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Structural-disorder-driven critical quantum
fluctuation and localization in two-
dimensional semiconductors

Bong Gyu Shin1,2,3, Ji-Hoon Park 4, Jz-Yuan Juo1, Jing Kong 4 &
Soon Jung Jung 1

Quantum fluctuations of wavefunctions in disorder-driven quantum phase
transitions (QPT) exhibit criticality, as evidenced by their multifractality and
power law behavior. However, understanding the metal-insulator transition
(MIT) as a continuous QPT in a disordered system has been challenging due to
fundamental issues such as the lack of an apparent order parameter and
its dynamical nature. Here, we elucidate the universal mechanism underlying
the structural-disorder-driven MIT in 2D semiconductors through auto-
correlation and multifractality of quantum fluctuations. The structural dis-
order causes curvature-induced band gap fluctuations, leading to charge
localization and formation of band tails near band edges. As doping level
increases, the localization-delocalization transition occurswhen states above a
critical energy become uniform due to unusual band bending by localized
charge. Furthermore, curvature induces local variations in spin-orbit interac-
tions, resulting in non-uniform ferromagnetic domains. Our findings demon-
strate that the structural disorder in 2Dmaterials is essential to understanding
the intricate phenomena associatedwith localization-delocalization transition,
charge percolation, and spin glass with both topological and magnetic
disorders.

Localization of charge and spin in a disordered semiconductor has
been intensively investigated, since it profoundly affects charge or
spin diffusion, band tails, quantum Hall transition, metal–insulator
transition (MIT), and many other topics1–21. In particular, MIT is one of
the unconventional quantum phase transitions, which has not been
fully understood yet due to fundamental difficulties such as the lack of
an obvious order parameter and complexity related to the coexistence
of metallic and insulating states in an intermediate regime of the
MIT5,6,8–10. Following the pioneering works of the “Anderson transi-
tion”, the localization–delocalization transition (or MIT) in disordered
systems has emerged as a continuous quantum phase transition
accompanied by global symmetry and dimensionality1,5,6,16. Since the

discovery of MIT in the two-dimensional (2D) electron gas in semi-
conductor devices, the scaling theory and renormalization group
approaches based on the non-linear sigma model have been estab-
lished to explain MIT in disordered 2D systems with interacting
pictures1–5,7,8,12–14,17,22–24. This is in contrast to the prior prediction of the
scaling theory, which anticipates that all states of 2D non-interacting
systems are weakly localized and no true metallic states at 0 K exist17.
To understand the MIT of disordered interacting electrons, an alter-
native approach based on the dynamical mean-field theory was con-
structed with local order parameters with the typical value of the local
density of states (LDOS)6,25,26. A peculiar feature of disorder-drivenMIT
is the existence of quantum fluctuations of wavefunctions exhibiting
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multifractal behavior at criticality, which is related to the scaling
behavior of moments of LDOS with a system size1–3. Both approaches
independently indicate that the LDOS is key to a complete under-
standing of MIT.

MIT in 2D materials is of particular interest due to both their
versatility and the underlying exotic physics. Experimental observa-
tion ofMIT in semiconducting TMdCswas reported via doping control
in a field effect transistor device structure11,15, in which insulating and
metallic states were divided by the critical doping charge density.
Confusingly, the MIT was not observed when the MoS2 was encapsu-
lated by hexagonal BN, contacted with aluminum electrodes, or
investigated as an exfoliated sample, which implies a significant role
played by extrinsic factors27–29. Furthermore, peculiar transport results
in TMdCs were observed such as dominant charge trap and band tails
near the band edge, which cannot be explained by in-gap states of
defects27,30,31. However, the cause of the MIT and the localized charge
trap in TMdCs was not explained fully. To explain these phenomena,
and to elucidate their underlying physics, investigation at the micro-
scopic scale is imperative. Indeed, direct observation of wavefunctions
at the atomic scale can provide insight into localization and multi-
fractality that is expected near or at the critical point of MIT as loca-
lization length diverges1–3,32.

Here, we provide a universal mechanism of structural-disorder-
driven MIT in 2D semiconductors based on gate-tunable scanning
tunneling microscopy (STM) and spectroscopy (STS) results. In the
randomly corrugated MoS2 on SiO2, the localization of the doping
charge was confirmed by a spatial flattening of band edge and a
modulation of the local tunneling barrier height (TBH). The direct
evidence of the localization–delocalization transition in the structu-
rally disordered monolayer was provided by the autocorrelation
(localization length), distribution, andmultifractality of wavefunctions
near or at the critical point, showing the power law, the change from
log-normal (insulating) to normal (metallic) distributions, and the
singularity spectra towards the metallic limit of normalized STS map-
ping results, respectively1–4,33–35. In addition, STS and theoretical cal-
culation results confirm that the structural disorder in TMdCs is the
origin of the band tail. Moreover, the density functional theory (DFT)
calculations confirmed that the bending strain induces localized
magnetic moments correlated to doping charge localization. Surpris-
ingly, noncollinear DFT calculations show non-uniform ferromagnetic
domains in the structural disorder, known as spin glass. The values
align well, both qualitatively and quantitatively, with previously
reported experimental magnetization values36.

The observed curvature effects of the structural disorder can
explain many phenomena reported previously, such as formation of
MIT, band tails, charge trap states near band edges, temperature-
dependent percolation behaviors, negative magnetoresistance, and
intrinsic magnetization15,27,30,31,36–39. Furthermore, the observed locali-
zation of charge andmagneticmoment is not limited toMoS2, and has
been confirmed in other structurally deformed TMdCs.

