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At the molecular level, the evolution of life is driven by the generation and
diversification of adaptation mechanisms. A universal description of
adaptation-capable chemical reaction network (CRN) structures has remained
elusive until now, since currently-known criteria for adaptation apply only to a
tiny subset of possible CRNs. Here we identify the definitive structural
requirements that characterize all adaptation-capable collections of interact-
ing molecules, however large or complex. We show that these network
structures implement a form of integral control in which multiple independent
integrals can collaborate to confer the capacity for adaptation on specific
molecules. Using an algebraic algorithm informed by these findings, we
demonstrate the existence of embedded integrals in a variety of biologically
important CRNs that have eluded previous methods, and for which adaptation
has been observed experimentally. This definitive picture of biological adap-
tation at the level of intermolecular interactions represents a blueprint for
adaptation-capable signaling networks across all domains of life, and for the

design of synthetic biosystems.

The capacity for biological systems to adapt to variable and
unpredictable conditions, and to maintain certain key survival-
requisite properties within tight tolerances, is fundamental to life
itself. This ubiquitous property has been studied under a variety of
guises, including robust homeostasis' and absolute concentration
robustness (ACR)>?, all of which are special cases of the keystone
phenomenon known as robust perfect adaptation (RPA)*. RPA
encompasses two essential features: a baseline reference signal, or
‘setpoint’, established by the concentrations of one or more key
molecules, and which allows the system to distinguish high/
increasing signals from low/decreasing signals; and an actuator
signal (the adaptation), which serves as a memory trace for the
altered conditions or stimuli to which the system has been exposed
over time* . RPA has been ubiquitously observed at all scales of
biological organization from homeostatic control of plasma mineral
concentrations’ to the regulation of cellular signal transduction
networks®; from sensory adaptation’ to neuronal excitation
regulation'®; from the orchestration of cellular stress responses” to
the coordination of chemotaxis in single-celled organisms*, and is

thought to play a critical role in robust patterning during organism
development™,

Importantly, RPA corresponds to a special case of a defining
problem in classical automatic control - namely, the robust asymp-
totic tracking of a desired trajectory (the system’s setpoint), while
rejecting unwanted disturbances. In the 1970s, the landmark studies of
Francis and Wonham'®" investigated the necessary controller struc-
tures to achieve such robust tracking, and established what is now
known as the internal model principle (IMP)*® (Fig. 1). In simple terms,
the IMP states that a dynamical system, X, regulated by some
exosystem-generated stimulus or disturbance can be decomposed, via
a coordinate change if necessary, into two subsystems, X, and X,
where X, constitutes an output-driven internal model (Fig. 1a). Only
the system output, O(t), can act as an input to this internal model X,
which cannot be directly regulated by the remainder of the system X,
nor by the stimulus/disturbance,/(t), generated by the exosystem. In
this way the IMP allows a control system to reject exogenous stimuli or
disturbances by incorporating within itself a model of the dynamic
structure of the stimulus or disturbance. In the face of persistent
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Fig. 1| The internal model principle (IMP) and its application to RPA-capable
CRNs. The class of constant disturbances (/(¢) = const) is generally the disturbance
class of most fundamental interest to the study of biological systems. a In order to
exhibit RPA (i.e. adapt to constant disturbances), the dynamical system X should be
decomposable, via a coordinate transformation if needed, into an ‘output-driven
internal model’, 3", (generating all the constant signals corresponding to solu-
tions of z, =0), and the remainder of the system, }",. The variable z, thereby
computes the integral of the output error. b A suitable coordinate change should

be able to recast an RPA-capable system into integral feedback form, even if there is
no feedback present in the network. As shown, a linear transformation is sufficient
to identify an output-driven internal model for this particularly simple incoherent
feedforward motif (Balancer module); y=a, /a; (setpoint) at steady-state. ¢ A
model that employs feedback is frequently simpler to recast in ‘integral feedback’
form, with an output-driven internal model; here y = a, (setpoint) at steady-state.
Note that the reaction rates selected for illustrative purposes in (b) or (c) cannot be
induced, under the law of mass action, by any CRN*°.

