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Energy-efficient high-fidelity image
reconstruction with memristor
arrays for medical diagnosis

Han Zhao 1,3, Zhengwu Liu 1,3, Jianshi Tang 1,2 , Bin Gao 1,2, Qi Qin1,
Jiaming Li1, Ying Zhou1, Peng Yao1, Yue Xi1, Yudeng Lin1, He Qian1,2 &
Huaqiang Wu 1,2

Medical imaging is an important tool for accurate medical diagnosis, while
state-of-the-art image reconstruction algorithms raise critical challenges in
massive data processing for high-speed and high-quality imaging. Here, we
present a memristive image reconstructor (MIR) to greatly accelerate image
reconstruction with discrete Fourier transformation (DFT) by computing-in-
memory (CIM) with memristor arrays. A high-accuracy quasi-analogue map-
ping (QAM) method and generic complex matrix transfer (CMT) scheme was
proposed to improve the mapping precision and transfer efficiency, respec-
tively. High-fidelity magnetic resonance imaging (MRI) and computed tomo-
graphy (CT) image reconstructions were demonstrated, achieving software-
equivalent qualities and DICE scores after segmentation with nnU-Net algo-
rithm. Remarkably, our MIR exhibited 153× and 79× improvements in energy
efficiency and normalized image reconstruction speed, respectively, com-
pared to graphics processing unit (GPU). This work demonstrates MIR as a
promising high-fidelity image reconstruction platform for future medical
diagnosis, and also largely extends the application of memristor-based CIM
beyond artificial neural networks.

Medical imaginghas beenwidely used todiagnose ormonitor patients’
medical conditions by revealing the internal structures of organs, such
as lung and brain, to identify the lesions and perform surgical
interventions1–4. Magnetic resonance imaging (MRI) and computed
tomography (CT) are two representative medical imaging
technologies5–8. Although adopting different imaging principles, their
imaging processes can be roughly divided into two fundamental steps:
signal acquisition and image reconstruction (Fig. 1b, c). In the signal
acquisition stages, MRI uses radio frequency coils to collect signals
from theprotons in a bodyunder themagneticfields5,9,10, while CTuses
X-ray detectors to receive signals from a beam of rays that pass
through thepatient’s body7,11,12. In the image reconstruction stage, both
MRI and CT use specific algorithms to reconstruct medical images for

regions of interest, where many algorithms are based on Fourier
transformations since the acquired data are usually represented in the
Fourier space13–15. To meet the demand for better image quality and
higher imaging speed, the number ofMRI radio frequency coils andCT
detectors has been increased dramatically4,16–20, resulting in an explo-
sive growth of raw data to be processed. Besides, more sophisticated
reconstruction algorithms based on iteration, deep learning and data-
adaptivemethods are also being implemented21–23. Amid the slowdown
of Moore’s law scaling24,25, such computationally intensive tasks
impose critical challenges for conventional computing hardware5,15,26

based on von Neumann architecture with physically separated com-
puting and memory units, limiting their energy efficiency. Thus, the
speed and energy consumption of the image reconstruction step has
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become a serious bottleneck for the development of portable medical
imaging systems.

Fortunately, computing-in-memory (CIM) technology based on
emerging nonvolatile memories, such as memristors, can provide an
alternative solution for medical image reconstruction with ultrahigh
efficiency to break the von Neumann bottleneck. In this paradigm,
computations are carried out at the place where data are stored
through physical laws, largely reducing the energy-intensive data
movement27–29. In recent years, memristive CIM paradigm has been
widely used in implementing artificial neural networks (ANNs)
(Fig. 1a), showing appealing advantages in terms of energy efficiency
and speed compared to conventional hardware30–32. Besides ANNs,
there have also been attempts to use memristor arrays for imple-
menting classic signal processing algorithms33, such as finite impulse
response (FIR) filter34 and discrete Fourier transformation (DFT)35,36,
which has the potential to significantly accelerate medical image
reconstruction speed and reduce energy consumption. In both
applications, the most computationally intensive computations are
vector-matrix multiplication (VMM); however, their actual imple-
mentations on memristor arrays are quite different in two aspects.
Firstly, the entries in the matrix, i.e., synaptic weights, for ANNs are
trainable, so that the effect of non-ideal device characteristics of
memristors (e.g., device noise and conductance fluctuation) may be
accommodated by training30,31. In comparison, the entries in the
matrix for signal processing algorithms, e.g., DFT coefficients, are
pre-calculated without any training, so they are more susceptible to
those non-ideal device characteristics, which could lead to large
errors in the output. Secondly, while the entries in the matrix for
ANNs are usually real numbers, the matrices used in signal proces-
sing usually have both real and imaginary parts, and directlymapping
them onto different memristor arrays (as proposed in literature35,36)
could result in large overhead in both energy consumption and area.

Therefore, a new scheme to efficiently implement signal processing
algorithms such as DFT on memristor arrays needs to be developed.