Results and discussion
Structural-disorder-driven charge localization
Figure 1a–c shows a representative STM image of the randomly
deformed monolayer MoS2 (Fig. 1a) and the corresponding local cur-
vature (Fig. 1b) and band gap (Fig. 1c). The structurally disordered
monolayer MoS2 conforms to the surface roughness of the SiO2 sub-
strate (Fig. 1a and Supplementary Fig. 1) and exhibits large curvature or
bending strain of up to ±4% (Supplementary Figs. 2 and 3). The
structural disorder of MoS2 shows a random distribution of bonding
lengths and angles caused by the deformation. The band gap fluctua-
tions range up to ~1 eV (Fig. 1c) and show a strong correlation with the
curvature (Supplementary Fig. 2j)40. Such a random distribution of the
band gap can act as a random potential, which is analogous to the
Anderson localization (see the Supplementary Information). The STS

maps at a fixed energy near the band edges (Fig. 1d, e) show the
existence of localized states as isolated peaks decaying rapidly, while
extended states over the space were observed at the energy above the
conduction band edge (Fig. 1f, theoretical results are presented in
Supplementary Fig. 4a–d). In contrast to the extended states, the
localized states are not sensitive to the boundary conditions and do
not contribute to the conductance at the 0K limit5. In the STM/STS
results, the curvature-induced effects were clearly distinguished from
the defects and charged impurities.

The flattening of band edges via doping
In Fig. 1g, j, m, local conduction band minima (CBM) and valence
band maxima (VBM) were extracted from STS results (Supplementary
Fig. 5b). At the neutral state, the fluctuation range of the VBM is
similar to that of the CBM (Fig. 1g). The effect of the bending strain is
clear at the curved region (green-shaded in Fig. 1h, i), where the CBM
decreases while the VBM increases evenly, i.e., a band gap (EG)
reduction40.

By electron-doping (Supplementary Fig. 1b), the spatial flattening
of the CBM was observed (Fig. 1j). When additional electron charge is
added by doping, the electron prefers the local minima of CBM (red-
shaded in Fig. 1k, l) acting like a “charge basket” (see Supplementary
Information for details). When the electron-doping charge is accu-
mulated at the local minima of the CBM, the repulsive Coulomb
interactions from the localized electrons increase the local chemical
potential and shift the band edges up, resulting in local band bending
(Fig. 1k, l). This localbandbending increases until spatial equilibriumof
the electrochemical potential or Fermi level (EF) is achieved (the ter-
minology is explained in the Supplementary Information). Eventually,
the fluctuation of the CBM is reduced, i.e., spatial flattening of
CBM (Fig. 1l).

For hole-doping, the spatial flattening of the VBM was observed
(Fig. 1m). Similar to the electron-doping case, the hole is preferentially
accumulated at the local maxima of the VBM until equilibrium of the
electrochemical potential is achieved with downward local band
bending due to the attractive Coulomb interactions by localized holes
(Fig. 1n, o). Consequently, the curvature-induced band gap fluctuation
acts like a charge basket, which leads to doping charge localization and
an anomalous band edge flattening due to the Coulomb interactions
by localized charge.

The doping-charge-induced band edge flattening of curved
monolayer MoS2 was confirmed by DFT calculations. Figure 2a shows
the doping dependence of LDOS of curvedmonolayerMoS2. The band
gap is reduced in high curvature regions of the structure. The LDOS
results clearly show that the curvature induces band gap fluctuations
and the doping leads to the band edgeflattening. The variation of band
edges (ΔE) in Fig. 2a is plotted as a function of doping concentration in
Fig. 2b. At an electron-/hole-doping concentration of higher than
~5 × 1013cm−2, the variation of band edges is saturated at a low value,
indicating the spatial flattening of the band edge. The asymmetry of
the flattening between conduction and valence band edges was
induced by different orbital configurations and capacities of LDOS in
the curvature regions (Supplementary Fig. 6).

Similar to the MoS2 results, band edge flattening via doping was
observed in various other TMdCs (MX2, where M= {Mo, W} and X = {S,
Se, Te}), which indicates that this is a general phenomenon in 2D
semiconductors (Fig. 2c–h). Generally, 2D materials are flexible and
their electronic structures are sensitive to the extrinsic factors such as
a substrate and adsorbates. Moreover, 2D materials have strong Cou-
lomb interactions due to poor dielectric screening by a small volume
of themselves, which enhances the band edge flattening. Therefore,
the curvature-induced band gap fluctuation and band edge flattening
by doping are universal in 2D semiconductors. The degree of varia-
tions in band gap and band edge flattening depends on material
properties.
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Variation of local work function with charge localization
To gain further insight into the curvature-induced charge localization,
TBH maps were obtained using tip-height-dependent tunneling cur-
rent spectroscopy (Fig. 3). In STM, the exponential dependence of the
tunneling current on the tip-sample distance is strongly correlated
with local work function (the required energy to withdraw an electron
from the system)41.

As shown in Fig. 3a, b, the surface morphology of monolayer
MoS2 (Fig. 3a) is correlated with its TBH map (Fig. 3b). For the area of
Fig. 3a, the averaged line profiles of surface height (Fig. 3c), curvature

(Fig. 3d), and TBH (Fig. 3e) are plotted. The high curvature area
has lower TBH (red-shaded) as expected since the localized
doping electrons enhance the electron-electron repulsion at the high
curvature area41. In the neutral state of MoS2, the fluctuation range of
the TBH becomes four times smaller (Supplementary Fig. 8) than that
for electron-doped MoS2 in Fig. 3b, due to its dilute charge carrier
density.