(constant) disturbances such as a mutation, an altered external envir-
onment, or a new network stimulus, the internal model must produce
constant signals and is equivalent to the requirement for integral
control'® (Fig. 1b, ¢). The internal model integrates the adaptation
error in some distinguished output variable of the system, constrain-
ing it to asymptotically track a fixed value, or setpoint, at steady-state.

Integral control can readily be implemented in engineering design
problems by incorporating special integral-computing components
into feedback loops. By contrast, signaling networks that evolve in living
systems are dynamically assembled via the physical interactions -
involving collisions, binding events, and chemical modifications -
among discrete entities, or molecules, which must constitute both the
signals and their own controllers. Moreover, many collections of bio-
chemical reactions have been identified” which impose concentration
robustness at steady-state in the absence of any feedback loops or any
exosystem-driven disturbances, and in response to alterations in total
molecular abundances alone. Robust asymptotic tracking of molecular
setpoints in the absence of exogenous network inputs or disturbances
constitutes special type of RPA generally referred to as ‘absolute con-
centration robustness’ (ACR), corresponding to robustness with respect
to the system’s initial conditions. How can these complex self-
organizing collections of chemical reactions manage to embed the
integral-computing structures required for adaptation? Note, in
particular, that the reaction rates selected for illustrative purposes in
Fig. 1b, ¢ cannot be induced, under the law of mass action, by any
chemical reaction network (CRN)?, highlighting the challenge of iden-
tifying the general properties of RPA-capable CRN reaction structures,
and universal implementations of integral control via intermolecular
interactions.

Until now, integral-computing molecular interactions have only
been identified in exceedingly simple chemical reaction networks
(CRNSs), such as the antithetic integral control motif®*, and highly
simplified versions of bacterial metabolic circuits and phosphorelays®,
where the requisite integral can be identified via linear change of
coordinates. But many adaptation-capable CRNs have been identified
(see, for example, Cappelletti et al.), for which no such linear trans-
formation can reveal an adaptation-conferring integral structure,

highlighting the fact that complex nonlinear transformations may be
required to detect the presence of integral control for most
adaptation-capable CRNs in nature®. Although the universal topolo-
gical principles required for RPA, and for the implementation of inte-
gral control, at the level of the network macroscale are now
understood in complete generality*, how these principles could be
realized by the intricate intermolecular interactions which comprise
CRN structures at the network microscale has been entirely unclear.
Previous attempts to identify RPA-capable CRNs, and in some cases,
their underlying integral control strategies, have only provided partial
answers for special cases>*'5%™%,

Here we identify the universal principles by which all possible
instances of RPA-capable CRNs - in all living systems on Earth, as well
as in synthetic biology - construct internal models'**% of any possible
stimulus or disturbance, or change in total molecular abundances,
thereby allowing the CRN to implement integral control.

As we will show in the sections to follow, a mathematical trans-
formation may always be applied to the reaction rates of any RPA-
capable CRN to produce a special two-variable invariant called an ‘RPA
polynomial’. This distinguished algebraic invariant encodes the robust
asymptotic tracking of a molecular setpoint, no matter how complex
or intricate the intermolecular interactions, nor how vast the network
of interacting molecules. Unlike the nonlinear coordinate transfor-
mations invoked in the standard IMP, where a global coordinate
transformation (unique to each RPA-capable network) is required to
identify a single internal model, the nonlinear transformation we
identify here has a special almost-linear structure (and, in special cases,
exactly linear) and is decomposable into a topologically organized
collection of linear integral controllers, each with its own independent
internal model. In this way, we are able to identify the fundamental
building blocks of all possible RPA-capable CRNSs, thereby revealing
definitive structural requirements that characterize all adaptation-
capable collections of interacting molecules.

