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Tradeoff between lag time and growth rate
drives the plasmid acquisition cost

Mehrose Ahmad1, Hannah Prensky1, Jacqueline Balestrieri1, Shahd ElNaggar 1,
Angela Gomez-Simmonds 2, Anne-Catrin Uhlemann 2, Beth Traxler3,
Abhyudai Singh 4 & Allison J. Lopatkin 1,5,6,7,8

Conjugative plasmids drive genetic diversity and evolution in microbial
populations. Despite their prevalence, plasmids can impose long-term fitness
costs on their hosts, altering population structure, growth dynamics, and
evolutionary outcomes. In addition to long-term fitness costs, acquiring a new
plasmid introduces an immediate, short-term perturbation to the cell. How-
ever, due to the transient nature of this plasmid acquisition cost, a quantitative
understanding of its physiological manifestations, overall magnitudes, and
population-level implications, remains unclear. To address this, here we track
growth of single colonies immediately following plasmid acquisition. We find
that plasmid acquisition costs are primarily driven by changes in lag time,
rather than growth rate, for nearly 60 conditions covering diverse plasmids,
selection environments, and clinical strains/species. Surprisingly, for a costly
plasmid, clones exhibiting longer lag times also achieve faster recovery growth
rates, suggesting an evolutionary tradeoff. Modeling and experiments
demonstrate that this tradeoff leads to counterintuitive ecological dynamics,
whereby intermediate-cost plasmids outcompete both their low and high-cost
counterparts. These results suggest that, unlike fitness costs, plasmid acqui-
sition dynamics are not uniformly driven byminimizing growth disadvantages.
Moreover, a lag/growth tradeoff has clear implications in predicting the eco-
logical outcomes and intervention strategies of bacteria undergoing
conjugation.

Horizontal gene transfer (HGT), particularly plasmid conjugation,
plays a significant role in microbial diversity and evolution1,2. Con-
jugation involves the movement of plasmid DNA from a donor to a
recipient through a transmembrane Type IV secretion channel, pro-
ducing a transconjugant3,4. HGT, and especially conjugation, is thought
to be frequent in microbial communities, providing opportunistic

pathogens and commensal microbes immediate access to diverse
genes encoding traits such as virulence factors or metabolic
enzymes5–10. Indeed, plasmid conjugation is considered the primary
way that antibiotic resistance genes spread11–14. Thus, it is critical to
understand factors facilitating plasmid dissemination to identify stra-
tegies to predict, prevent, and/or control such occurrences.
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The growth effects of plasmids on their hosts are typically char-
acterized by comparing the relative fitness of an established plasmid-
carrying strain to its plasmid-free counterpart15–17. This approach has
revealed that plasmids are often metabolically burdensome to their
hosts, resulting in an observable fitness cost14,18–21. Although compen-
satory processes can alleviate this growth reduction, fitness costs have
been shown to dictate the extent and trajectory of plasmid spread in
microbial environments22–24. Plasmid fitness costs describe growth
effects after plasmids establish themselves in new host strains; though
informative, thesemeasurements do not capture dynamics inherent in
initial plasmid establishment.

Separate from a fitness cost, establishing a novel plasmid in a new
host introduces a transientmetabolic perturbation that is burdensome
to the cell. Specifically, immediately following plasmid acquisition, a
cell must reallocate intracellular resources to accommodate new
energetic requirements associated with plasmid DNA replication and
gene expression25–29. Consequently, themagnitude andduration of the
burden depends on a complex interplay between multiple inter-
dependent biomolecular factors; for example, energy availability at the
timeof acquisition, plasmid-specific gene regulatorynetworks, and the
translation order of plasmid-encoded genes, may all result in either
delayed or over-production of proteins30. In addition, acquiring new
DNA is known to activate energetically burdensome stress responses,
further exacerbating the immediate burden of a new plasmid31,32.
Combined, these short-term effectsmay impact fundamental bacterial
physiology, clonal and population selection dynamics, and ultimately
plasmid dispersal and success33.

Despite its clear significance, few studies have examined these
short-term effects of plasmid acquisition, termed the plasmid acqui-
sition cost4,30. In all cases, growth defects were measured in liquid
culture, and across few or inconsistent conditions; this limits both the
generalizability, as well as the ecological implications, of plasmid
acquisition effects. Further, previous population-level studies are
unable to distinguish between changes in lag time, growth rate, or
both. However, lag times and growth rates each uniquely contribute to
various facets of bacterial dynamics, including robustness in fluctuat-
ing environments34, sensitivity to stressors35, and competitive
success36. Thus, this distinction is critical to better understandboth the
physiologicalmanifestation of acquisition costs, and as a corollary, the
selectiondynamics atplay in clonally heterogeneouspopulationsmost
representative of those in nature37–41. Overall, the generality, ecological
consequences, and fundamental physiological effects of plasmid
acquisition, remain critical open questions.

Here, to address these gaps, we characterize transient plasmid-
mediated growth defects at the single-colony level, allowing us to
quantify plasmid acquisition costsmore rigorously and systematically.
We find that the acquisition cost is primarily driven by changes in lag
time rather than growth rate across diverse and clinically relevant
plasmids, antibiotics, and Gram-negative strains and species. More-
over, our analysis reveals that individual clones carrying higher-cost
plasmids counterintuitively exhibit a tradeoff, whereby faster post-lag
growth rates temper the potential disadvantages of longer lag times.
Finally, we demonstrate the ecological implications of this tradeoff – a
potential selection advantage for plasmids with intermediate acquisi-
tion costs. Ultimately, our work demonstrates the complex interplay
between plasmid acquisition and overall bacterial growth dynamics,
and further highlights the critical role of plasmid acquisition in
understanding and predicting HGT outcomes in complex microbial
communities.

Results
Quantifying the plasmid acquisition cost at the single-
colony level
During conjugation, a donor transfers a copy of its plasmid to a reci-
pient, generating a de novo transconjugant (Fig. 1A). This de novo

transconjugant undergoes a period of adaptation as the plasmid
establishes itself in the host (e.g., reaching the appropriate copy
number, expressing plasmid-encoded genes). Ultimately, by 24 h
(although likely sooner), adaptation is complete, and cells can be
considered fully adapted transconjugants4.

The cost associated with plasmid acquisition can be quantified
using a time-to-threshold (TTT) metric. TTT is defined as the time it
takes a bacterial population to reach a ‘threshold’ density in the
exponential phase, and captures changes in both lag time and/or
growth rate as a result of plasmid acquisition4. However, estimating
TTT and resulting growth parameters from liquid culture poses two
main limitations: these values potentially (1) reflect the extremes of the
entire population, which can be driven by a few dominant clones and
(2) are confounded by competition amongst individual cells within the
population.