In this work, we propose and demonstrate a memristive image
reconstructor (MIR), whose core is a memristive DFT (Fig. 1c). To
efficiently implement DFT on memristor arrays, we have developed
two strategies, quasi-analog mapping (QAM) and complex matrix
transferring (CMT) scheme, to improve the mapping precision and
transfer efficiency, respectively. With QAM, memristive DFT results
achieves better consistency with software-calculated results, com-
pared with the conventional quantized mapping (QM) method. With
CMT, memristive DFT also has a smaller overhead of peripheral cir-
cuits, compared to conventional real-imaginary separated scheme.
Based on the above two strategies, MIR is used to experimentally
demonstrate MRI and CT image reconstruction tasks, achieving
software-equivalent image reconstruction peak signal-to-noise ratios
(PSNR) of 40.21 dB and 22.38 dB forMRI and CT images, respectively.
To validate that the MIR-reconstructed images meet the require-
ments of medical diagnosis, we utilize the widely recognized bio-
medical image segmentation algorithm, nnU-Net37,38, to segment and
extract organs from MIR and software-reconstructed images,
achieving similar DICE scores around 0.98. Besides, MIR shows 153×
advantage in energy efficiency and 79× advantage in normalized
image reconstruction speed for CT reconstruction task, compared to
CMOS systems, indicating its great potential in low-power and high-
speed portable medical imaging system for futuremedical scenarios.

Results
Implementation of MIR on memristor array
We construct the MIR based on our customized memristor hardware
platform (Fig. 2a)31, which consists of eight 2K-cell memristor arrays.
Figure 2b shows the transmission electron microscope (TEM) image
of the fabricated memristor array with unit cells of one-transistor-

Fig. 1 | Illustration ofmemristive artificial neural networks (ANNs) andmedical
imaging system. a Memristive ANNs. The matrix entries of ANNs are obtained by
training and they are usually quantized before being mapped to memristor arrays,
resulting in quantization errors. Besides, most ANNs are computed in real number
fashion. b–d Memristive medical imaging system. b Medical signal acquisition.
Explosive amount of raw data is acquired frommedical scanners such as magnetic
resonance imaging (MRI) and computed tomography (CT). c Memristive image
reconstruction. The matrix entries used in signal processing algorithms here are
pre-calculated without training, making them more susceptible to the non-ideal

device characteristics ofmemristors. In addition, their entries areusually expressed
in analogue manner with both real and imaginary parts, requiring a completing
differentmapping strategy ontomemristor arrays. d Results formedical diagnosis.
Medical images of human body are reconstructed from raw data and then further
segmentation and diagnosis can be performed. The cartoon pictures of human
organs and medical equipment used in b and d was partly generated using Servier
Medical Art, provided by Servier, licensed under a Creative Commons Attribution
3.0 unported license.
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one-resistor (1T1R). Thememristor device has amaterial stack of TiN/
TaOx/HfO2/TiN, where HfO2 is the resistive switching layer and TaOx

serves as the thermal enhanced layer to improve the analog switch-
ing characteristics (Fig. 2c)39,40. The conductance of memristor can
be continuously modulated by SET or RESET voltage pulses, allowing
us to map the matrix entries onto memristor conductance precisely.

To demonstrate the functionality of the MIR system, we first
implement a 64-point one-dimensional (1D) complex DFT on the
memristor arrays with 16 K memristors. DFT is a widely used time/
spatial-frequency analysis technology and plays a key role in many
applications including denoising, imaging and communication. As
shown in Fig. 2d, the computation of DFT can be regarded as a mul-
tiplication of time/spatial-domain input signal and a DFT matrix, and
the output result following the Ohm’s law and Kirchhoff’s current law
represents the frequency-domain signal. In this way, the time com-
plexity of DFT computation can be significantly reduced down to O(1),
representing a dramatic speed-up compared to O(N2) complexity for
conventional DFT implementation or O(NlogN) complexity for fast
Fourier transformation (FFT).

As the DFT coefficientsmatrix has both real and imaginary parts,
conventionally, four independent memristor arrays of the same size
N × N would be needed to map the matrix entries onto memristor

conductance for the implementation of a N-point DFT35,36, as shown
in Fig. 2e. Besides memristor arrays, such implementation would also
need extra copies of peripheral circuits to implement the addition
and subtraction operations as well as analog-to-digital conversion
(ADC), resulting in additional hardware overhead and computing
latency. To circumvent this problem, here we propose a generic
complex matrix transfer (CMT) scheme. As shown in Fig. 2f, by
assembling the four same-size DFT matrices into an integrated
matrix, both the real and imaginary parts of DFT results can be
directly obtained in a single step because the addition and subtrac-
tion operations can be realized inside the memristor array rather
than by peripheral circuits, reducing the computing latency. In the
meanwhile, the number of peripheral circuits such as ADCs and
buffers can also be reduced by at least one half, saving both energy
and area cost. In addition, inverse DFT (IDFT) can also be imple-
mented using such CMT scheme in a similar way as DFT. The math-
ematical derivation of DFT and IDFT implementations on memristor
arrays are described in the Methods section.