Importantly, these universal adaptation-promoting structural
requirements lead to a definitive and well-defined algorithmic test for
RPA within networks of chemical reactions. We provide code in the
open-source software Singular (www.Singular.uni-kl.de) to implement

Nature Communications | (2023)14:2251


http://www.Singular.uni-kl.de

Article

https://doi.org/10.1038/s41467-023-38011-9

a Gy b g _
R I 1 | Antithetic
: ! R->R+ X1 ! Integral
. ; k, k, I Control
“O > 'Y l\Xl + X, - 0 - XZ i Subnetwork
' k k
EMBEDDED | X3 _‘; X3 + XZ _5; XZ
&3 E& k k
\TJ 01 —% Q —§ X3
SR~ 01 + X, 20,
7T lllllelliliesieoiesisseoss
! (ksk7 + ksks) do d
| kyks0q <R == = ks d—tl + kr01 2 (X1 — X3)
O Reapolynomial e — /A\
Opposer . dz; 7a\ kg dz; _ pullm k3 + kiX3) . Opposer
d \_O Invariant1 gq¢ k701 <§§‘_ k_7> ac T\t T ky - " Invariant 2
Procias
(X, . t
g - k & k. k.
¢(<“X ; zl=k7f 01<X37k—8>d‘r ZZ:klj. R-— (%4)(3)511’
Q! ; ; 0 Z 0 1
™~ ) Opposer Integral 1 Opposer Integral 2

Fig. 2 | A CRN containing the antithetic integral control motif as a subnetwork.
a Closed-loop system for an antithetic integral controller (X1, X2), along with an
interconnected auxiliary controller (X3, OI). Created with BioRender.com.

b Chemical reactions for the CRN. ¢ The CRN implements integral control via two
independent internal models, corresponding to two independent polynomial

invariants, each obtained by a linear change of coordinates. These are combined
nonlinearly (through the concatenating monomial OI applied to invariant 2), to
obtain the RPA polynomial, which reveals the setpoint of the molecule R.

d Topologically, the CRN is an Opposer module; the controller architecture is a two-
node opposing set (see SI, Section S$4.2.2).

this test for all examples considered here and in our Supplementary
Information (SI). This code can be tailored to the study of any CRN.

Results

Structural principles for all adaptation-capable CRNs

As a prelude to presenting the universal structural principles by which
any CRN can orchestrate a robustly adaptive response (see also SI
Section S1), we first briefly describe two simple examples that have
eluded all previous systematic methods**'®?*?**’ to detect RPA, and
the presence of integral control, and which exemplify the essential
structural principles that are common to all RPA-capable CRNs.

First, we consider an RPA-promoting CRN (Fig. 2a) known as
antithetic integral control (Fig. 2b)**' - a controller structure that has
been identified in the form of sigma/anti-sigma factors in a range of
bacterial strains, including E. coli and Salmonella”, and has also been
implemented in synthetic networks®. In the simplest possible version
of this control mechanism (Fig. 2b, highlighted reactions), two pro-
teins X; and X, bind with very high affinity (i.e. irreversibly, thus
annihilating each other). One of these proteins (X;) is synthesized at a
rate proportional to the concentration of a transcription factor (R),
while the other protein (X,) is constitutively produced at a constant
rate. From the law of mass action, whereby reaction rates are pro-
portional to the concentrations of their reactant molecules, this simple
scheme produces the two reaction rates

X;=kR — k,X,X,, (¢))

X, =k — kXX, )

A linear change of coordinates, z=X; — X, =k;R — ks, suffices to
identify an internal model, with integral variable z=k; ﬁo (R(t) — ,’:—;)dr,
for any possible persistent disturbance to the system, thereby estab-
lishing the capacity for RPA in the molecule R with setpoint k; /k; (see
Cappelletti et al.’). But suppose that a modification to the CRN is
introduced during evolution whereby the production of X, is no
longer independent of other signaling activity, but is now under the
control of another network protein X5, a transcription factor, as

depicted in Fig. 2a, b. The reaction rate for X, now becomes

X, =k, X3+ ks — kX1 X, 3)

This perturbed controller structure can no longer impose RPA
on R unless X5 participates in additional regulatory interactions,
whose structure satisfies very strict constraints (see SI Sec-
tions SL.5 and S4). In Fig. 2a, b we provide an example of a suita-
ble auxiliary controller structure for X3, which now includes an
additional protein O;. In Fig. 2c and SI Section S4.4.2 we demonstra-
te that for this expanded CRN, one internal model with integral vari-

able zl=01=k7f§001(r)(X3(r) - ’,i—’;)dr imposes RPA on X3, provided
that O; maintains a non-zero concentration - a concept known as

constrained integral control®, Having thus imposed a steady state
value (setpoint) of kg/k; on X3, a second internal model, with an
integral variable 22:X1—Xzzkljfo(R(r)—(%f“’))dT, can now
impose RPA on R. In this way, two internal models - or polynomial
invariants (see Fig. 2c) - may be defined, each obtained through (at

most) a linear coordinate change. From these two separate polynomial
invariants, an ‘RPA polynomial’ of the form

kaky + kok
otk (f- (M)

can now be constructed through nonlinear combination, via ‘con-
catenating monomials’ (Fig. 2¢c, and SI Sections S3 and S4), from which
it is clear that the network has the capacity for RPA in R with set-
point (k;k; + k, kg)/kik5.