In the calculated charge densities of the curvedMoS2 (Fig. 3f), the
doping charge localization is clearly visible in the higher curvature
regions (red-shaded in Fig. 3g). Moreover, the calculations show that

Fig. 1 | Curvature-induced charge localization and band edge flattening in
monolayer MoS2. a A 3D topographic STM image. b Local curvatures and
c curvature-induced band gap fluctuation in the area of (a). d–f STS maps for
localized and extended states for the intrinsic state of disordered MoS2. Localized
peaks near (d) valence and (e) conduction band edges. f Extended states covered
the whole measured surface. g–i Curvature-induced band edge fluctuation at
a neutral state. g VBM and CBM in the area of (a). h Structural model of a single
cylindrical curvature, and (i) its CBM, VBM, and band gap (EG). j–l Spatial flattening
of CBM via electron-doping. j Band edges at electron-doped state

(Δne = 5.67 × 1012cm−2 (gate bias of 75 V)). Schematic plots of (k) doping charge
localization and (l) its local band bending. m–o Spatial flattening of VBM via hole-
doping.m Band edges at hole-doped state (Δnh = 4.54 × 1012cm−2 (gate bias of
−60 V)). (Δne(h) denotes electron (hole) doping concentration). Schematic plots of
(n) doping charge localization and (o) its local band bending. k, n Δρe(h) indicates
electron (hole)-doping charge density. Purple lines indicate the Fermi level (EF). In
all cases, the lengths of red and blue side bars indicate fluctuation ranges of CBM
and VBM, respectively. Dashed lines indicate before-doping.
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the range of localwork function fluctuations relative to themean value
(ΔΦ) increases as the doping level is increased (Fig. 3h). For electron-
doping, the local work function in the higher curvature region is
minimized, in good agreement with the TBH result of Fig. 3e. For hole-
doping, the local work function of the high curvature area increases
due to the attractive Coulomb interaction by localized holes in the
area, reversing the overall trend of fluctuation in local work function
compared to the electron-doping cases. In addition, the fine features
of local work function in the curvature regions for electron-doping
cases are shifting from S to Mo atom sites as increasing the electron-
doping level along with the flattening of both background and

fine features in the curvature regions as shown in Fig. 3h. The hole-
doping cases did not show fine features and flattening of local work
function in the curvature regions. The difference originated from
orbital configurations near each band edge that differentiate the pre-
ference in occupation of states and capacity of the density of
states relevant to the degree of the flattening of local work function
by the charge screening in the curvature regions (Supplementary
Figs. 6 and 9).

Other doped 2D semiconducting monolayers (MX2, where
M= {Mo, W} and X = {S, Se, Te}) also show curvature-induced charge
localization (Supplementary Fig. 10).

Fig. 2 | DFT calculations showing a spatial flattening of band edges in various
2D semiconductors. a The variation of the LDOS depending on the doping con-
centration of monolayer MoS2 in cylindrical curvature structure. Corresponding
atomic structure is shown under each column. Blue regions in LDOS indicate band
gap. The Fermi level is set to zero (white-dashed line). Colored arrows at the top
indicate the doping levels of each column. b Fluctuation range of band edges (ΔE)
as a functionof doping concentration (Δne) extracted from the theoretical results in

(a). c–g Doping induced spatial flattening of band edges in (c) MoSe2, (d) WSe2, (e)
WS2, (f)MoTe2, and (g)WTe2. Doping levels are indicated at the top of each column
in the unit of 1013cm−2. All color scales for LDOS are the same in (a). h Fluctuation
ranges of band edges as a function of the doping concentration of various 2D
semiconducting monolayers, normalized by the maximum fluctuation range of
CBM. In each plot, arb. denotes arbitrary units.
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Criticality in the quantum fluctuation of wavefunctions
The substrate-induced random fluctuations of band edges act as a
random potential for electrons or holes, leading to the static disorder
that manifests MIT and band tail of localized states (Fig. 4).

The critical behaviors of MIT can be characterized by auto-
correlation, multifractality, and a normalized distribution of LDOS
extracted from STS results. The MIT in semiconducting TMdCs
appears at the critical doping concentration, which can be achieved by
controlled doping. The Fermi energy at the critical doping con-
centration is denoted critical energy (EC).

Figure 4a–d shows LDOS maps at different energies, extracted
from STS results of the electron-doped MoS2 in Fig. 1j. The localized
states are observed near the VBM (Fig. 4a) and CBM (Fig. 4b). In
comparisonwith the localized states near the VBM, the localized states
near the CBM are broader with lower intensity, owing to the shallow
fluctuation of the CBM due to the band edge flattening via doping. In
Fig. 4c, the criticality is observed at the critical energy which is
determined by autocorrelation as shown in Fig. 4e (see below). The
strong fluctuations of LDOS at the critical energy were exhibited over
the entire area, which is predicted by theoretical results1–4,33. The
extended states above the critical energy (Fig. 4d) show a uniform
intensity regardless of the structural disorder, as a result of the band
edge flattening by the doping charge. The crossover between localized
and extended states confirms the MIT with the critical point, which
exhibits a quantum phase transition from inhomogeneous insulating
to homogeneous metallic states.