To control for these factors, and to quantify the effects of plasmid
acquisition more directly, we modified this approach to increase both
its quantitative resolution and throughput (Fig. 1B). Briefly, de novo
transconjugants are generated in the same way as previously (see
Methods)4; similarly, adapted transconjugants (i.e., cells that have
acquired theplasmid at least 24 hprior) aremaintainedunder identical
conditions. Following the conjugation period, both populations are
plated onto a dual-antibiotic agarplate such that single transconjugant
colonies are visible; dual-antibiotic selection is used to uniquely select
for the plasmid-carrying population (e.g., de novo and adapted), while
inhibiting the growth of residual parents present in the conjugation
mixture. Finally, agar plates are placed onto a temperature-controlled
flatbed scanner. Automated images are collected every 15min over
24 h. This method directly tracks individual de novo and adapted
colonies, thereby minimizing any confounding effects of batch
population dynamics. Further, since distinct colonies originate from
single cells, the growth curves of individual de novo and adapted
colonies can be compared directly. The acquisition cost can then be
calculated as the ratio between the average TTT of de novo compared
to adapted colonies. Finally, since both populations grow on two sides
of the same agar plate, this modified protocol also controls for envir-
onmental variability.

To confirm the validity and consistency of this scanner-based
method, we first verified that neither our setup nor analysis was biased
towards colonies growing on either side of the agar plate. We split a
population of plasmid-free Escherichia coli recipient cells, plating each
portion onto different sides of the same plate. Results indicated that
TTT from each side of the plate were statistically identical (Supple-
mentary Fig. 1a, p=0.812). We then verified that a plasmid previously
identified as costly in liquid culture, RP4, remained costly using this new
approach. As expected, ourmethoddetected an acquisition cost for RP4
under tetracycline selection: growth curves of de novo cells exhibited a
clear growth defect compared to adapted transconjugants (Fig. 1C, left);
this significantly increased the TTT for de novo cells (Fig. 1C, right). This
finding remained true regardless of the threshold density used to
quantify TTT (Supplementary Fig. 1b). Thus, combined, these results
demonstrate that our scanner-based approach is both consistent with,
and provides greater resolution than, the previous methodology.

Lag time drives acquisition cost rather than growth rate under
tetracycline selection
Aside from validating previous work, colony tracking also revealed
extensive clonal heterogeneitywithin thedenovopopulation; here, we
use heterogeneity to denote individual colonies that belong to the
same genetically identical population but exhibit phenotypic differ-
ences, as evidenced in the variability of growth curves for individual de
novo RP4 transconjugants. Since such clonal differences would not be
detectable in liquid culture, thisheterogeneity hadnot beenpreviously
quantified. Thus, to further investigate this more rigorously, we
quantified the growth rate and lag time of RP4 de novo and adapted
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transconjugant colonies. For both population types, lag times of
individual colonies increased linearly with TTT; that is, de novo and
adapted clones with longer lag times took longer to reach the
threshold density (Fig. 1D). Moreover, adapted transconjugants
exhibited an inverse relationship between growth rate and TTT, where
adapted clones growing faster reached the threshold density sooner
(Fig. 1E, left). However, de novo transconjugants did not follow this
trend: the growth rate of these cells showed a slight positive correla-
tion with TTT (Fig. 1E, right, p <0.005). Initially, this suggested that
following RP4 acquisition, acquisition cost dynamics were not sig-
nificantly impacted by growth rates, and insteadwere primarily driven
by lag times.

To determine whether this trend was plasmid-specific, we next
quantified acquisition costs for eight additional plasmids under iden-
tical antibiotic selection and recipient strain conditions (Fig. 2A, top
row); this initial focus on the bacteriostatic drug tetracycline is ideal,
since it minimizes potential metabolic effects imposed by bactericidal
antibiotics that may confound lag/growth dynamics42–44. These plas-
mids ranged in size, copy number, isolation source (i.e., clinical or
environmental), and incompatibility (Inc) group (IncI, F, P, and N)
(Supplementary Table 1). Quantifying lag time and growth rates for all
nine plasmids indicated that results were consistent with RP4: single
colonies of de novo and adapted transconjugants exhibited the same
direct, proportional trend between lag time and TTT (Fig. 2A, bottom
row). Moreover, while adapted cells retained the inverse correlation
between growth rate and TTT, de novo cells exhibited an apparent
decouplingbetweengrowth rate andTTT for costlier plasmids (Fig. 2A,
top and middle rows). Plasmids with no or low acquisition costs (e.g.,
R100-1, R64drd, and pOX38) retained the inverse relationship between
growth rate and TTT, whereas this inverse relationship was lost
for high-cost plasmids (pB10 and pRK100).

Pooling together all 9 plasmids revealed that the average plasmid
acquisition cost in de novo transconjugants was linearly correlated

with the average lag time (Fig. 2B, left, p = 8.33 × 10−5). However, the
average growth rate in de novo populations exhibited no significant
relationship with acquisition cost (Fig. 2C, left, p = 0.23). In contrast,
for adapted transconjugants, there was no significant relationship
between the acquisition cost and either lag time or growth rate
(Fig. 2B, C, right panels, p >0.1). This finding was expected: since
adapted cells no longer experience thephysiological effects of plasmid
acquisition, any relationship between the acquisition cost and growth
effects was anticipated to be de novo-specific.

We next tested whether these results were specific to our quan-
tification methods. First, we examined whether the threshold density
chosen for TTT impacts the relative importance of lag time and growth
rate on the acquisition cost. For all threshold densities reasonably
spanning exponential phase, lag time consistently and strongly cor-
related with acquisition cost, while growth rate did not (Supplemen-
taryFig. 2a). Next,we verifiedwhether these resultswere specific to the
Logistic-curve-fitting method used to quantify growth rates. Indeed,
we observed identical trends when using an alternative fitting proce-
dure (See Methods/Supplement) (Supplementary Fig. 3a, b)45. More-
over, instantaneous colony growth rates (e.g., the change in colony
size at every timepoint as a function of the overall average colony size)
further validated these results: despite differences in colony sizes, de
novo colonies ultimately attained the same growth rates as adapted
colonies, suggesting that overall trends are not driven by size-specific
artifacts of curve fitting (Supplementary Fig. 3c). Combined, these
results confirm that under tetracycline selection, acquisition costs are
driven by changes in lag time, not growth rate.

Lag time drives acquisition cost for diverse conditions and is
independent of plasmid-specific features
To further examine the generality of this observation, we first inves-
tigated whether any common plasmid features could readily explain
these results. Specifically, we examined the relationship between the