We demonstrate (SI Sections S2 and S4.4.2) that the CRN depicted
in Fig. 2 conforms to the topological principles of an Opposer Module*,
see Fig. 2d. More specifically, the controller structure of this CRN
exhibits the special architecture known as a two-node opposing set
(see Araujo et al.*). Each linear combination of CRN reaction rates that
produces an opposer invariant, corresponding to an internal model,
thereby constructs an independent opposer integral (see Fig. 2c). The
two separate integrals together confer RPA on the sensor molecule R,
and ultimately, the entire embedded network (SI Section S4.4.2). This
special topological structure, with three feedback loops, and two

“)
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Fig. 3 | The EnvZ-OmpR bacterial two-component system employing both ATP
and ADP as cofactors, as originally proposed by Shinar and Feinberg’.

a Schematic of the EnvZ-OmpR phosphorelay system. Created with BioR-
ender.com. b The corresponding CRN. ¢ The CRN implements integral control via
the computation of two independent polynomial invariants — a Balancer invariant,
and a Connector invariant - each obtained by a linear coordinate change. These are

combined nonlinearly through the concatenating monomial x; (EnvZ-ATP) applied
to the balancer invariant. The resulting RPA polynomial thereby reveals the set-
point of the molecule pOmpR. Code provided for this calculation in SI (Section S5);
Parameters: K ,,; = (d; + k;)/a;, B=ds/as, V= k3(K s /K ni3) + K4 BK ;1 - d Topologically,
this CRN is a Balancer module (see SI, Section S3.2).

independent opposer invariants, is directly constructed by the CRN’s
‘deficiency’” of three (see SI Section S4.4.2 for a detailed analysis).
Deficiency is a key integer invariant associated with a CRN?, as we
discuss in greater detail in the sections to follow (see also SI Sec-
tions S1.2 and S1.3), whose fundamental consequences for the imple-
mentation of integral control in CRNs are identified in the
present study.

Second, we consider a CRN for the EnvZ-OmpR osmoregulation
system in E-coli (Fig. 3). A simplified model of this network with a
deficiency” of one was first analyzed by Shinar and Feinberg? and
could be shown to exhibit absolute concentration robustness (ACR) - a
type of RPA (SI Section S1.4) - by the Shinar-Feinberg theorem? Cru-
cially, the Shinar-Feinberg theorem applies only to deficiency-one
CRNs, which severely limits its ability to detect ACR (and thus RPA) in
most molecular networks of biological interest, since the deficiencies
of known genome-scale signaling networks (e.g. in metabolism) in
even the simplest organisms frequently exceed one hundred®. In
Fig. 3a, b we consider the more detailed version of the EnvZ-OmpR
CRN, which eludes the Shinar-Feinberg theorem, having a deficiency of
two, but which can be shown to exhibit RPA (ACR) in the phosphoform,
pOmpR (Supplementary Materials of Shinar and Feinberg?).

The CRN in Fig. 3 conforms to the topological principles of an
RPA-conferring Balancer Module (see SI Section S3.2), with three
(incoherent) parallel pathways governing the interconversion between
phosphorylated and unphosphorylated OmpR; this fundamental
structure is directly controlled by the CRN’s deficiency of two (see SI
Sections S3.2, S4.4.1). All Balancer modules are characterized by a
collection of parallel pathways emanating from a diverter node (here,
EnvZ-ATP) and culminating in a connector node (here, pOmpR)*. One
or more balancer nodes (here, EnvZ-ADP) may be embedded within the
parallel pathways®. In Fig. 3c we identify an integral variable