In addition, to improve the computing accuracy of thememristive
DFT, it is necessary to improve the mapping precision of DFT matrix
entries, whose values are pre-calculated rather than obtained by
training and thus are more susceptible to the mapping errors than

Fig. 2 | The implementation of memristive image reconstructor (MIR).
a Photograph of theMIR systemwith eight 2 Kmemristor chips and an FPGAboard.
b TEM images of the memristor array (left) and device (right). c Analog switching
characteristics of a typical memristor device, where the SET voltage is 1.4 V and the
RESET voltage is 1.5 V. d Implementation of discrete Fourier transform (DFT) on
memristor array. DFT matrix is initially mapped onto a memristor array as the
conductance. Then time-domain signals are fed into the bit lines (BLs) ofmemristor
array as voltage pulses and frequency-domain signals are calculated as the output
currents from the source lines (SLs). Theword lines (WLs) are connected to the gate
of transistors to select memristor cells. e Conventional DFT implementation on
memristor arrayswith extra copies of peripheral circuits to implement the addition
and subtraction operations as well as analog-to-digital conversion (ADC). Re, the
real part. Im, the imaginary part. f Proposed DFT implementation with complex
matrix transfer (CMT) scheme on memristor array, saving more than half of

peripheral circuit overhead.gTop, experimentalmapping resultswith quasi-analog
mapping (QAM) strategy. Bottom, the difference between the target conductance
and experimentally mapped values. R.P. and R.N. denote the positive and negative
matrices of the real part of the DFT matrix, respectively. I.P. and I.N. denote the
positive and negativematrices of the imaginary part, respectively. hMapping error
distribution of QAM and quantized mapping (QM). MSE, mean squared error.
i–l Comparison between the DFT results obtained by software (S.) and memristor
(M.). Time-domain or spatial-domain signals (i) are transformed into frequency-
domain signals, which consist of two parts, the intensity (j) and the phase (k). The
differencebetween the intensity and phase ofDFT results obtainedby software and
memristor are shown in l. Corr, correlation coefficient.m Comparison between 2D
frequency-domain results computed by software and memristive 2D DFT. Error
distribution is given in the inset.
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ANNs. Different from the commonly used QM strategy for mapping
synaptic weights of ANNs, here we develop a more accurate quasi-
analog mapping (QAM) strategy to eliminate the quantization error41

(more information can be found in the Methods section and Supple-
mentary Fig. 1). Figure 2g shows the mapping results (top panel) and
mapping error (bottom panel) with QAM, indicating an excellent
mapping precision. Here, the real part (R) and imaginarypart (I) of DFT
matrix aremapped onto thememristor array in the formof differential
pairs (P, positive part; N, negative part). Tomake a comparison, Fig. 2h
plots the distribution of mapping error for a 64-point DFT matrix with
QAMandQM (see Supplementary Fig. 1 for the breakdownofmapping
error). The mean squared error (MSE) of QAM is 0.02μS, which is
much lower than that of QM (0.22μS), suggesting significantly
enhanced mapping precision of QAM. In fact, according to our
experimental results shown in Supplementary Fig. 4, the imple-
mentationof a greater number of DFT point onMIR shows even higher
consistency with software-computed results, indicating a better signal
processing quality. However, as the number of DFT point grows, the
required number of memristor conductance levels also increases
rapidly (for example, 64-point DFT requires 25 conductance levels),
and thus the efficacy of our quantization-error-free QAM strategy can
be more notable to improve the mapping precision and computing
accuracy.

Figure 2i-l give a typical example of memristive DFT and compare
the results with software-based DFT. The time-domain signal (Fig. 2i) is
fed into MIR and transformed into frequency-domain signal, which
consists of two parts, intensity (Fig. 2j) and phase (Fig. 2k). The differ-
ence between DFT results from memristor and software is shown in
Fig. 2l. It can be seen that these two results match well and the corre-
lation coefficients of frequency-domain intensity and phase are as high
as 0.99934 and 0.99994, respectively. Furthermore, using the MIR, a
more sophisticated two-dimensional DFT (2D DFT) is demonstrated.
Taking a 64 ×64 image for example, up to 128 64-point DFTs are
required to obtain the 2D DFT results. During the entire 2D DFT com-
puting process, the error of each DFT affects the subsequent compu-
tation and hence there is an even higher demand of computing
accuracy for 2DDFT. Figure 2m shows the comparison of 2D frequency-
domain results computed by software and memristive 2D DFT, exhi-
biting a high correlation coefficient of 0.99941. This result suggests
excellent computing accuracy of memristive 2D DFT, thanks to the
goodanalog switching characteristics andQAMstrategy. Similarly, IDFT
and 2D IDFT can also be implemented on MIR (see Methods).