Fig. 1 | Quantifying plasmid acquisition costs with single-colony resolution.
A Schematic illustration of conjugation between a donor (blue) and recipient (red)
cell, generating a de novo transconjugant (yellow). Over time, the de novo trans-
conjugant adapts to the plasmid, becoming an adapted transconjugant (purple).
B Schematic illustration of the acquisition cost protocol. C Left: Log cell density in
pixels (y-axis) of RP4 de novo (yellow, n = 96) and adapted (purple, n = 208)
transconjugants over time (x-axis, hours). The black horizontal line indicates the
time-to-threshold (TTT) in hours. Right: TTT (y-axis) of de novo (yellow) compared
to adapted (purple) transconjugants. Markers correspond to the TTT of individual
colonies pooled across seven independent biological replicates. Bar height

represents themeanTTTof all colonies. The acquisitioncost (1.49) is determined to
be statistically significant using a two-sided t-test (p value shown) between the TTT
of adapted and de novo populations. D, E Individual de novo (yellow, right) and
adapted (purple, left) colony lag times (D) or growth rates (E) (x-axis) plotted
against their corresponding TTT (y-axis). In all cases, TTT is defined as the time in
hours it takes the bacterial population to reach a ‘threshold’ density within the
exponential phase; the threshold used here is 0.8. Where applicable, the Pearson
correlation coefficient is reported (ρ) and the linear regression line of best fit is
shown in black. All Fig. 1 data uses recipient strain RB933. All Source data are
provided as a Source Data file.
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acquisition cost and the number of transconjugants (as a proxy for the
conjugation efficiency), the adapted transconjugant growth rate (as a
proxy for fitness cost), and the overall plasmid size. In all cases, plas-
mid features were not significantly correlated with the plasmid
acquisition cost (Supplementary Fig. 2b, p >0.5). Likewise, genetic
features related to tetracycline were also not predictive of acquisition
cost. Specifically, neither the tetracycline operon sequence/

organization, nor the location of tetA on the plasmid relative to the
origin of transfer (oriT) or replication (oriC), were correlated with
the acquisition cost (Supplementary Fig. 2c and Supplementary
Table 2). Combined, this suggests that lag time trends are independent
of general plasmid, and tetracycline-specific sequence, features.

Having ruled out plasmid- or tetracycline-specific genetic expla-
nations, we next tested whether these results were specific to our

Fig. 2 | Lag time, not growth rate, drives plasmid acquisition cost. A Top: De
novo (yellow) and adapted (purple) transconjugants TTT in hours (hr) for nine
plasmids under tetracycline/rifampicin selection. The top left values correspond
to acquisition cost magnitude (i.e., 1.02 for R100−1). Bar height represents the
mean TTT of all n colonies. Middle: Growth rate (hr−1) versus TTT. Bottom: Lag
time (hr) versus TTT. Markers represent individual colonies. P values in the top
left corner for each plasmid are calculated from Bonferroni-corrected two-sided
t-tests. The number of colonies (n) per population is displayed in the bottom
row each panel. Plasmids increase in acquisition cost from left to right (gray
arrow). B, C Lag time (y-axis) (B) or growth rate (C) for all nine plasmids from (2A)
plotted as a function of acquisition cost (x-axis) for both de novo (left) and
adapted (right) transconjugants. Individual markers correspond to distinct plas-
mids: R100-1 (red), R64drd (orange), R702 (chartreuse) RIP113 (green), RN3
(mint), RP4 (blue), pB10 (dark blue), pOX38 (purple), and pRK100 (pink). Data for
A–C are pooled across at least three independent biological replicates, and the
resulting total number of colonies (n) per population is shown in the bottom row

of 2A (i.e., n = 99 and 117 for R100-1 de novo and adapted colonies, respectively);
these numbers indicate the sample sizes for statistics.D Lag time (left) or growth
rate (right) of de novo transconjugants plotted as a function of acquisition cost
for eleven additional plasmids under either carbenicillin (orange) or streptomy-
cin (black) selection; data is combined with tetracycline (blue) data (i.e., from
2A, B). Individual markers correspond to mean values for distinct plasmids. Data
in 2A–D use RB933 recipient. E Lag time (left) or growth rate (right), each nor-
malized to the corresponding recipient’s adaptive values, plotted as a function of
acquisition cost for RIP113 (green) and RP4 (blue), each with 24 or 7 unique
Klebsiella pneumonia strains, respectively. For 2D, E, colonies were pooled across
at least two independent biological replicates (see Supplementary Table 1c for
sample sizes and replicate numbers). In all cases, individual markers represent
means and error bars represent standard deviations across all n colonies. Black
lines represent the linear regression line of best fit, and either the Pearson cor-
relation coefficient (ρ) or R2 values are reported. All Source data are provided as a
Source Data file.
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initial choice of donor (tetracycline) and recipient (rifampicin) selec-
tion schemes. Since rifampicin resistance is expressed in recipients
even before plasmid acquisition, we reasoned this drug likely would
not impact the adaptation process. To test this, we used kanamycin
instead of rifampicin to select the same recipient, and measured the
acquisition cost for both R100-1 and RIP113 plasmids. For both plas-
mids, themagnitude of the acquisition cost, the statistically significant
relationship between lag time and TTT, and the statistically insignif-
icant relationship between growth rate and TTT, were maintained
(Supplementary Fig. 4). After verifying that recipient selection did not
influence our results, we next focused on resistance specified by the
plasmid itself. Here, because the recipient has never been exposed to
tetracycline prior to transconjugant selection, it would be reasonable
to expect that the observed decouplingmay be driven by tetracycline-
specific effects. To test this potential specificity, we measured acqui-
sition costs for 11 additional plasmids (14 new conditions overall)
under rifampicin recipient selection and either streptomycin or car-
benicillin donor selection (Supplementary Table 1); these two anti-
biotics were chosen due to their distinct mechanisms of action,
enzyme-based resistances, and potential for metabolic dysregulation,
as compared to tetracycline46–48. For all plasmids/drugs, as with tetra-
cycline, acquisition cost and lag time showed a strong positive and
statistically significant relationship, whereas growth rate remained
uncorrelatedwith acquisition cost (Fig. 2D). Combined, this confirmed
the observed trends are general to diverse bactericidal and bacterio-
static antibiotics.

Finally, wewonderedwhether our results were specific to E. coli as
the recipient strain. To test this, we used a panel of 24 rifampicin-
resistant Klebsiella pneumoniae (KPN) clinical isolates and quantified
the acquisition cost using the IncNplasmidRIP113 and the IncPplasmid
RP4. Even in this additional species, lag time, and not growth rate,
correlated with acquisition cost (Fig. 2E). Overall, these results con-
clusively demonstrate that the acquisition cost is primarily driven by
lag time, rather than the growth rate.

Tradeoff between lag time and growth rate underlies costly
plasmid acquisition
Despite the primary role of lag time in driving the acquisition cost, the
negative correlation between growth rate and TTT observed with low
acquisition cost plasmids appeared to become decoupled, and even
positively correlated, as the acquisition cost increased. In other words,
for a costly plasmid, individual clones that took longer to reach TTT
exhibited a counterintuitively higher growth rate; this suggested that
growing too early was overall detrimental to plasmid establishment.
On the other hand, longer lag times, while otherwise disadvantageous,
seemed to be tolerable, as they conferred clones a relative growth
advantage. To investigate this further, we examined the relationship
between lag time and growth rate for all 9 plasmids quantified under
tetracycline selection. Consistent with TTT results, lag time and
growth rate became positively correlated for sufficiently costly plas-
mids; the tradeoff between lag time and growth rate appeared to
increase with acquisition cost (Fig. 3A).