_ _ EnvZ-ATPw)
z1=as/ ¢, ENVZ ATP(T)(Ean_ ATPo BK )dt that first confers RPA

on the concentration ratio EnvZ-ATP/EnvZ-ADP - a key invariant
known as a balancer invariant (see Araujo et al.*). Having established a
setpoint of K ,,; for this balancer invariant, a second integral variable,
Z,, constructs a connector invariant that imposes RPA on pOmpR (see
Fig. 3c). Crucially, both the balancer invariant and the connector

invariant are obtained via linear combinations of the CRN’s mass action
equations. These two polynomial invariants together produce an RPA
polynomial of the form

pr=y.EnvZ — ATP(pOmpR kll;’"“), 5)

through nonlinear combination via concatenating monomials (see
Fig. 3¢, and SI Section S3 and S4), thereby explicitly highlighting the
CRN'’s capacity for RPA in pOmpR, with setpoint Kioms

Our transformative step is to prove that all RPA-capable CRNs,
regardless of size, complexity, or deficiency>?, necessarily conform to
the general principles encapsulated by these two illustrative examples
(see Sl Section S4). In fact, all RPA-capable CRNs are characterized by a
topological hierarchy of polynomial invariants - a key phenomenon
foreshadowed by our earlier framework*, before general principles
were known as to how these invariants might be achieved by CRN
graph structures. Here we show that each such subsidiary polynomial
invariant is necessarily identifiable via a linear combination of the
CRN'’s rate equations, and corresponds directly to a topological feature
(a balancer node, a connector node, or an opposer node) of the
overarching network structure. We further show that the presence of
these key invariants in the row span of the system (see SI Sections S3
and S4) is fundamentally controlled by the deficiency of the CRN.
Moreover, CRN deficiency is generally distributed across multiple
algebraically independent subnetworks, which correspond to a
decomposition of the reactions into topological modules (see SI Sec-
tion S4). Thus, the integral-computing properties of CRNs at the net-
work microscale presented here, together with the topological
principles that are known to hold at the network macroscale for all
RPA-capable networks®, constitute definitive design criteria that unify
all possible RPA-capable CRNs.

There are two distinct but interrelated components to this central
result, which we delineate in turn in the sections to follow: (i) We
identify the universal algebraic condition that is satisfied by all RPA-
capable CRNs, and which is codified in what we call the Two-Variable
Kinetic Pairing Theorem (SI Section S1.5); (ii) We show that this alge-
braic condition always admits a decomposition into a collection of
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node (not shown) or an organized collection of opposer nodes (known as an
‘opposing set’, as shown), embedded into the feedback segment of the circuit.
Opposer nodes are indicated in yellow. The regulator of this feedback segment, x;,
is the sensor molecule for the controlled network, and thus regulates x; (directly, or
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contributions of x; to its own reaction rate are exactly matched (paired) through
the pairing function, g(x;,x;). b A Balancer module has a feedforward structure,
whereby two or more distinct pathways connect the diverter node, x;, to the
downstream connector node, x; (indicated in green). RPA is achieved at x; when the
upregulating and downregulating contributions of x; to the reaction rate for x; are
exactly matched via the pairing function g(x;x;).

linear problems. The discovery of this previously unrecognized fun-
damental structure of RPA-capable CRNs exploits the fact that CRNs
reactions can generally be partitioned into algebraically independent
subsets, each with its own linearly independent stoichiometric sub-
space (SI Section S1.2), and each with its own deficiency (SI Sec-
tion S1.3) that governs the formation of RPA-promoting algebraic
invariants within the associated subnetwork. Together, these two
mathematical results reveal an integral control implementation that
holds for all possible RPA-capable CRNs, however large, complex or
nonlinear in their dynamics, and whatever their deficiency.

Adaptation relies on a CRN design strategy called Kinetic Pairing
First, we prove (see Theorem 1, Sl Section S1.5) that for all RPA-capable
CRNs, with interacting molecules x;, ... x,,, and corresponding mass-
action rate equations f,...f,, there always exist polynomials
{hy,...,h)CR[xy, ..., x,] such that

hifit .t hfr=800, x)(x; — ©)=p, (6)

where p=g(x;,x;)(x; — ¢), in its lowest order form, is the RPA poly-
nomial of the CRN, x; is any RPA-capable variable of the CRN, and x; is
any variable that does not exhibit RPA (i.e., an actuator variable, or a
molecule regulated by an actuator variable). In this context ‘variable’
has quite a specific meaning, which we define carefully in Sl Section S1.5
(Definition 1). The system setpoint, ¢, is a rational function of
biochemical parameters (see also Remark 3 in SI Section S1.5).