MRI image reconstruction with MIR
To evaluate the overall performance of our MIR in data-intensive
medical imaging applications, we further implement an end-to-end
MRI image reconstruction and segmentation task. Figure 3a illustrates
the complete MRI data processing procedure. Raw data from MRI
scanner are sampled in K-space (2D Fourier space) and then fed into
MIR. 2D IDFT is then performed to transform the data into human
body slice images in spatial domain (reconstructedMRI images). Next,
medical image segmentation is usually performed to annotate the
regions of interests for medical diagnosis, where the segmentation
quality largely affects the diagnosis accuracy. Here, in this work, the
non-ideal device characteristics ofmemristors and arrays, such as read
noise (as shown in Supplementary Fig. 2), stuck-at faults (as shown in
Supplementary Fig. 6), mapping error and interconnect resistance,
could degrade the quality of reconstructed images by MIR. To verify if
the key information in MIR images is preserved, we use nnU-Net to
process the reconstructed images from both software and MIR and
obtain segmented human organs or tissues, whose results are used for
comparison to examine the quality of reconstructed images and the
computing accuracy of MIR.

Here we use the heart dataset provided by King’s College
London42, which contains 30 three-dimensional (3D) MRI images

covering the entire human heart. As the ground truth, the left atrium
was segmented by an expert using an automated tool followed by
manual corrections. Figure 3b shows the raw data from MRI scanner
sampled in K-space. Through our memristive 2D IDFT, a series of
sagittal plane images are reconstructed (Fig. 3c) to finally obtain a 3D
MRI image. Figure 3d, e shows theMRI images observed fromdifferent
angles (transverse plane image and coronal plane image), indicating
good consistency of different sagittal planes and high-quality image
reconstruction byMIR. The reconstructedMRI images and segmented
results (left atrium) are shown in Fig. 3f (software) and Fig. 3g (MIR),
showing good consistency and visually no obvious difference between
the two segmentation results. Quantitatively, an average PSNR of
40.21 dB and signal-to-noise ratio (SNR) of 24.14 dB is achieved forMIR
as shown in Fig. 3h. Similar values are achieved on 20 other MRI
datasets (Fig. 3i), validating the high-fidelity image reconstruction by
MIR. As a reference, a PSNR value over 30dB indicates that it is hard to
tell the difference between the original and reconstructed images by
human naked eyes. Furthermore, the MIR and software reconstructed
images receive a similarly high DICE score ~0.98 after segmentation
with nnU-Net as shown in Fig. 3j. These results suggest that MIR
exhibits excellent performance in the MRI image reconstruction task
even in the presence of memristor read noise and mapping error. The
benchmark in Fig. 3k-l further reveals thatMIR is 112× higher in energy
efficiency and 36× higher in normalized image reconstruction speed
than Nvidia Tesla V100 GPU, respectively (see Methods section for
more details).

CT image reconstruction with MIR
In the above demonstration of MRI image reconstruction, only one
step of 2D DFT is carried out. In more advanced medical imaging
algorithms, more than one steps of transformation are needed,
where the impact of cumulative errors could degrade the image
quality. As shown in Supplementary Fig. 3, with more steps of DFT on
MIR, the signal distortion tends to increases. To further examine the
computing accuracy and noise robustness of MIR, here we imple-
ment a more complicated task, CT image reconstruction based on
Fourier central slice theorem, which contains 3 steps of DFT/IDFT
(1 step for 1D DFT and 2 steps for 2D IDFT). The data processing
procedure is shown in Fig. 4a. During CT scan, X-ray projections of
human body from various angles are processed to produce cross-
sectional images (slices) for diagnostic and therapeutic purposes.
Each projection vector is fed to MIR for DFT, yielding frequency-
domain signal in 2D Fourier space. Then reconstructed CT images
can be obtained by performing 2D IDFT on the 2D Fourier space.
During the entire CT image reconstruction process, three steps of
DFT in total are required to transform the raw projections into CT
images. Finally, organs or tissues can be segmented by nnU-Net from
the reconstructed CT images. As an example, Fig. 4b shows the ori-
ginal human organ and reconstructed CT images43 along with inter-
mediate results.

Here, we use the spleen dataset from Memorial Sloan Kettering
Cancer Center, including 61 portal venous phase CT scans44. In this
dataset, the spleen was segmented semi-automatically and then were
manually modified by an expert abdominal radiologist, serving as the
ground truth. Figure 4c, d show the reconstructed CT images by
software and MIR, and the segmented parts (spleen) from nnU-Net
are also annotated. Visually, MIR reconstructed CT images preserve
most critical information even in the presence of the above-
mentioned cumulative errors. In Fig. 4e, we put the segmented 3D
spleen models of software andMIR together and examine them from
4 different angles. Only pixel-level difference can be observed on the
spleen surface, indicating excellent consistency. Quantitatively, in
Fig. 4f, g, the PSNR of CT images reconstructed by software and MIR
are 22.52 dB and 22.38 dB, respectively, and the DICE score of seg-
mented results are 0.985 and 0.977 for software and MIR,
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respectively. These results reaffirm that the key information con-
tained in CT raw projections is well preserved and our MIR shows
superior robustness to cumulative errors and memristor device
noise. Furthermore, the benchmark in Fig. 4h, i show that MIR again
is 153× higher in energy efficiency and 79× higher in normalized
image reconstruction speed than GPU, respectively (see Methods
section for more details).