Given observed clonal variability in lag times and growth rates, we
first sought to rule out the possibility that the counterintuitive rela-
tionship between these parameters arose by chance as an artifact of
noise. To do so, we performed lognormal bootstrapping using dis-
tributions parametrized bymeans and standard deviations of de novo
lag times calculated from experimental data. Specifically, for each
plasmid, we generated 300 independent random lag time and growth
rate pairs under two different hypotheses (see Supplementary Meth-
ods). In the first hypothesis, lag time and growth rate were uncorre-
lated to each other; this corresponded to the assumption that the
observed positive relationship between lag time and growth rate
occurs by chance. In the second, lag time was constrained by growth
rate. Under both scenarios,we used each of the 300pairs to calculate a

logistic growth curve; from this growth curve, we then determined
both TTT, and the dependence between growth rate and TTT. This
process was repeated 1000 independent times, yielding a distribution
of growth rate/TTT dependences under both hypotheses. Results
indicated that onlywhen lag time-constrained growth rates, the latter’s
correspondence to TTT could be accurately predicted. In other words,
a constrained model could predict the observed decoupling between
growth rate and TTT, as judged by overlapping 95% confidence inter-
vals of the predicted and observed values across all plasmids tested
(Fig. 3B, top row). Conversely, the model without a lag time/growth
rate constraint could not predict TTT dependence on growth within a
95% confidence interval (Fig. 3B, bottom row). Together, these results
suggest that the observed decoupling between growth rate and TTT in
costly plasmids is driven by a counterintuitive direct relationship
between lag time and growth rate: as lag time increases, so does
growth rate.

Combined, our results confirm that the tradeoff between lag time
and growth rate is a feature of the acquisition cost and likely not an
artifact of the data. Thus, to quantify this tradeoff, we calculated the
slope of the regression line between growth rate and lag time for each
of the 23 plasmids/conditions measured using the E. coli recipient.
Pooling all data showed that, consistent with our interpretation, the
slope (i.e., the strength of the relationship) was positively correlated
with acquisition cost more than would be expected by chance alone
(Fig. 4A, ρ = 0.91); this was also true for the acquisition cost of K.
pneumoniae strains with both RP4 and RIP113 plasmids (Supplemen-
tary Fig. 5, ρ =0.66).

Ecological implications favor intermediate acquisition costs
Our data reveals two key trends: (1) the adaptation period following
plasmid acquisition primarilymanifests in a prolonged lag time and (2)
this prolonged lag time dictates the resulting growth rate of trans-
conjugants—cells with longer lag times (i.e., slower adaptation) enjoy
faster growth rates, and these growth advantages increase with the
plasmid acquisition cost. During the lag phase, cells metabolically
adapt to optimize growth in that specific environment49. Given that all
co-existing cells must both adapt and utilize a shared resource pool
simultaneously, these two trends combined likely impact both intra
and interpopulation competition dynamics. Thus, we sought to assess
how the lag/growth tradeoff, which is inherently dependent on
underlying clonalheterogeneity,would impact selectiondynamics and
ecological outcomes.

We first examined selection dynamics at the intrapopulation
level; that is, how does the lag/growth tradeoff impact clonal selec-
tion within a genetically identical, single-plasmid population? Our
data suggests that for a costly plasmid, cells taking longer to adapt
are more likely to attain faster growth rates. However, the longer
cells take to begin growing, the less competitive they will be, due to
resource depletion and carrying capacity constraints. Thus,
increased competition amongst individual clones will reduce the
effective growth advantage for cells with a longer lag time. However,
individual cells that initiate growth relatively quickly may still be
outcompeted by those with a longer lag time, so long as the latter’s
growth rate is fast enough to compensate. To test this idea, we varied
the initial cell density of a single-plasmid population (either de novo
or adapted) to simulate increasing clonal heterogeneity. We used a
simplified ordinary differential equation model consisting of a
population (N) of J unique clones. In each case, clonal lag times were
drawn from experimentally-determined distributions, and corre-
sponding growth rates were calculated using the tradeoff relation-
ship (or lack thereof) inferred from representative plasmids
(Supplementary Fig. 6a). For all simulations, 50 iterations (i.e.,
unique parameter distributions) were averaged to ensure that pre-
dictions reflected average dynamics rather than artifacts of
numerically-generated distributions of varying sizes/values. Finally,
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we assume that residual parents contribute to the total cell density of
the initial population, but do not grow, consistent with our data
(Supplementary Fig. 6b; Supplementary Text).

To characterize intrapopulation dynamics, we focused on chan-
ges in the overall population growth rate as a function of increasing
initial cell density. Intuitively, higher initial cell densities (corre-
sponding to additional parameter distribution sampling) simulates
increasing clonal heterogeneity, and thus results in a greater chance of
probabilistically selecting clones with longer lag times. In the absence
of a lag/growth tradeoff (e.g., adapted transconjugants, or de novo
transconjugants with no acquisition cost), these longer lag times are
not correlated with higher growth rates, which remain equivalently
distributed regardless of lag times. Thus, the population-level growth
rate should remain constant at low to intermediate initial cell densities.
At sufficiently high densities, individual cells will never reach their
potential maximum growth rates due to the collective inhibitory
effects of environmental carrying capacity; therefore, the observed
population-level growth rate will monotonically decrease with
increasing initial density. Consistent with this logic, modeling pre-
dicted and experiments validated that the growth rates of non-costly
R100-1 de novo and adapted populationsmonotonically decrease with
increasing cell density (Fig. 4B).

In the presence of a lag/growth tradeoff, however, as initial den-
sities increase, higher lag times are, by definition, coupled with (i.e.,
constrained by) higher growth rates. These clones are dis-
proportionately able to dominate a population, and thus, at low to
intermediate initial cell densities, the population-level growth rate
should increase with initial density. As in the no tradeoff case, at

excessively high initial cell densities, growth is constrained by carrying
capacity effects. Together, then, for a sufficiently costly plasmid, we
expected de novo cells to exhibit a biphasic relationshipwhere growth
rates increase at low to intermediate initial cell densities before
decreasing at high initial cell densities. To verify this, we simulated and
measured lag times/growth rates for the costly plasmid RP4 across
identical initial densities as R100-1. Indeed, modeling and experiments
confirmed a biphasic growth dependence in costly de novo, but not
adapted, populations (Fig. 4C). Overall, these results demonstrate that
for costly plasmids, a tradeoff between lag time and growth rate may
enable heterogeneouspopulations to attain higher growth rates due to
clonal selection. From an evolutionary perspective, then, this tradeoff
may serve as a selective mechanism that favors variants/subpopula-
tions optimal for HGT under a given set of environmental conditions.