In Fig. 4e, the radial-averaged autocorrelation of the LDOS at an
energy between two spatial points (data from Fig. 1j) can be divided
into two different areas, a rapid decay (blue-colored) area and an
almost constant (red-colored) area, by the critical energy35. In the
radial-averaged autocorrelation results, the rapid decay into a lower

value indicates localized states and the slow decay with a higher value
corresponds to the extended states. The critical behavior obeys the
power law, ∼ ∣R∣�η where η is an exponent and |R| is the distance
between the two spatial points3 (See the Methods). This critical beha-
vior is clearly visible in line profiles (Fig. 4f) of autocorrelation (Fig. 4e)
at fixed energies (linear in the log-log plot). For example, the line
profiles at 0.395, 0.5, and 0.635 eV follow the power law indicating
criticality1–4. The obtained η at the critical energy of 0.635 eV is
−2.23 × 10−3. The anomalous exponent of the second moment (Δ2) is
extracted from the multifractality of the STS results and it is
−2.28 × 10−3. Our results are surprisingly well-matched to the theory of
multifractality in disordered systems3, η = −Δ2 for the criticality. The
obtained value of η, however, could not bematched with any previous
theoretical expectations, which implies the necessity of a new theo-
retical approach with the band edge flattening. The autocorrelation
shows the contour of ~(EC − E)−ν with the critical exponent ν for E < EC
(dashed line in Fig. 4e) and the divergent contour (|R| ~ infinity) for
E > EC due to the very slow decay of the autocorrelation that is almost
constant (the red-colored region in Fig. 4e), which is extracted from
uniform LDOS maps (Fig. 4d).

In Fig. 4g, the singularity spectra (f(α)) of the LDOSmaps (Fig. 1j) at
different energies confirm the multifractality of LDOS near or at the
critical energy, where the peak position (α0) is larger than 2 and the
width of the peak is broadened. Above the critical energy, the singu-
larity spectrum approaches the metallic limit, where f(α) is only con-
centrated atα = 2with zero-width and f(α = 2) = 2 (f(α) = −∞, otherwise),
denoted by the vertical dotted line1, and coincides with the auto-
correlation results for extended states above the critical
energy (Fig. 4d).

In Fig. 4h, the distribution of the normalized LDOS changes from
log-normal to normal distributions, which corresponds to a transition

Fig. 3 | Charge localization at a curved MoS2. a STM topography and b TBH
mapping at 70V of gate bias as electron-doping. c–e the correlations among the
averaged line profiles of (c) the surfacemorphology, (d) absolute curvature, and (e)
relative TBHdifference (ΔTBH) of the area shown in (a). The averagevalues forplots
wereobtained in the axis of 12 nm in (a,b). (Supplementary Fig. 7 for each curvature
value) The sample bias of −3 Vwas applied. f Structural model of curvedmonolayer

MoS2. gCalculated doping charge density (Δne) of ±2e/unit-cell in (f), where e is the
electron charge and the signof +(−) is theadditionof electrons (holes).hCalculated
local work function variation (ΔΦ) in (f) depending on the doping concentration.
Electron-/hole-doping of ±2e/unit-cell is ±15.8 × 1013 cm−2. High curvature regions
are red-shaded.
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from localized to extended states33,34, in agreement with the auto-
correlation and multifractality results. The sharpness of both singu-
larity spectra near the metallic limit and normal distributions of the
LDOS maps above the critical energy reflects the effect of doping-
induced band edge flattening that leads to a uniform LDOS map
(Fig. 4d) as explained by the autocorrelation results (Fig. 4e). Our
results emphasize the importance of charge localization and band
edgeflattening inMIT. In addition, thebandedgeflattening inducedby
local chemical potential fluctuations is compatible with the disordered
Fermi liquid picture including the screened (renormalized) potential42.

The experimental results for the hole-doping case (Fig. 1m) in
autocorrelation, multifractality, and normalized distribution of STS

agree well with the results of the electron-doping case (Supplemen-
tary Fig. 11).

Band tail formation in structural disorder
The structural disorder is expected to form exponential band tails near
the band edges in the density of states (DOS). The band tails are loca-
lized states, following ~exp(−|E|/φc) where φc is the characteristic width
of the band tail20,21. In Fig. 4i, the formation of the exponential band tails
in the DOS was confirmed in randomly deformed monolayer MoS2,
using tight-bindingmethods43 with various scales of height fluctuations
in surface morphology as shown in the inset with color scales. As the
surface fluctuations in MoS2 increase, exponential band tails near the

Fig. 4 | Criticality of metal–insulator transition and band tails in structurally
disordered monolayer MoS2. a–d STS maps of the electron-doped MoS2 (data
from Fig. 1j) near (a) VBM, (b) CBM, (c) at the critical energy (EC), and (d) above the
critical energy. e Autocorrelation of the STS results in the electron-doped MoS2
(data from Fig. 1j). The interval between the dotted lines indicates the fluctuation
range of the local conduction band edges. The critical energy (EC) is indicated by
the arrow. The dashed line is ~ (EC – E)−ν, following the contour of the auto-
correlation. The Fermi level is set to zero. f, Line profiles of the autocorrelation at
different energies. The colored lines are fitted lines using the power law or expo-
nential function. g Multifractal spectra and h, histograms of normalized LDOS at
different energies. i Exponential band tails near the band edges, calculated by the

tight-binding method. Inset shows scaled structural models corresponding to the
strength of the disorder. Arrows indicate the protrusion of the band tails.
jCorrelationbetween the standarddeviationof bandgapdistribution (σg) andband
tail width (φc). The dash-dotted anddashed lineswerefitting results by σ2

g and σp
g (p

is a fitting parameter), respectively. The error bars indicate the standard deviations
of data. The theoretical results were collected from the various surface morphol-
ogies with different roughness scaling. The experimental results of MoS2 on HOPG
(height fluctuation ~±0.1 nm) and SiO2 (~±1 nm) are plotted. Each data point in (j)
was obtained out of the several data sets. And each of the data sets includes over
~104 spectra. For each plot, arb. denotes arbitrary units.
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band edges protrude further (log-scale plots are in Supplementary
Fig. 13a and experimental results are in Supplementary Fig. 12). More-
over, the experimentally observed LDOS maps (Fig. 1d–f) are repro-
duced in calculated LDOS maps (Supplementary Fig. 4a–d) and
demonstrated localized and extended states. The localized and exten-
ded states with exponential band tails (Supplementary Fig. 13b, c) were
reproduced again with another theoretical approach using the Schrö-
dinger equation for random potential fluctuations, which assures the
general behavior in Gaussian random potential fluctuations20,21.