Discussion
In conclusion, we have proposed and experimentally demonstrated a
memristive medical image reconstructor, MIR, which shows excellent
performance in energy efficiency and computing speed and is also
highly robust to the non-ideal device characteristics of memristors.
With the developed QAM strategy and CMT method, MIR could effi-
ciently implement high-accuracy 1D/2D DFT and IDFT. In the MRI and
CT image reconstruction tasks, comparedwith Nvidia Tesla V100GPU,
MIR has achieved a software-equivalent image reconstruction quality
in terms of PSNR and DICE score, and meanwhile exhibited 112× and
153× improvements in energy efficiency, and 36× and 79× improve-
ments in the normalized image reconstruction speed, respectively.
Such computational advantages could be further improved by using
larger memristor arrays and further optimizing the memristor analog

switching characteristics. This work suggests that our MIR system
could provide a high-speed and energy-efficient computing platform
for future medical imaging technology, which paves the road for low-
power portable and point-of-care diagnostics. It also helps widely
extend the application of memristor-based CIM beyond ANNs.

Methods
Fabrication and programming of 1T1R memristor array
Thememristor array was fabricated with a standard 0.13μm Si CMOS
process. Each 1T1R cell consists of a memristor and a Si transistor.
The memristor device has a material stack of TiN/TaOx/HfO2/TiN.
30nm-thick TiN was sputtered as the top and bottom electrodes.
8nm-thick HfO2 was deposited by atomic layer deposition (ALD) as
the resistive switching layer. 45 nm-thick TaOx was sputtered as the
thermal enhanced layer to improve the analog switching
characteristics40,45. As for the programming of 1T1R memristor array,
we use the standard write-verify programming scheme45. Here, mul-
tiple voltage pulses are applied to the 1T1Rmemristor cell to increase
(decrease) the conductance, until the conductance is larger (smaller)
or equal to the target values. This process is repeated until the
memristor conductance to programmed within the error margin of
the target value.

Fig. 3 | MRI image reconstruction with MIR. a Schematic of MRI image recon-
struction with MIR followed by AI segmentation. b K-space raw data from MRI
scanner. c Reconstructed sagittal plane images, computed with 2D IDFT by MIR.
Combining all the sagittal plane images together, a 3DMRI image can be obtained.
d, e Transverse plane image (d) and coronal plane image (e) of the reconstructed
3D MRI image. f, g Segmented left atriums from nnU-Net, with software-
reconstructed images (f) and MIR-reconstructed images (g). Z, the coordinate on
the z-axis which goes from inferior to superior. h The PSNR and SNR of each

reconstructedMRI slice of No.16 dataset byMIR. i The reconstructed image quality
for 20 MRI datasets. j DICE scores of nnU-Net segmentation results of software-
reconstructed (S.) and MIR-reconstructed (M.) images for 20 MRI datasets. k The
comparison of energy efficiency of GPU and MIR. l The comparison of the nor-
malized image reconstruction speed of GPU and MIR. The cartoon pictures of
human organs andmedical equipment used in awas partly generated using Servier
Medical Art, provided by Servier, licensed under a Creative Commons Attribution
3.0 unported license.
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Implementation of 1D DFT on CMT scheme
Mathematically, DFT converts a complex N-point sequence xn into a
complex sequence Xk of the same length:

Xk =
1ffiffiffiffi
N

p W�xn ð1Þ

Here, Xk 2 RN × 1, xn 2 RN × 1 and W 2 RN ×N . W is the DFT matrix
which is defined by ω= e�2πi=N as:

W=
1ffiffiffiffi
N

p

1 1 1 1 � � � 1

1 ω ω2 ω3 � � � ωN�1

1 ω2 ω4 ω6 � � � ω2 N�1ð Þ

1 ω3 ω6 ω9 � � � ω3 N�1ð Þ

..

. ..
. ..

. ..
. . .

. ..
.

1 ωN�1 ω2 N�1ð Þ ω3 N�1ð Þ � � � ω N�1ð Þ N�1ð Þ

2
6666666664

3
7777777775

ð2Þ

WhenmappingW on thememristor array, because every element
ofW is a complex number,W is decomposed into twomatrixes of the
same size with only real elements:

W=Re Wð Þ+ Im Wð Þ ð3Þ

where ReðWÞ and ImðWÞ are the real part and imaginary part of W,
respectively. Similarly, Xk and xn are also decomposed into real parts
Xk,real, xn,real and imaginary parts Xk,img, xn,img. Then, Eq. (1) can be
rewritten as:

Xk,real

Xk,img

" #
=

1ffiffiffiffi
N

p Re Wð Þ �Im Wð Þ
Im Wð Þ Re Wð Þ

� �
�

xn,real

xn,img

" #
ð4Þ

To perform the computation of Eq. (4) on MIR, the coefficient
matrix is mapped on a memristor array as conductance and the input

Fig. 4 | CT image reconstruction with MIR. a Schematic of CT image recon-
struction with MIR followed by AI segmentation. b Illustration for the CT image
reconstruction task. Sub-figures, from left to right, are actual human organ (the
pink disc represents the section where the CT slice is acquired), projections from
CT X-ray scanner, 2D Fourier space signal (intermediate results) and reconstructed
CT image. c, d Software-reconstructed andMIR-reconstructed 3D CT image and its
segmentation results from nnU-Net (the spleen is labeled in blue and red). Sub-
figures, from left to right, are sagittal plane image, transverse plane image, coronal

plane image and 3D model (segmented spleen only). e Comparison between the
segmented spleens with software-reconstructed (blue) and MIR-reconstructed
(red) 3D CT images. f Comparison of image quality reconstructed by software (S.)
and MIR (M.). g DICE score of nnU-Net segmented results from software-
reconstructed and MIR-reconstructed images. h The comparison of energy effi-
ciency of GPU and MIR. i The comparison of the normalized image reconstruction
speed of GPU and MIR.