Finally, we examined the ecological dynamics at the inter-
population level; that is, how does the lag/growth tradeoff impact
selection outcomes of multiple genetically distinct competing plas-
mids, each with their own underlying phenotypic distributions? To
answer this, we considered the scenario where a fixed, intermediate-
cost plasmid population (Fig. 4D, red line) was competed against a
second plasmid-carrying population exhibiting a range of acquisition
costs.We then calculated the final percentage of the intermediate-cost
plasmid population, both in the absence and presence of a lag/growth
tradeoff. Simulations revealed that, on average, without any lag/
growth tradeoff, a plasmid with a lower acquisition cost will always
outcompete one with a higher acquisition cost (Fig. 4D, left). This
finding is intuitive: lower-cost plasmids (i.e., shorter lag times) can
dominate mixed populations earlier compared to costlier plasmids

Fig. 3 | Lag time andgrowth rate tradeoff asa functionof acquisition cost.A Lag
time in hours (y-axis) as a function of growth rate (x-axis) for nine plasmids under
tetracycline selection (i.e., Fig. 2A) shown in order of increasing acquisition cost
(gray arrow, left to right). Individual markers represent de novo (yellow) colonies.
Black lines represent the linear regression line of best fit, and the Pearson corre-
lation coefficient (ρ) is reported for each population. Colony numbers are the same
as those reported in Fig. 2A, and are listed in Supplementary Table 1c.B 300 clones
with bootstrapped lag times were generated in 1000 independent rounds; in each
round, associated growth rates that were either unconstrained (bottom) or

constrained (top) by these lag times were also chosen. Parameters were used to
simulate density over time using the modified Logistic equation, and the relation-
ship between growth rate and predicted TTT was collected (see Supplementary
Methods). X-axis is the TTT/growth rate relationship (i.e., the slope of the black line
in themiddle panel in Fig. 2B). Gray shading indicates the 95%confidence interval of
the true slope for that corresponding plasmid, and red shading indicates the 95%
confidence interval for the 1000 iterations. All Source data are provided as a Source
Data file.
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(i.e., longer lag times), when the latter has no growth advantage. In
contrast, when a lag/growth tradeoff is present (i.e., a longer lag time
results in a faster growth rate for individual clones), simulations pre-
dicted that intermediate-cost plasmids will outcompete those with
both low and high acquisition costs (Fig. 4D, right). This counter-
intuitive outcome is driven by optimality between lag time and growth
rate: an intermediate-cost plasmid can outcompete both a low-cost
and a high-cost plasmid due to the former’s comparatively inferior
growth rate, and the latter’s excessive lag time. As such, we predicted
that intermediate-cost plasmids would outcompete both their low-
and high-cost counterparts.

To test this prediction, we used R64drd, RP4, and pB10 as
representative low-, intermediate- and high-cost plasmids, respec-
tively. These plasmids were chosen due to their distinct acquisition
costs, (Fig. 2A andSupplementary Fig. 7), similar adaptedgrowth rates/
fitness costs (Supplementary Fig. 8a, b), and unique antibiotic resis-
tance markers (Supplementary Table 1). First, we competed the
adapted counterparts of each plasmid pair (i.e., R64drd-RP4 and pB10-
RP4) to calibrate initial starting densities that would result in an equal

final ratio of the two plasmids (Supplementary Fig. 8c–e); doing so
accounted for any differences in fitness effects and basal conjugation
rates, thereby ensuring that any deviation from this equal ratio is dri-
ven entirely by de novo dynamics. Using the calibrated initial condi-
tions, simulations predicted that in all cases, de novo RP4
(intermediate-cost) would outcompete both de novo R64drd and de
novo pB10 (Fig. 4E). Indeed, experiments confirmed that the
intermediate-cost plasmid RP4 dominated the population under all
conditions tested (Fig. 4F). Overall, our results highlight that in mixed
environments, due to the complex interplay between lag time and
growth rate, intermediate-cost plasmidsmaybe evolutionarily favored
compared to their lower and higher cost counterparts.

Discussion
Here, we used automated imaging to visualize single colonies of de
novo transconjugants immediately following conjugation-mediated
plasmid acquisition. Doing so allowed us to infer population-level
trends and confirm our previous results4. Further, this approach
allowed us to characterize the growth effects during the critical period

Fig. 4 | Ecological/evolutionary advantage to intermediate acquisition costs.
A Acquisition costs for all plasmids (i.e., Fig. 2D) with RB933 recipient is plotted
against the slope of the regression line between growth rate and lag time (i.e., from
Fig. 3A). The Pearson correlation coefficient is reported (ρ =0.91). Orange, black,
and blue marker colors correspond to plasmid selection with carbenicillin, strep-
tomycin, or tetracycline, respectively. Markers represent the mean, and horizontal
error bars represent the standard deviation, of acquisition costs for the indicated n
number of de novo colonies listed in Supplementary Table 1c; vertical error bars
represent the 95% confidence interval corresponding to the slope estimates from
Fig. 3A. B Left: Simulation predictions for the no-cost plasmid R100-1. X-axis is
initial number of cells, and y-axis is the average population lag time (top) or growth
rate (bottom). Right: Experimentallymeasured lag times andgrowth ratesof R100-1
at corresponding initial densities (x-axis) for de novo (yellow) and adapted (purple)
transconjugants. C Same as 4B for RP4. D Simulation predictions for pairwise
competition outcomes between an intermediate-cost plasmid (red vertical line)

and one with varying acquisition costs, defined based on its lag time (x-axis), either
in the absence (left) or presence (right) of a lag/growth tradeoff. Y-axis is the
competition outcome, i.e., the percent of the intermediate-cost plasmid in the final
population. E Simulation predictions between an intermediate-cost plasmid (black
bars) and either a high-cost (left) or low-cost (right) plasmid (white bars).
F Experimental competition outcomes between intermediate-cost plasmid RP4
(black bars) and either high-cost plasmid pB10 (left) or low-cost plasmid R64drd
(right) (white bars). Plasmid percentage is calculated as the CFU from individual
antibiotic-containing agar plates divided by the total CFU from tetracycline plates,
multiplied by 100. For all simulations, marker values/bar heights represent means
and error bars represent standard deviations, of n = 50 iterations; for experimental
data in 4B, C, F, marker values/bar heights represent means and error bars repre-
sent standard deviations, of n = 3 biological replicates. For 4E–F, white markers
indicate individual data points. All competition experiments use recipient strain
BW25113-rif. All Source data are provided as a Source Data file.
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of plasmid establishment more quantitatively and with higher resolu-
tion than previous methods4. However, single-colony measurements
also revealed significantly richer insights into the growthdynamics and
underlying heterogeneity demonstrated by individual clones within a
de novo population.

Our previous population-level measurements suggested that the
acquisition cost manifests by either prolonging lag time and/or redu-
cing growth rate. However, analysis at the single-colony level revealed
that these observed effects likely arise due to underlying population
clonal heterogeneity, whereby individual clones begin to grow at a
wide distribution of times. Instead, the acquisition cost is primarily
driven by lag time, and is largely independent of growth rate. This
finding was general to 58 diverse conditions, encompassing various
plasmids, antibiotics, and bacterial strains/species. Interestingly,
recent works have found heterogeneous expression of resistance
enzymes following conjugation, e.g., TetA in the presence of
tetracycline50,51, which may impact acquisition dynamics. Our genetic
analyses did not suggest any obvious explanations for our observed
tetracycline-specific differences across plasmids (e.g., both low and
high costs); this, combined with consistent trends across multiple
antibiotics, suggests our results are not driven by antibiotic-specific
factors. However, drug-specific effects cannot be ruled out entirely;
examining lag/growth dynamics in the absence of antibiotic selection
altogether is an important next step.

This main finding—that lag time drives plasmid acquisition
dynamics—is consistent with current understanding of lag dynamics.
Specifically, during the lag phase, bacteria adapt to the selective
pressures in their environment prior to exponential division36,49,52,53.
This period also allows bacteria to withstand high stress, such as
extended lag phases that enable bacteria to survive in the presence of
antibiotics54. Thus, plasmid acquisition can be considered a natural
extension of typical lag dynamics, which can be advantageous – here,
reaching the steady state levels (e.g., copy number and gene expres-
sion) of thenewly acquiredplasmidbefore expansion allows the cells to
maximize later growth.