From this new mathematical vantage point, we can now recognize
that the special structure of the RPA polynomial specified by Theorem 1,
being a function of exactly two variables, imposes fundamental limita-
tions on the flow of biochemical information through RPA-capable
CRNs, and encodes the cardinal principle that we call kinetic pairing (see
Fig. 4 and Sl Section S2). In particular, the functional form of p suggests
two possible topological interpretations of Theorem 1, depending on
whether the RPA-capable variable, x;, is a regulating variable (for x;) or a
regulated variable (by x;). As depicted schematically in Fig. 4a, if x;
regulates x; (the non-RPA-capable variable), then the upregulating and
downregulating contributions of x; to its own reaction rate must be
precisely matched, or paired, via the pairing function g. At steady state,
this form of p satisfies the condition 22 = 0 referred to in Araujo et al.* as

0x;
opposer kinetics, and must thereforé be embedded in an overarching

feedback loop that gives rise to the topological structure of an Opposer
module. Our previous exhaustive analysis on Opposer module topolo-
gies has established that the feedback segment of such modules may
contain multiple opposer nodes, each with its own opposer kinetics,
and each contributing to a collection of embedded interlinked feedback
loops known as an opposing set (Fig. 4a).

If, on the other hand, x; is regulated by x;, then the upregulating
and downregulating contributions of x; to the reaction rate for x; must
likewise be precisely paired via g.

As illustrated in Fig. 4b, the pairing function naturally induces a
Balancer topology* on the CRN in this case (see SI Section S2), with x;
performing a diverter function®. For this topological structure, the
steady-state condition g—g =0 corresponds to connector kinetics®,
provided that additional constraints (referred to as balancer kinetics in
Araujo et al.*) can be satisfied for the reactions embedded into any
parallel pathways linking x; to x;.

Theorem 1 holds for any choice of RPA-capable variable, x;, and
non-RPA-capable variable, x;, in the CRN, even if the two variables
contribute to distinct independent CRN subnetworks (SI Section S1.3)
corresponding to distinct topological modules. Algorithmically, the
choice of two variables within a single independent subnetwork, cor-
responding to a single topological module, simplifies the elimination
polynomials h;,...,h, in Eq. 6 (SI Section S1.6 for a fully analyzed
example). In this context, we recognize that Theorem 1 identifies an
independent RPA polynomial specific to the topological module in
question and that there exists a natural choice of x; with respect to the
topological structure of the module: a diverter variable (in the case of a
Balancer module), or an opposer variable (in the case of an Opposer
module). For such a judicious choice of x;, the pairing function g is
frequently zero-order in x;, except in the special case of an auto-
regulatory role for x;. In the case of the antithetic integral control
motif*, the pairing function is zero-order in both x; and x;, giving rise
to unconstrained integral control>?.

RPA-permissive topological features are encoded by CRN
deficiency

Second, we consider a decomposition of the nonlinear algebraic con-
dition for RPA (Eq. 6) into its component linear contributions, to reveal
the general mechanism through which kinetic pairing is transacted in
CRNs. Indeed, by identifying the connection between the deficiency of
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Fig. 5 | Deficiency is a key integer invariant for a CRN. a The linkage classes of a
CRN are the connected components of the CRN’s graph. The complexes are the
vertices of the graph, while the reactions are the directed edges. Strong-linkage
classes are the maximal strongly-connected subgraphs of the CRN. A terminal
strong-linkage class (noted in green) is one in which no complex reacts to a com-
plex in a different strong linkage class. Complexes belonging to terminal strong-

Complexes: m =5
Linkage classes: [ = 2

Rank of CRN: s = 2

Deficiency: 6 =m—[l—s=1

linkage classes (complexes 2, 3, and 5 in this case) are terminal complexes; all other
complexes are non-terminal complexes. See Sl Section S1.2 for a complete technical
overview. b Deficiency is calculated from the number of complexes, linkage classes
and the rank of the CRN, as shown. The rank of the CRN is the number of linearly
independent reactions, ie. the dimension of the stoichiometric subspace of the
CRN (see SI Section S1.2).