Article https://doi.org/10.1038/s41467-023-38021-7

Nature Communications |         (2023) 14:2276 6



xn signal is represented as voltage pulses:

Ik,real
Ik,img

" #
=

1ffiffiffiffi
N

p GR �GI

GI GR

� �
�

Vn,real

Vn,img

" #
ð5Þ

In this manner, 1D DFT is completed. The computing paradigm is
shown in Fig. 2e, f.

Determination of the number of DFT point
According to our experimental results shown in Supplementary Fig. 4,
with a greater number of DFT point, the computing results from MIR
show higher consistency with software-computed results, indicating a
better signal processing quality. Specifically, 8-point, 16-point, 32-
point MIR DFT shows a correlation coefficient of 0.9908, 0.9980 and
0.9984 with software-computed results, respectively. In practice, the
number of DFT point is still limited by the memristor array size. Here,
using our customized test system with 16 K memristor array, we
choose 64-point DFT for implementation in this work.

Analysis of non-ideal device characteristics
To comprehensively evaluate the non-ideal device characteristics
besides the mapping error, we run two simulations to analyze the
impact of read noise and the stuck-at faults, respectively. As for the
read noise, ten random scenarios with the read noise of 50-600nA
(standard deviation, STD) are simulated. As shown in Supplementary
Fig. 2d and 2e, the present of read noise would eventually degrade the
reconstructed image quality (PSNR) and segmentation accuracy
(DICE).However, considering that the typical valueof readnoiseSTD is
only 50-100nA for our memristor devices, such degradation is unno-
ticeable because the simulation results show that the reconstructed
image PSNR is still over 40dB at the STD range of 50-100nA (which
means the degradation cannot be distinguished by human naked
eyes). As for the stuck-at faults, seven randomscenarioswith the stuck-
at fault range of 0.1%~2% are simulated. Considering the large ran-
domness of stuck-at faults, we repeat every scenario for ten times and
calculate the average value as the simulation results. As shown in
Supplementary Fig. 6, a high yield of memristor arrays is critical and a
large degradation of PSNR and DICE occurs at the stuck-at fault range
of 0.1%-0.5%. After extensive efforts in the process development, the
yield of our memristor arrays is as high as ~99.99% (the percentage of
stuck-at faults is ~0.01%) and thus, the impact of stuck-at faults can be
mostly ignored in this work. In addition, technically, we could also
bypass the failed memristor cells when mapping the DFT matrices to
mitigate the impact of stuck-at faults in practical applications.

Analysis of interconnect resistance
The memristor array was fabricated with a standard 0.13μm Si CMOS
process and the wire resistance between two adjacent memristors is
estimated to be ~0.1Ω, based on the PDK information provided by the
foundry. It is concluded in our previouswork46, that thewire resistance
does not have a serious impact on the computation accuracy for the
0.13μm technology node, and it starts to dominate the computation
accuracy when the technology node is advanced to 14 nm or 28 nm. In
such cases, techniques such as error balancing, bootstrapping and IR-
drop adaptive compensation, can be used to mitigate the impact of
wire interconnect resistance (e.g., refs. 47,48).

Implementation of 1D IDFT, 2D DFT and 2D IDFT
The expression of 1D IDFT is given as:

xn =
ffiffiffiffi
N

p
W�1�Xk ð6Þ

where W�1 is the inverse matrix of W. Because the DFT matrix is uni-
tary, the inverse matrix, by definition, equals to the conjugate trans-
posematrix. Due to the symmetry characteristics, the inversematrixof

DFT matrix equals the conjugate matrixW*:

xn =
ffiffiffiffi
N

p
W�1�Xk =

ffiffiffiffi
N

p
W*�Xk ð7Þ

Separating the real and imaginary parts, Eq. (7) can be rewritten
as:

xn,real

xn,img

" #
=

ffiffiffiffi
N

p Re Wð Þ Im Wð Þ
�Im Wð Þ Re Wð Þ

� �
� Xk,real

Xk,img

" #
ð8Þ

When mapping on the memristor array, the computation can be
performed as follows:

In,real
In,img

" #
=

ffiffiffiffi
N

p GR GI

�GI GR

� �
� Vk,real

Vk,img

" #
ð9Þ

Therefore, IDFT can then be implemented on MIR in a similar
fashion as DFT, with only a minor difference on the sign of the ima-
ginary part of DFT matrix.