Although lag time appears to drive overall acquisition dynamics, at
the single-colony level, we found that clonal heterogeneity contributed
significantly to population structure and ecological outcomes. Specifi-
cally, the growth rate was uncorrelated with the average plasmid
acquisition cost at the population-level. However, within a single de
novo colony, lag time exhibited a counterintuitive tradeoff with growth
rate; that is, from the same population, individual colonies with longer
lag times demonstrated higher post-lag growth rates compared to those
with shorter lag times. This tradeoff suggests optimality between a
plasmid’s acquisition cost, lag time, and growth rate. Indeed, we believe
the combination of all these factors ultimately drives new transconju-
gant selection, and dictates competitive plasmid outcomes. Our work
showed one example of this - the selection of intermediate-cost plas-
mids compared to both their higher and lower-cost counterparts.

That plasmid costliness may provide bacteria with a growth ben-
efit suggests that, unlike fitness costs, acquisition costs may never be
fully selected against. Instead,maintaining somedegreeof costliness is
beneficial for the population as a whole: it maximizes the diversity of
competitors (plasmid-carrying and otherwise) over which a given
strain may enjoy a competitive advantage. If so, this finding reveals a
potential Achilles heel to exploit when determining novel strategies to
modulate plasmid acquisition dynamics. For example, potentiating
existing acquisition costs through genetic or metabolic manipulation
may enable the targeted selection of specific plasmids of interest over
others.

Overall, our results demonstrate that the acquisition cost can
shape plasmid/strain competition and selection. Further, our work
introduces greater complexity to the current understanding of plas-
mid costs, in that their presence may not always be disadvantageous.
We note that our experiments used cells initiated from the stationary

phase and simplified pairwise competitions. Future studies should
expand the range of environmental conditions, physiological states,
and population diversity, to assess how lag/growth outcomes may
manifest in increasingly complex metabolic settings. Further, our
preliminary analysis of plasmid genetics did not reveal any obvious
molecular explanations for acquisition costs; a better understandingof
the underlying mechanisms would allow us to integrate experimental
measurements withmore bioinformatic-drivenmethods to investigate
acquisition costs across relevant environments and clinical settings.
This type of integrative approach can help identify potential ther-
apeutic pathways and provide additional insights into epidemiological
trends of plasmid dissemination, furthering the development of novel
plasmid control strategies.

Methods
Strains, media, and growth conditions
In all cases, experiments were initiated from single colonies picked
from agar plates (BD Difco Luria-Bertani Agar Powder, cat
#DF0445076), inoculated in 2mL Luria-Bertani (LB) media (BD Difco
Luria-Bertani Broth, cat #DF0446075), and incubated overnight at
37 °C for exactly 16 h shaking at 250 rpm. Where applicable, LB media
was supplemented with specific antibiotics for selection: 15μg/mL for
tetracycline (Fisher Bioreagents, cat #BP912-100), 50μg/mL for
rifampicin (Alfa Aesar, cat #J60836), 50μg/mL for streptomycin
(Sigma-Aldrich, cat #S6501-50G), 50 μg/mL for kanamycin (Acros
Organics, cat #61129-0050), and 100μg/mL for carbenicillin

(Fisher Bioreagents, cat #BP2648-5); Supplementary Table 1 and
Supplementary Table 3. In all cases, a colony-free LB negative control
was included, and any experiment was discarded if growth was
observed. All experiments were performed in M9 medium (M9CA
medium broth powder from Amresco, cat # J864-100G, containing
2mg/mL casamino acid, supplemented with 2mM MgSO4, 0.1mM
CaCl2, and 0.4% w/v glucose). A list of all strains and plasmids used in
this study, along with all main experiments and corresponding anti-
biotics used for selection, can be found in Supplementary Tables 1
and 3.

Susceptibility screening for plasmid resistance
Comprehensive resistance profiles were determined for all plasmids
used. First, each plasmid was transferred by conjugation to the spon-
taneous rifampicin-resistantmutant of BW25113, denotedBW25113-Rif.
As this strain is only resistant to rifampicin, full susceptibility profiles
of plasmids could be obtained. For each plasmid, 1mL LB cultures
containing the appropriate selection drug were prepared. Cultures
were inoculated, and cells were grown in a 96-well plate as described
above. After overnight incubation, all cultures were diluted 1:1000 in
M9CA media. About 5μL of each diluted plasmid was spotted on
12 square agar plates. Eleven of the twelve plates contained exactly
25mL of agar supplemented with the appropriate antibiotic (Supple-
mentary Table 1): amoxicillin/clavulanate (60μg/mL), carbenicillin
(50μg/mL), chloramphenicol (30μg/mL), ciprofloxacin (1μg/mL),
gentamicin (50μg/mL), kanamycin (50μg/mL), rifampicin (50μg/mL),
spectinomycin (50μg/mL), streptomycin (50μg/mL), tetracycline
(15μg/mL), or trimethoprim (10μg/mL). The 12th plate served as a
drug-free control. About 5μL of a negative M9CA control was also
spottedonall plates to assess for contamination. Platesweregrown for
24 h at 37 °C, and susceptibility was recorded. Following an initial
screening, resistance profiles were regularly checked using 2mL LB
overnight cultures to confirm plasmid identities. Recipient BW25113-
Rif was also regularly screened to confirm rifampicin resistance, but
sensitivity to all other drugs.

Generating de novo and adapted transconjugants
Individual donor and recipient clones (either RB933 or BW25113-
rif) were grown overnight, as described above. After 16 h, cultures
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were spun down at 10,000 rpm for 1 min, resuspended 1:1 in M9CA,
and incubated at room temperature for 5 min. Equal volumes of
donor and recipient were then combined, and donor-recipient
mixtures were incubated for 1 h at 25 °C to allow for conjugation.
Following this conjugation period, the mixture was immediately
vortexed for at least 5 s to disrupt the mating bridge, at which time
the mixture was considered to contain de novo transconjugants
for subsequent experiments. To generate adapted transconju-
gants, the conjugation mixture was then serially diluted in a 96-
well plate; 10 μL was spotted onto agar plates containing appro-
priate dual antibiotics, and grown overnight for 16 h at 37 °C.
Dilutions that achieved single-colony growth were recorded and
used to calibrate plating densities for subsequent acquisition cost
experiments. Colonies on these plates were considered adapted
transconjugants thereafter, and were maintained either on agar
plates for immediate use, or stored in 25% glycerol for subsequent
streaking and experiments.

