PAs and counterfactuals in 2000. For PAs desig-
nated in and after 2000 (recently established PAs), this difference was
significantly smaller (52.7%) than that for PAs designated before the
year 2000 (older PAs). By analyzing the relationship between PA age
and additionally preserved AGC in the year 2000 (our baseline year), it
was inferred that PAs’ ability to preserve additionalAGC increasedover
time (Supplementary Fig. S4). These results indicate that at least since
the year 2000, PAs have not been preferentially established in higher
AGCD sites (i.e., matched unprotected areas are balanced with respect
to AGCD). We further divided this analysis into forest and non-forest
ecosystems to address whether observed differences were primarily
from forest carbon, and found that forested protected areas exhibited
higher correlations between PA effectiveness and PA age. Indeed,
higher year 2000 AGCD in older forested PAs reinforces our finding
that PAs are effective at protecting AGC, and that this effect increases
over time as discrepancies between protected and unprotected areas
increase.

Comparison of forest cover loss within and outside of PAs
To test the hypothesis that PAs reduce deforestation or forest loss, we
compared the area of forest loss within PAs and their counterfactuals at
a country-, biome-, continent- andglobal level.Wefirst summarized tree
cover loss for all forested regions of the globe between years 2000 and
2019 fromaGlobal Forest Change (GFC) data product (v.1.725;). TheGFC
dataset was divided into 10 × 10° tiles with ~30-meter pixel resolution at
the equator. We used the GFC “lossyear” data layer to generate a forest
cover lossmask layer with values 0 indicating no change in forest cover
and values of 1 indicating forest cover loss between 2000 and -2019 at
the 30m pixel resolution. We then calculated the forest cover loss area
within every protected area polygon and matched unprotected pixel.
We estimated the fraction of forest cover loss (30mpixels with value 1)
falling within each PA and matched unprotected 1 km pixel. We aggre-
gated these values for all the 1 km PA pixels and their corresponding
matched unprotected areas to estimate the total forest cover loss dif-
ferences at the country, biome, continent and global scale.

For the subset of PAs that had matched unprotected areas, we
classified the PA into five classes based on differences between PA and
unprotectedAGB and forest cover loss.WherePAs havehigher (>5Mg/
ha) AGBD (positive “carbon effectiveness”) than counterfactuals, their
effectiveness is attributed either to avoided emissions from forest loss
outside of PAs (where there is a higher rate of observed 2000–2000
forest cover loss in counterfactuals than PAs, 30.3% of PAs), or to
enhanced stocks (either avoided degradation or enhanced growth,
18.4%) when there is either no difference in forest cover loss between
PAs and counterfactuals, or more forest cover loss within PAs. The
forest cover loss product is basedon Landsat datawhich saturateswith
respect to forest cover, height, and biomass, and thus may not be able
to detect subtle losses. Where there was little difference in PA and
unprotected AGCD (0 + /− 2.5Mg/ha, 26%), PAs are classified as having
no additionality in AGBD, regardless of any perceived difference in
forest loss rate. Finally, where PAs had lower AGBD than counter-
factuals, this is explained either by encroachment into PAs that is
visible as forest cover loss within PAs (8.3%) or degradation in PAs
when there is no higher perceived forest cover loss (17%). This analysis
was repeated at a continental scale (Supplementary Fig. S5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are from publicly available sources. GEDI
data are archived on NASA Distributed Active Archive Centers
(DAACs). GEDI’s footprint-level height data were taken from the
GEDI02_A height and elevation product, available at LPDAAC:
10.5067/GEDI/GEDI02_A.002. GEDI’s PAI and cover data were taken
from the GEDI02_B product also available at LPDAAC: 10.5067/GEDI/
GEDI02_B.002. Finally, GEDI’s footprint-level biomass (AGBD) data
were taken from the GEDI04_A. The WDPA database can be down-
loaded at www.protectedplanet.net. For the matching variables used
in the preprocessing, the 2000 land cover products can be down-
loaded at http://maps.elie.ucl.ac.be/CCI/viewer/download.php. The
WWF ecoregions and biomes can be downloaded at https://www.
worldwildlife.org/publications/terrestrial-ecoregions-of-the-world.

Fig. 8 | Visualization of matching algorithm. Each 1 km pixel within protected
areas that hadGEDI coveragewasmatched to ecologically similar unprotected 1 km
pixels in the same country and biome (shown in yellow for this example from

Brazil). GEDI data were then extracted from within each PA and its ecological
counterfactuals, and differences in the distributions of height, cover, PAI, and AGB
were analyzed (right). World base map made with Natural Earth.
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The gridded population datasets are retrieved from https://doi.org/
10.7927/H4JW8BX5. The annual mean precipitation and temperature
datasets are processed from the WorldClim version 1 datasets
downloaded from https://developers.google.com/earth-engine/
datasets/catalog/WORLDCLIM_V1_MONTHLY#description. Elevation
and slope are processedusingCGIARSRTMdownloaded fromhttps://
developers.google.com/earth-engine/datasets/catalog/CGIAR_
SRTM90_V4. Distance to cities dataset is retrieved from https://doi.
org/10.3390/land8010014. Travel time to cities dataset can be
downloaded from https://forobs.jrc.ec.europa.eu/products/gam/
download.php. For additional details related to the matching vari-
ables, see supplementary Table 1. Intermediate datasets such as pre-
processed matching results are available upon request.

Code availability
All analysis code is available on GitHub at https://github.com/
lauraduncanson/GEDI_PA.git, with the version used for this paper
archived at https://zenodo.org/badge/latestdoi/28405854170.
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