In addition, 2D DFT and 2D IDFT for an M ×N image f are math-
ematically defined as follows:

F k, l
� �

=
1

MN

XM�1

m=0

XN�1

n=0

f m,n½ �e�j2π k
Mm+ l

Nnð Þ ð10Þ

f m,n½ �=
XM�1

k =0

XN�1

l =0

F k, l
� �

e j2π k
Mm+ l

Nnð Þ ð11Þ

where k,m=0,1, � � � ,M � 1 and l,n=0,1, � � � ,N � 1. F is an M ×N 2D
Fourier space signal. Such 2D DFT can be implemented by performing
2 steps of 1D DFT. As illustrated in Supplementary Fig. 5, the input
image is first divided into column vectors and 1D DFT is implemented
for each vector. The computing results of 1DDFT are composed into an
intermediate matrix. After transpose, the intermediate matrix is again
divided into column vectors and a second step of 1DDFT is performed,
whose output represents the results of 2D DFT. 2D IDFT can be
implemented in the same way as 2D DFT.

Implementation of QAM and QM
As shown in Supplementary Fig. 1a, in the QAM strategy, a high map-
ping precision can be achieved because the mapping error is only
introduced by the deliberately defined mapping margin in considera-
tion of time overhead. Only the device whose conductance is within
the mapping margin could successfully pass the mapping process,
where a typicalmappingmargin iswithin0.25μSof the target value. By
contrast, theQMstrategy shown inSupplementary Fig. 1b often results
in much lower mapping precision because the overall mapping (Sup-
plementary Fig. 1e) error consists of two parts, the quantization error
(Supplementary Fig. 1c) and the error due to pre-defined mapping
margin (Supplementary Fig. 1d).

MRI image reconstruction
The left atriumMRI dataset used in our work is one of the ten datasets
in the Medical Segmentation Decathlon. The size of each MRI image is
320 × 320 and each dataset contains dozens of images. We randomly
choose No.16 dataset to demonstrate the complete MRI reconstruc-
tion and segmentation. 19 other datasets (No. 3, 4, 5, 7, 9, 10, 11, 14, 16,
17, 18, 19, 20, 21, 22, 23, 24, 26, 29, 30) are used to further prove the
consistent performance of MIR, as shown in Fig. 3i, j. Here, to simulate
the MRI image reconstruction process, we first divide left atrium MRI
image into several 64 × 64 patches for 64-point DFT computations on
our memristor array. Then we perform lossless 2D DFT to transform
the patches back into K-space. These K-space data are then considered
as the rawMRI data and delivered toMIR to perform2D IDFT. After 2D
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IDFT, the transformed patches are stacked together to restore com-
plete MRI images.

CT image reconstruction
To simulate the actual CT image reconstruction process, we perform
ideal Radon transform49,50 to convert CT images into simulated pro-
jections and choose the reconstruction algorithm based on Fourier
central slice theorem51. Technically, we first divide every CT image into
several patches of 36 × 36. Thenweperform theRadon transform from
180 angles in MATLAB, and the length of each projection vector is 64.
For the 64 × 180 projection matrix, 64-point DFT is implemented on
MIR. The transformed output vector of each projection vector is 64-
point long and is then filled into a 64 × 64 2D Fourier space. After the
64-point 2D IDFT implemented onMIR, the 64 × 64 2D Fourier space is
converted into a 64 × 64 spatial-domain image. At last, the 64 × 64
image is cropped into a 36× 36 patch as a part of the reconstructed CT
image. In addition, an overlap strategy is also used in CT reconstruc-
tion to obtain the best reconstruction quality. Here, we use a famous
spleen CT image dataset from Memorial Sloan Kettering Cancer Cen-
ter. Each dataset contains about 100 slices and the size of each slice is
512 × 512. The pixel value represents the Hounsfield Unit (HU) value.
More details of CT scan criteria can be found in ref. 52.

AI biomedical image segmentation
In this work, we implement nnU-Net on a GeForce GTX 1080 Ti GPU
server with CUDA compilation tools 10.1. The nnU-Net’s source code
(which can be found on GitHub https://github.com/MIC-DKFZ/
nnUNet) runs on Python 3.8.8 with PyTorch framework 1.7.1. To per-
form left atrium and spleen segmentations, we take the pretrained
models for 3D semantic image segmentation with nnU-Net (can be
found on Zenodo https://zenodo.org/record/3734294).

Benchmarks of image quality and DICE score
We use two widely accepted metrices, PSNR and SNR, to evaluate the
fidelity of reconstructed images. The definition of PSNR is related to
mean squared error (MSE). Given an ideal m×n monochrome image I
and the reconstructed noisy imageK, themathematical expressions of
MSE and PSNR (dB)53 are:

MSE =
1

mn

Xm�1

i=0

Xn�1

j =0

½Iði, jÞ � Kði, jÞ�2 ð12Þ

PSNR=20log10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð13Þ

where MAXI represents the maximum pixel value of image I. The
mathematical expression of SNR is:

SNR= 10log10

Pm�1
i=0

Pn�1
j =0I i, jð Þ2Pm�1

i=0

Pn�1
j =0½Iði, jÞ � Kði, jÞ�2

 !
ð14Þ

DICE score, ranging from0 to 1, iswidely used tomeasurewhether
two sets of data match well. Here, for the segmentation tasks, 1 cor-
responds to a perfect match between the segmented results and the
ground truth, while 0 corresponds to no match. The expression of
DICE score is given as follows54:

DICE =
2∣X \ Y∣
∣X∣+ ∣Y∣

ð15Þ

where X and Y represent two different datasets (segmented results).