Figure 4j shows the relation between the characteristic width of
the band tail and the standard deviation of band gap fluctuations (σg),
which were extracted from LDOS results of several different surface
morphologies. In the small or medium scale of surface fluctuations, φc

is proportional to σg
2, which is in good agreement with theoretical

predictions of exponential band tails in a static disorder20,21. For large
surface fluctuations, we found that φc is proportional to σg

p with
p =0.11 showing saturation behavior. Experimental results of band tails
in various LDOS maps extracted from MoS2 on highly oriented pyr-
olytic graphite (HOPG) and SiO2 were consistent with theoretical
results (Fig. 4j). The fluctuation of band edges (or band gap) by surface
deformation follows a Gaussian (normal) probability distribution
(Supplementary Fig. 14) that is only expected to produce an expo-
nential band tail20. Therefore, the existence of exponential tails in the
DOS near the band edges confirms the “random” potential under the
central limit theorem. The obtained band tail widths for different dis-
order strengths (Fig. 4i) confirm the previously reported values of
~0.1 eV from transport experiments30. The band tails with localized
states causedby structural disorder explainwhy charge trapstates near
band edges are dominant inmonolayerMoS2 on SiO2 (refs. 30, 39). It is
also compatible with a percolation picture for low doping density and
percolation-induced MIT by thermal activation39. In addition, the
structural-disorder-driven charge localization explains why the charge
trap near band edges and critical doping charge density became
smaller as increasing the thickness of MoS2 (multilayers) in the pre-
vious results39. As increasing the thickness, the flexibility of MoS2
decreased leading to smaller curvature formations allowing less capa-
city for charge localization (Supplementary Fig. 3).

Symmetry classes and structural-disorder-driven magnetism
In the structural disorder, the curvature of monolayer MoS2 is expec-
ted to change the local spin–orbit coupling (SOC) and induce a pseu-
domagnetic field as an emergent gauge44,45. The local variations in SOC
shouldbe investigated in a viewpoint of symmetryclasses. The random
change of SOC implies the symplectic class (time-reversal and broken
spin-rotation symmetries) that allows 2D-MIT46. On the other hand, the
previous theoretical expectation shows that the pseudomagnetic field
in monolayer MoS2 is proportional to the local Gaussian curvature45,
whichbreaks the time-reversal symmetry thatmight be contrary to 2D-
MIT as in the unitary class1,47. The other theoretical result, however,
confirmed that a weak magnetic field below the critical magnetic field
with a random SOC still allows the 2D-MIT with enhancement of the ν
exponent47. From the STM result in the same area of Fig. 1j, the average
value of theGaussian curvature ( κh i) is ~5.36 × 10−7 Å−2 and corresponds
to the spatial average value of the pseudomagnetic field ( Bh i) of
~0.021 T. The value of the pseudomagnetic field was evaluated by
Bh i= ð_=2eÞ κh i where e is the electron charge and ℏ is the Planck con-
stant divided by 2π (ref. 45). From the ref. 47, the equation of the ν as a
function of the magnetic field gives ~7.19 with Bh i = ~0.021 T (Supple-
mentary Fig. 15), which is in good agreement with the fitting result of
~7.28, ν from ~(EC − E)−ν by fitting of the contour in Fig. 4e (For the
detail, see the Supplementary Information). The tail of the fitted curve
(~(EC − E)−ν, dashed line in Fig. 4e) was saturated at 1.54 nm (~5 lattice
constants) below EC, implying the upper limit of localization length in a
fully localized monolayer MoS2 (ref. 32). On the other hand, the fitting
value of ν obtained from the localization/correlation lengths

characterized in the radial-averaged autocorrelation profile was 2.73
(Supplementary Fig. 16). All the results of ν from independent
approaches coincided with each other. Those results imply that the
MIT in monolayer MoS2 is not clearly predicted by its symmetry (for
example, time-reversal and spin rotation symmetries) under the
structural disorder.

To confirm the pseudomagnetic field effect, we calculated mag-
netization in a spherical curvature as a motif using noncollinear DFT.
When it is doped with electrons, the highest magnitude of magnetic
moments was located at the center of the spherical curvature (Fig. 5a),
correlated with the localized doping charge (Fig. 5b). For hole-doping,
see Supplementary Fig. 17. It is noteworthy that the doping charge is
predominantly localized at the Mo sites and localization of charge
appears at the center of the curvature (Figs. 3 and 5b).

To investigate the disorder effect in local magnetic moments, the
structural model of MoS2 with random surface fluctuation (area of
9.48 × 8.76 nm2) was calculated using DFT (Fig. 5c). The correlation
between local curvatures and localization of charge near the band
edges in the structural model was confirmed again (Supplementary
Fig. 4e–h).