Quantifying the plasmid acquisition cost
De novo transconjugants were generated as described above. In
parallel, a clone of an adapted transconjugant was also grown from
a streaked or spotted agar plate and maintained under identical
conditions (i.e., resuspended in M9CA and incubated at 25 °C for
1 h). After the 1 h incubation, both de novo and adapted trans-
conjugants were simultaneously diluted. For each population,
three dilutions were spotted on two sides of a single agar plate
containing appropriate dual antibiotics in 3-4 technical replicates.
For de novo transconjugants, plasmid-specific calibration experi-
ments as described above were used to determine appropriate
dilutions that would span one order of magnitude above and
below that which 3–30 colonies were expected to grow (Supple-
mentary Table 1); in this way, any day-day variation was reliably
captured. Adapted transconjugants were always plated in dilutions
of 105−107. After spotting, plates were immediately dried for 5 min
at 30 °C, and then placed face-down onto Raspberry pi-automated
EPSON v800 flatbed scanners housed in a 37 °C incubator. Auto-
mated images were taken every 15 min for at least 24 h using the
linux “scanimage” command, and analyzed using a custom
MATLAB pipeline. All acquisition cost experiments were per-
formed in at least biological duplicates, and the majority in tri-
plicate (see Supplementary Table 1c for exact numbers). For each
plasmid, the acquisition cost was quantified by pooling all colonies
across repeated experiments, and normalizing the TTT for each de
novo colony by the average TTT of all adapted colonies; statistical
significance was determined based on p values resulting from
adapted compared to de novo TTT using a two-sided t-test with
Bonferroni correction when relevant. The magnitude of the
acquisition cost for each plasmid was the average of this
normalized value.

Image analysis
The custom image analysis pipeline utilized throughout this study
consists of the following steps: first, x-y coordinates and radii are
collected for every spot corresponding to a 10μL drop containing
countable colonies into a master spreadsheet, along with relevant
metadata (plasmid type, antibiotic, etc.); this allowed us to match
each colony with its corresponding spot for subsequent verification
of density effects (i.e., number of colonies per spot). Next, we per-
form several validation steps to ensure each detected colony is valid.
First, we use the final time point of each experiment to generate a
binary mask based on global thresholding. Each object that is
detected in this mask is classified as a ‘colony’ or ‘not a colony’ using
a simple binary bag-of-features classifier. This classifier was trained
on ~5000 images of colonies and non-colonies, where positive
colonies were primarily high-quality, centered, round objects, and

negative colonies were various plate artifacts such as writing, scanner
jitter, condensation, etc. Following this initial classification, isolated
colonies are further refined using manual input to correct obvious
misclassifications, i.e., to manually accept “valid” colonies or reject
“invalid” colonies. For example, a small number of colonies that do
not appear perfectly round may be misclassified as “invalid” and
would be inappropriately rejected by the classifier. We note this
manual input is done on a colony-by-colony basis based purely on
appearance, and is therefore blinded to whether the colony is
adapted or de novo. Once this process has determined the set of all
valid colonies, we iterate over the entire time series for each colony
position. At each time point, thresholding is used to get a binary
mask; the resulting image is passed through another bag-of-features
classifier that is trained to classify images as either “noise” or “not
noise”, trained on a library of approximately 20,000 images. If an
image is classified as “noise”, it will not be analyzed further; if it is
classified as “not noise,” the size of the colony is determined
according to the number of binary pixels. This is done for all colonies
and all time points, and forms our raw growth curves. These raw
growth curves, along with associated metadata, are stored in
MATLAB structures for post-image processing. During post-proces-
sing, growth curves are further filtered for obvious outliers by
removing any curves with a final density (i.e., pixel number) outside
of two standard deviations of the average for that colony type (i.e.,
only within de novo and adapted from a single plate) and experi-
ment; this is a conservative estimate, since these often corresponded
to colonies that appeared round in a mask but consisted of >1 colony
in extremely close proximity that passed through the classification
step), or those that did not change in size significantly over the
duration of the experiment (i.e., something that appeared circular
but was a shadow and not a true colony). Finally, curves are
smoothed by connecting spikes due to shadowing or pixelation with
averages of the pixel values at the time points immediately before
and after. Curves with spikes that cannot be reliably closed (greater
than two time points) are removed to avoid unintentionally distort-
ing observed lag times. Additionally, curves that did not reach a
sufficient plateau (based on its derivative) are also removed to avoid
inaccurate growth rate estimates from logistic fitting. Combined,
these filtered datasets were stored and used for all subsequent
quantification.

Growth curve quantification
Image-derived growth curves from all filtered datasets, and all plate
reader growth curves, were fit using the modified Logistic growth
equation:

N =
A

1 + e
4μm
A λ�tð Þ+ 2

� � ð1Þ

where μm and λ are taken to be the maximum growth rate and lag
time, respectively, N is the log-transformed cell density, and A is the
maximum density achieved. Lag times calculated in this way were
highly correlated with observed lag times as the first time point
where a pixel intensity was greater than 0. Finally, the time-to-
threshold (TTT) was determined by obtaining the closest time the
pixels reached the defined threshold of 0.8. We note that the choice
of threshold did not impact any results (Supplementary Fig. 1b, 2a).
Finally, acquisition costs are quantified by dividing the time-to-
threshold of de novo transconjugants by the average time-to-
threshold of adapted transconjugants. Manual growth rates (Supple-
mentary Fig. 3a, b) were obtained using curve-smoothing and
numerical differentiation to identify the time t, at which the
maximum derivative occurred within the region of exponential
growth. The maximal growth rate was then calculated as the linear
slope of the tangent line passing between the two time points above

Article https://doi.org/10.1038/s41467-023-38022-6

Nature Communications |         (2023) 14:2343 9



and below time t, i.e.:

μm =
t +2ð Þ � t � 2ð Þ

y2 � y1
ð2Þ

where y2 > y1. To quantify the instantaneous growth rate (Supple-
mentary Fig. 3c), colony size was determined by summing the pixel
number per colony and averaging the size across all colony replicates
within a single-plasmid population. The instantaneous growth rate
(hours−1) was calculated as log(x(t)/x(t-1))/0.25, where x is the number
of pixels at time t. Instantaneous growth rate reports the change in
eachcolony size at every timepoint as a function of the overall average
colony size, which provides an instantaneous estimate of colony
expansion.

Comparing tetracycline-specific genetic features with acquisi-
tion costs
Plasmids were isolated using the ZymoPURE II Midiprep Kit (cat
#D4200) according to themanufacturer’s instructions; sequences and
de novo assemblies were generated using commercial vendors (either
the MGH DNA Core or plasmidsaurus), and verified using an in-house
pipeline. When applicable, provided assemblies were compared with
reference sequences to verify sequence identity. The following plas-
mids were exact matches to their references: RP4 (BN000925.1),
pRK100 (CP060383.1), and pB10 (AJ564903.1). The remaining plas-
mids can be found under the following GenBank accession IDs: R100-1
(OQ683449), R64drd (OQ683450), R702 (OQ683451), RIP113
(OQ683452), RN3 (OQ683453), and pOX38 (OQ683454). Tetracycline
resistanceproteinswere identified usingNCBI BLASTpbyquerying the
plasmid’s translated protein sequences against a database of tetra-
cycline resistance (TetA, class B) and tetracycline repressor (TetR, class
D) E. coli protein sequences. The tetracycline operon nucleotide
sequence was extracted from each plasmid’s annotated GenBank file,
from the beginning of the first tetracycline resistance gene to the end
of the last one, which captured the operator sequence between tetR
and tetA. Then, CLUSTALW 2.1 was used to generate a multiple
sequence alignment of the tetracycline operon for each plasmid55.
Alignments and distance matrices were visualized in Genieous Prime
(Supplementary Fig. 2c and Supplementary Table 2).