Benchmark of energy efficiency
In theMRI image reconstruction task, anMRI rawdatamatrixwith a size
of 320× 320 is used as the standard input data for estimating the energy

efficiency. In total, 640 320-point IDFTs are carried out on MIR, con-
suming 47.9μJ (the detailed energy consumption breakdown of each
320-point IDFT is shown in Supplementary Table 1a, which is obtained
by XPEsim55 using 65 nm technology). The transpose operation is rea-
sonably neglected here because of its lowcomputational cost. Thus, the
overall number of required operations for one MRI image reconstruc-
tion is 640 × 320× 320× 2× 4 = 524,288,000, and the energy efficiency
of MIR in MRI reconstruction task is 10.9 TOPS ·W−1 (i.e., 22,958 fra-
mes·W−1). In comparison, the energy efficiency of representative Intel
12th-Gen i9-12900 CPU and Nvidia Tesla V100 GPU is 9.5 GOPS ·W−1 (i.e.,
19.3 frames·W−1) and 100 GOPS ·W−1 (i.e., 205 frames·W−1) and our MIR
shows 1190× and 112× advantages, respectively.

In the CT image reconstruction task, a 768 × 180projectionmatrix
is used as the standard input raw data. First, 180 768-point DFTs are
carried out on MIR. This step consumes a total of 57.0μJ (as shown in
Supplementary Table 1b, each 768-point DFT/IDFT consumes 316.8 nJ).
Next, a 2D IDFT, which contains 1536 768-point IDFT, are computed
on MIR, consuming 486.5μJ. To sum up, the CT reconstruction
process for one CT image consumes 543.5μJ and requires
180 × 768 × 768 × 2 × 4+ 1536 × 768 × 768 × 2 4= 8,097,103,872 opera-
tions. As a result, the energy efficiencyofMIR inCT reconstruction task
is 14.9 TOPS ·W−1 (i.e., 2023 frames·W−1), showing 1610 × and
153 × times advantages over Intel 12th-Gen i9-12900 CPU (i.e., 1.25 fra-
mes·W−1) and Nvidia Tesla V100 GPU (i.e., 13.2 frames·W−1),
respectively.

Benchmark of the normalized image reconstruction speed
With highly efficient pipelines, each 1-bit-input VMM could take only
10 ns in ourMIR. In theMRI reconstruction task, with 11-bits input data,
the peak computing power of MIR is 320 × 320 × 4 × 2/110 ns = 7.3
TOPS. The die area of activated MIR core is 5.2mm2 (details can be
found in Supplementary Table 1a) and then the computational density
is estimated as 1.4 TOPS ·mm−2, which is equivalent to a normalized
image reconstruction speed of 2962 fps·mm−2. In the CT reconstruc-
tion task, the peak computing power is 768 × 768 × 4 × 2/110 ns = 41.9
TOPS. The die area of activated MIR core for CT takes an area of
13.8mm2 (Supplementary Table 1b). Hence the computational density
is estimated as 3.1 TOPS ·mm−2 and the normalized image recon-
struction speed is 414 fps·mm−2.

Thenwe still choose Intel 12th-Gen i9-12900CPU andNvidia Tesla
V100 GPU for comparison. As for Intel 12th-Gen i9-12900 CPU, it could
provide a computing power of 0.6 TOPS and it takes an area of
200mm2. The computational density is estimated as 3 GOPS ·mm−2

(6.3 fps·mm−2 for MRI; 0.4 fps·mm−2 for CT). As for Nvidia Tesla V100
GPU,which coulddeliver a computing power of 31.4 TOPS, with a large
die area of 815mm2, the computational density is estimated as 39
GOPS ·mm−2 (81 fps·mm−2 forMRI images; 5.2 fps·mm−2 for CT images).
Therefore, in terms of the normalized image reconstruction speed, our
MIR for MRI shows about 471× and 36× advantages over CPU and
GPU, respectively. Also, MIR for CT shows about 1017× and 79×
advantages over CPU and GPU, respectively.

Data availability
The datasets that we used for benchmark are publicly available. The
source data for Figs. 2–4 have been deposited and provided at
GitHub https://github.com/Tsinghua-LEMON-Lab/Medical-image-
reconstruction. Additional data supporting the findings of this
study are available from the corresponding authors upon reason-
able request.

Code availability
The codes that support the findings of this study are available at
GitHub https://github.com/Tsinghua-LEMON-Lab/Medical-image-
reconstruction. Additional codes are available from the correspond-
ing authors upon reasonable request.
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