Figure 5d, e shows a map of the magnitude of the local magneti-
zation (Fig. 5d) and z-axis-emphasized 3D vector plot (Fig. 5e) of the
structure in Fig. 5c at a doping level of 66 e/unit-cell. The calculated
intrinsic magnetization in the neutral case of Fig. 5c is ~2.0 × 10−7 μB/Å

3,
and a pseudomagnetic field induced by Gaussian curvature in the STM
result (Fig. 1j) produces the magnetization of ~4.0 × 10−7 μB/Å

3 in good
agreement with the previous experimental result of ~0.004 emu/cm3

(~4.3 × 10−7 μB/Å
3) in monolayer MoS2 on SiO2 (refs. 36, 38, 45). Fur-

thermore, the calculated magnetoconductance in the curvature-
induced pseudomagnetic field agrees well with the previous experi-
mental results of the negative magnetoconductance in monolayer
MoS2 (ref. 45).Noted that, theDFT-calculatedmagnetizationwas in the
range of 10−8 to 10−4 μB/Å

3 depending on various structures and doping
levels in MoS2, where μB is the Bohr magneton. Interestingly, the
arrangement of magnetic moments under the structural disorder
exhibited non-uniform ferromagnetic domains (Fig. 5d, e). The order
ofmagnetizationwaspurely governed by the strength of the structural
disorder determined by the degree of geometrical deformation. These
results suggest that the randomlydeformed 2D semiconducting TMdC
monolayers are a new class of spin glass systems in which topological
and magnetic disorders coexist. Direct measurements of local mag-
netization in atomic scale are needed to understand the criticality of
quantum fluctuations further, using spin-polarized STM or magnetic
force microscope.

In summary, there are threemajor effects of structural disorder in
semiconducting TMdCs. First, the curvature-induced band gap (edge)
fluctuations act like charge baskets leading to the localization of
charge in a random potential, which explains the MIT associated with
band edge flattening towards uniform metallic states. Second, the
localized states in the structural disorder formed the exponential band
tails near the band edges, confirmed experimentally and theoretically.
Last, magnetic moments emerge due to the curvature-induced change
of the spin–orbit interaction, which correlates with doping charge
localization. These results help to elucidate the electronic, magnetic,
and transport properties of structurally disordered flexible 2D semi-
conductors towards quantum applications.

Methods
Synthesis of MoS2
Monolayer MoS2 films were grown under low pressure by metal-
organic chemical vapor deposition (MOCVD)48. Molybdenum hex-
acarbonyl (Mo(CO)6, Sigma Aldrich) and diethyl sulfide ((C2H5)2S,
Sigma Aldrich) which were selected as precursors of Mo and S,
respectively, were supplied in the gas phase into a one-inch quartz
tube furnace using a bubbler system with Ar as the carrier gas.
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The MoS2 film was synthesized on a 300nm-thick SiO2 layer on a Si
wafer with a flow rate of 100 sccm for Ar, 0.1 sccm for Molybdenum
hexacarbonyl, and 1.0 sccm for diethyl sulfide at a growth temperature
of less than 350 °C. The growth time was about 20 h. After growth, the
furnace temperature was ramped down to room temperature. The
quality of the monolayer MoS2 films was characterized by Raman
spectroscopy and photoluminescence (Supplementary Fig. 1c, d).

Transfer of MoS2
Poly(methyl methacrylate) (PMMA) was spun onto MOCVD-grown
MoS2 on SiO2 at 1000 rpm. The PMMA-coated sample was slowly
dipped into a 2M KOH solution. Subsequently, the detached PMMA/
MoS2film fromthe SiO2was suspended indistilledwater to remove the
remaining residues. After transfer of the film onto a target substrate,
the sample was soaked in acetone and isopropyl alcohol baths to
remove the PMMA. Finally, electrodes were fabricated by metal
deposition.

Gate-tunable scanning tunneling microscopy and spectroscopy
The scanning tunneling microscopy (STM) and spectroscopy (STS)
were performed using a home-built STM with a gate-tunable config-
uration at ~4.8 K under ultra-high vacuum (UHV) of ~10−10mbar. Che-
mically etched W tips were used for the STM probe. For STS and
tunneling barrier height (TBH) spectroscopy, conventional lock-in
techniques were applied with an oscillation frequency of 417Hz and
amplitude of 7mV (5 pm for TBH). An apparent barrier height (TBH) is
defined as TBH= _2

8me

dlnI
ds

� �2
where s (in Å) is the distance between

sample and tip, me is the electron mass, ℏ is the reduced Planck con-
stant, and the unit of TBH is given in eV. The ΔTBH is defined by
the difference between TBH and minimum of TBH (i.e., ΔTBH =
TBH –minimum of TBH). The TBH was taken at the distance of ~6 Å
between sample and tip (i.e., s = ~6 Å).

All samples were outgassed below 350 °C in UHV. For doping, a
back-gate bias was applied through an arsenic-doped Si substrate
coated with a 285 nm-thick SiO2 layer. Palladium electrodes were used
for gating and biasing of samples.

Strain map, curvature, and band gap analysis
The STM images of MoS2 in atomic-scale resolution show the sulfur-
induced protrusions with the honeycomb lattice symmetry (Supple-
mentary Fig. 1), which corresponds to the isosurface of charge density.
A local lattice parameter along the deformation ofmonolayerMoS2 on
a substrate can be obtained by fast Fourier transform (FFT) analysis of
each local domain of ~2.3 × 2.3 nm2 over the measured surface. The
local curvature in an STM image should be evaluated over a few nan-
ometers (overall shape of height fluctuation), in which small corruga-
tion of charge density among the sulfur-induced protrusions in the
ångström-scale was not considered because the structural curvature
was developed by the positions of atoms, not the orbital shape of each
atom (Supplementary Fig. 5a). The local curvature was measured by
the mean curvature or local maximum of principal curvatures, which
showed high correlation with band gap (Supplementary Fig. 2). The
mean curvature and local maximum of principal curvatures exhibited
nearly the same cross-correlation with band gap.