Intrapopulation competition experiments
To assess the effect of clonal heterogeneity amongst a single-plasmid
population, the no-cost plasmid R100-1 and intermediate-cost plasmid
RP4 were used. Experiments for adapted and de novo transconjugants
were performed identically as in all acquisition costs, with the fol-
lowing modifications. Following the 1 h incubation at 25 °C, instead of
plating onto solid agar, cells were diluted into M9CA supplemented
with tetracycline/rifampicin. Dilutions were determined to allow for de
novo and adapted densities of both plasmids to equal another, with
initial cell numbers ranging from 100 to 1,000,000 cells. These cal-
culations were obtained from colony-forming unit (CFU) measure-
ments averaged across at least three biological replicates. In all cases,
the averageCFUof adaptedpopulationswas statistically insignificantly
different from 2E + 09; this number was therefore used to estimate
dilutions for all adapted plasmid conditions. 200μL of diluted cells
were aliquoted into wells of a microtiter plate and covered with 50μL
of mineral oil. The plate was placed in a temperature-controlled 37 °C
Tecanplate reader and read kinetically every 15min for 24 h. Datawere
collectedonTecan’s open-source iControl software (V3.6.01). To verify
initial densities during the experiment, the CFU of each plasmid was
also taken at the same time on a tetracycline/rifampicin agar plate. For
these experiments, RB933 was used as the host strain. All experiments
were conducted in technical quadruplets for three biological
replicates.

Quantifying plasmid fitness costs
To compare growth rates of adapted transconjugants, overnight cul-
tures of individual clones of adapted RP4, pB10, and R64drd in strain
BW25113-rif were diluted 1:1000 in M9CA supplemented with tetra-
cycline/rifampicin. Diluted cells were added to a 96-well plate in
technical triplicates or quadruplets. Each well was covered with 50μL
of mineral oil, and the plate was read kinetically in a temperature-
controlled (37 °C) Tecan plate reader for 24 h (Supplementary Fig. 8).
All experiments were conducted with at least three biological repli-
cates. Growth rates were determined using the modified Logistic
model described above.

Determining the impact of parent populations on the carrying
capacity
To quantify the effect of background cells (e.g., residual donor and
recipient parents) on the transconjugant carrying capacity, overnight
cultures of donor pB10, recipient BW25113-rif, and the adapted trans-
conjugant were grown as previously described. The donor and reci-
pient strains were conjugated as described above. Following
incubation, conjugation mixtures containing de novo, donor, and
recipient cells, were diluted threefold into the top row of a 96-well
plate pre-filled with M9CA media containing both tetracycline and
rifampicin; cells were then serially diluted threefold such that the
estimated number of de novo cells reached a final dilution of ~6560
cells/well. In parallel, individual donors and recipients were diluted at
the same density to confirm antibiotic sensitivity. Every well was then
covered with 50μL mineral oil, and the plate was placed in a Tecan
plate reader maintained at 37 °C; kinetic measurements were taken
every 15min for 24 h (Supplementary Fig. 6b). All populations were
plated in technical triplicates. Growth rates were fit as previously
described using the modified Logistic model.

Interpopulation competition experiments
For competition experiments, plasmids were competed using the host
strain BW25113-rif. Recipient strain RB933 was not used for competi-
tion experiments, since this strain has multiple chromosomal resis-
tance markers, which would have prevented distinguishing plasmids
via antibiotic selection. Acquisition cost trends were verified to be
consistent for each plasmid across recipient strains (Supplementary
Fig. 7). Plasmid pairs for competitions were chosen to test the pre-
diction that an intermediate-cost plasmid may dominate both a low-
and high-cost plasmid. To do so, we identified three compatible plas-
mids that had distinct acquisition costs and met the following criteria:
(1) adapted transconjugants were to have similar growth rates/fitness
costs, (2) plasmids were to have at least one unique resistance marker
each, and (3) plasmids were to share resistance to tetracycline. R64drd
against RP4 for low-intermediate, and pB10 against RP4 for high-
intermediate, met these criteria (Supplementary Fig. 8a, b). Competi-
tions of adapted transconjugants were first conducted to determine
the appropriate initial mixing density for de novo experiments; this
allowed us to account for any growth- or conjugation-specific effects.
Briefly, overnight cultures of appropriate adapted transconju-
gant plasmid pairs were incubated separately for 1 h and at 25 °C as
described previously. RP4 and either pB10 or R64drd plasmids were
then diluted at various densities, and combined in a 96-well plate. The
plate was sealed with sealing paper (Diversified Biotech, cat #BEM-1),
and incubated for 24 h in a 37 °C incubator with agitation at 250 rpm.
At time = 0, the CFU of each individual plasmid population was mea-
sured using tetracycline/rifampicin agar plates, alongside unique
resistance marker plates (carbenicillin/rifampicin for RP4, streptomy-
cin/rifampicin for both pB10 and R64drd) to verify initial mixing
densities. At the end of 24h, competition mixtures were serially dilu-
ted and plated onto the same three unique drug plates such that single
colonies were visible. All plates were grown for 16 h at 37 °C. After
determining that an initial 1:1 mixture of RP4 to pB10, and a 1:20
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mixture of RP4 to R64drd, yielded an equal final ratio after the com-
petition (Supplementary Fig. 8c, d), de novo competitions were per-
formed using the same initial mixing ratios. In brief, de novo
transconjugants of RP4, pB10, and R64drd were prepared, and com-
bined at their respective adapted calibrated ratios. The CFU was taken
of each plasmid’s transconjugant at 0 and 24 h, using the three unique
drug plates. Plasmid percentages were calculated by taking the CFU
from each unique drug plate (i.e., carbenicillin/rifampicin for RP4 or
streptomycin/rifampicin for R64drd and pB10) divided by the total
CFU from tetracycline/rifampicin, and multiplied by 100. Each com-
petition was conducted with at least three biological replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are provided in the Supplementary
Information and/or as a Source Data file. The plasmid assemblies
generated in this study are available under the following GenBank
accession IDs: R100-1 (OQ683449), R64drd (OQ683450), R702
(OQ683451), RIP113 (OQ683452), RN3 (OQ683453), and pOX38
(OQ683454), and archived on the Zenodo database at the following
DOI: 10.5281/zenodo.7753403. Source data are provided with
this paper.

Code availability
All tetracycline analysis code is archived on Zenodo at the following
DOI: 10.5281/zenodo.7753403 (https://zenodo.org/badge/latestdoi/
606017397). It is also available on the lab’s Github: https://github.
com/ajlopatkin/acquisition_cost_tet_analysis. All image analysis code is
also archived on Zenodo at the following https://doi.org/10.5281/
zenodo.7753412 (https://zenodo.org/badge/latestdoi/557526918) and
on the lab’s Github: https://github.com/ajlopatkin/acquisition_cost_
image_analysis.
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