Fig. 5 | Curvature-induced magnetism in monolayer MoS2. a DFT-calculation of
local magnetic moments in a spherical curvature structure of doped MoS2
(+4e/unit-cell). The surface of the structure is indicated by dots with the magnified
z-axis for better visualization. Inset at the bottom is the atomic structure
(4.74 × 4.38 nm2). b The calculated electron-doping charge density (Δρe) in the

structure of (a). cA randomly deformed structuralmodel ofMoS2 (9.48 × 8.76nm2)
with themagnified z-axis. dDFT-calculatedmagnitude of local magnetization (ρ|m|)
and e local magnetic moments in (c) with electron-doping (+66e/unit-cell), exhi-
biting localized non-uniformmagnetic domains. The dots in (e) indicate the surface
of (c) with the magnified z-axis.
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Characterization of exponential band tails
Exponential band tail width (φc) was extracted from STS mapping
results as an average value of each band tail width from valence and
conduction band edges. Band gap fluctuation was measured by the
variance of band gap fluctuation (σg) as a representative value of the
structural disorder strength. Under the assumption of the rigid shift in
the local band bending, fluctuation of band gap is invariant in the
single particle limit that is a representative measure of band edge
fluctuations at any doping level with band edge flattening.

Multifractal spectrum of energy-resolved STS map
The singularity spectrum (f(α)) fromSTSmapping resultswasobtained
based on the concept of the generalized inverse participation ratio,

Pq =
Z

ddr∣ψ rð Þ∣2q,hPqi / L�τq ð1Þ

where ψ(r) is a normalized electronic wavefunction, L is the linear
dimension of a d-dimensional system, and τq is an exponent related to
generalized fractal dimension, satisfying τq =dðq� 1Þ+Δq, where Δq

are anomalous multifractal exponents1–4. In a discretized d-dimen-
sional systemwith volumeLd andboxes of linear size lb, the generalized
inverse participation ratio can be defined by

Pq
i ðlbÞ=

X
j2ΩiðlbÞ

∣ψ r j
� �

∣
2q

ð2Þ

where Pi (q = 1) is the probability of finding an electron in the i-th
box (Ωi). A singularity strength α is defined by Pi / λαi , where λ � lb=L.
If the number of boxes N(α) is counted for that Pi / λαi where αi is in
between α and α + dα, then f(α) can be introduced by N αð Þ / λ�f αð Þ,
which indicates the fractal dimension of the points where the N(α)
boxes are counted. The singularity spectrum f(α) is defined from the τq
exponents via a Legendre transformation, τq =qα � f αð Þ, q= f 0ðαÞ,
α = τ0q. The singularity spectrum f(q) and average of the singularity
strength α(q) are alternatively defined by

f αðqÞð Þ= lim
λ!0

1
ln λ

XN
i

μiðq,lbÞ lnμiðq,lbÞ ð3Þ

α qð Þ= lim
λ!0

1
lnλ

XN
i

μi ðq,lbÞ lnPiðlbÞ ð4Þ

whereμiðq,lbÞ=Pq
i =

P
j
Pq
j andN = λ−d (ref. 49). The f(α(q)) and α(q) were

used for STS analysis. A value of STS (i.e., dI/dV) is proportional to
∣ψE r i

� �
∣2 at a given energy E as a probability of finding an electron at a

position of ri, which is corresponding to the local density of states
(LDOS), under the Tersoff–Hamann approximation50.

The normalized distribution of the STS mapping results by the
average value of STS results (LDOS=LDOS in Fig. 4h) exhibits a Gaus-
sian distribution for extended states and a log-normal distribution for
localized states. Localized states exhibit peaks in an LDOS map which
show large deviations from the mean value leading to a log-normal
distribution. On the other, extended states show smaller deviations
from the mean value, following a Gaussian (normal) distribution. The
transition from Gaussian to log-normal distributions characterizes the
metal–insulator transitionwith the critical behavior of scaling anomaly
in the singularity spectrum f(α) (refs. 33, 34).

Two-dimensional auto- and cross-correlation calculations
The two-dimensional auto- and cross-correlation were calculated for
the evaluation of the spatial correlation of a quantity, resemblance, or
correlation between two different image results. The cross-correlation
were calculated by SC x,yð Þ=PM�1

k =0

PN�1�y
l =0 Iðk,lÞ× Jðk + x,l + yÞ, where I

and J are images of M ×N pixels along with coordinates of (x,y). The
autocorrelation is a kind of cross-correlation of the single image I itself,
calculated by SA x,yð Þ=PM�1

k =0

PN�1�y
l =0 Iðk,lÞ× Iðk + x,l + yÞ. The auto-

correlation for the non-periodic images can measure the intrinsic
resemblance of an image itself with amaximum peak at the center. For
a single-valued image (I(x,y) = constant), autocorrelation results in a
constant value. In the cross-correlation, the strong highest peak at the
center indicates a strong correlation between two different images.

The radial-averaged autocorrelation C(E, R) was calculated to
investigate the localization or correlation length near the critical point,
which shows a relation with distance |R| between two points at the
energy of E,

CðE,RÞ= 1
2π

Z
dθ

Z
d2rgðE, rÞgðE, r +RÞ ð5Þ

whereg(E, r) is the local differential tunneling conductance (dI/dV) that
is proportional to LDOS (ρ(E, r)) at the energy E. The radial-averaged
autocorrelation was normalized by C(E,0). The autocorrelation
represented by LDOS (cf. Eq. (5)) near the critical energy shows a
scaling law,

ρ E, rð Þρ E, r +Rð Þ� �
= ρ Eð Þ� �2 / ðL=R∣Þη, l<∣R∣<L ð6Þ

where the exponent η =d � τ2 � �Δ2, and ρðEÞ� �
is the disorder-

averaged LDOS at the energy E that is counted from the electro-
chemical potential (Fermi level), l is the length scale of elastic
scattering mean free path, L= minfξ ,Lϕ,Lg is the shortest length
among the localization or correlation length ξ, dephasing length Lϕ,
and system size L (refs. 1, 3). If the LDOS map is uniform and almost
single-valued over the space as an extended state, the autocorrelation
is almost constant with very slow decay (Fig. 4d–f). For the localized
states, the isolated peaks in the LDOS map show the decaying
behaviors in the autocorrelation (Fig. 4a, b, e, f).

Density functional theory calculations
The first-principles calculations were performed to investigate the
electronic structures of curvatures in the various transition metal
dichalcogenides (TMdCs) monolayers (MX2, M= {Mo, W}, X = {S, Se,
Te}) using the Vienna ab initio simulation package (VASP) based on the
density functional theory (DFT) with a plane-wave basis set51. The
pseudopotentials in the projector augmented wave (PAW) formalism
with the Perdew–Burke–Ernzerhof (PBE) parametrization of the gen-
eral gradient approximation (GGA) were used as implemented in
VASP52,53. The cylindrical and spherical curvature structures of TMdCs
were constructed in a slab geometry with a vacuum of ~14 Å ormore to
avoid artificial effects, and all structural models were relaxed until the
residual forces of eachatomwere less than0.005 eV/Å. Theplane-wave
cut-off energy was 400 eV. For the surface Brillouin zone integration of
cylindrical curvature structures, a 2 × 36 grid in the Monkhorst–Pack
special k-point scheme with Γ-point was used as implemented in
VASP54. For spherical curvature structures and larger unit cells, Γ-point
was used due to a heavy computational load. The randomly deformed
structures in a wide range of 94.80 × 87.57Å2 were fully relaxed until
the residual forces of each atom were less than 0.04 eV/Å with con-
straints of surface height of few atoms to mimic the substrate-induced
deformation of the structure under the elastic limit55. In all calculations,
energy convergence was achieved with a tolerance of 10−6 eV. Non-
collinear DFT calculations including spin–orbit interactions were per-
formed as implanted in VASP based on the generalized local-spin
density theory56. Several easy axes for orientations of local magnetic
moments were investigated with orthorhombic unit cells. The work
functions were obtained from calculations of electrostatic potentials
without the exchange-correlation part.
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Tight-binding method and the Schrödinger equation approach
For a wide structural model (25 × 25 nm2), the tight-binding methods
with the three-band model of TMdCs were applied to calculate the
random fluctuation of local surface height inmonolayerMoS2 (ref. 44).
For a set of scaling calculations, the disorder strength was scaled by
control of surface fluctuation range from flat (0 nm) to ~4 nm. The
many different surface morphologies were calculated to obtain the
relation between the characteristic band tail width (φc) and standard
deviation of band gap distribution (σg). The three-band model of
TMdCs includes d-orbital (dz2 , dxy, and dx2�y2 ) which is dominant near
conduction and valence band edges44. The randomly deformed
structuralmodels within the third-nearest-neighbor were calculated to
obtain LDOS of each orbital. The local fluctuations of surface height
were generated randomly byGaussian functions with the criterion that
a ratio of height fluctuation to deformed area ≪1 nm−1 and periodic
boundary condition was applied to avoid a boundary effect. The
changes of hopping parameters tij between i and j sites by strain were
treated as

tij = t
0
ijexp �β

aij

a0
� 1

� 	� 	
ð7Þ

where a0, t0ij and aij are unstrained lattice distance, primitive
hopping parameter, and strained distance between i and j sites,
respectively. The factor β was chosen as 5 by the empirical orbital
dependence57. The inclusion of spin–orbit interaction did not
violate the conclusion for the curvature-induced charge localiza-
tion mechanism.

Using the Schrödinger equation, the eigenstates of a random
potential fluctuation over a honeycomb lattice potential were
calculated. The calculations were performed by the time-
independent Schrödinger equation with a random potential. The
Hamiltonian operator H, H = K + Vrandom + Vlattice where K is the
kinetic energy operator as the Laplace operator, Vrandom is a ran-
dom potential energy operator to mimic the curvature-induced
random fluctuation of band edge for charge carriers, and Vlattice is
a periodic honeycomb potential energy operator corresponding
to the potential of Mo atoms in MoS2. The random potential was
generated by a collection of random Gaussian functions. The
maximum fluctuation range of the random potential was up to
~1 eV to mimic the experimental observation. From the observa-
tion in the experimental results, the sharpness of the random
fluctuation was limited by a criterion such that spatial change of
potential ≪1 eV/nm. The Schrödinger equation approach shows
formations of the exponential band tails and that the character-
istic band tail width is proportional to the strength of structural
disorder (Supplementary Fig. 13b).

Data availability
The authors declare that all the data supporting the findings of this
study are either shown in themain and supplementary text or available
from the corresponding author upon request. Source data are pro-
vided with this paper.

Code availability
The codes used for the analysis and calculations are available from the
corresponding author upon request.
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