an RPA-capable CRN and the presence of feedback loops and/or
feedforward segments (SI Section S1.2), we prove that the RPA poly-
nomial of a CRN can always be decomposed into a collection of sub-
sidiary polynomial invariants, each corresponding to a component of
the CRN'’s topological structure, and each residing in the rowspan of
the CRN’s reaction rates (SI Sections S3, S4). In other words, each such
subsidiary invariant may be obtained via a linear transformation of the
system’s reaction equations, f, ... f,.

The deficiency of a CRN (Fig. 5) is a non-negative integer that
encapsulates the extent to which the individual reactions of the CRN
are linearly independent given their distribution into linkage classes®
(see SI Sections S1.2 and S1.3 for a detailed exposition of this funda-
mental concept). With the exception of the trivial RPA-capable CRN
consisting only of an isolated connector node, which has a deficiency
of zero (see SI Section S4.4.2), all (non-trivial) RPA-capable CRNs
require a deficiency of at least one. The Shinar-Feinberg Theorem’ (see
Theorem 2 in SI) pertains to CRNs with a deficiency of exactly one, and
states that any such CRN containing two distinct complexes that differ
in a single species, S, and admitting a steady-state in the positive
orthant, necessarily exhibit ACR (and therefore RPA) in the species S.
This key theorem follows from Shinar and Feinberg’s more general
result that the steady-state ratio of any two monomials associated to
non-terminal complexes (see Fig. 5) is independent of the system'’s
initial conditions’. We show that Shinar and Feinberg’s arguments may
be extended to prove even stronger results (SI Theorems 3 and 4) -
namely, that all deficiency-zero and deficiency-one CRNs contain
binomials in the rowspan of their reaction rates, of the form
o (x) — apg;(x), where ¢;(x) and g;(x) are any two mass-action
monomials corresponding to non-terminal complexes (of a deficiency-
one CRN), or complexes of a single terminal strong linkage class (of a
deficiency-zero CRN), and where (ay,q;) € R? is a pair of rational
functions of the CRN rate constants. In other words, there exists some
(hy,...,h,) € R" such that hyf; + ... +h,f, = 0P;(x) — ar;(x).

Crucially, we extend the mathematical framework for Theorems 3
and 4 (on low-deficiency CRNs, 6 <1) to a general method for identi-
fying rowspan polynomials in CRNs of arbitrary deficiency (6 >1). In
fact, CRNs can generally be decomposed into a set of algebraically-
independent subnetworks (SI Section S1.3), which correspond topo-
logically to independent RPA-capable-modules, each with its own
independent RPA polynomial. The deficiency that characterizes each
independent subnetwork, and the associated topological module,
governs how RPA-relevant subsidiary polynomial invariants are con-
structed within the rowspan of the CRN. In Section S4.4, we demon-
strate these fundamental principles through detailed analyzes of
several RPA-capable CRNs with §>1 for a single module (see also Fig. 6).

Our method for analyzing these examples makes clear that although an
RPA polynomial associated to an RPA-capable CRN generally requires a
nonlinear transformation of the reaction equations (Eq. 6), there
always exist linear transformations that can extract the special poly-
nomial building blocks, each corresponding one-to-one with a topo-
logical feature of the overarching network structure, from the CRN’s
reaction equations. In particular, all RPA-capable CRNs of Balancer
type contain a connector polynomial, corresponding to the connector
node, and one or more balancer polynomials, corresponding to bal-
ancer node(s), in their rowspans. CRNs of the Opposer type, on the
other hand, contain one or more opposer polynomials (corresponding
to opposer node(s)) in their rowspans.

Integral control and the ‘passing’ of invariants

Until now strategies for identifying an internal model, and an asso-
ciated integral, via a nonlinear coordinate change have only been
applicable to exceedingly simple CRNs™. By contrast, our approach
identifies a well-defined nonlinear map between reaction rates of the
model variables f;, . .. f,, and a defining algebraic invariant, p (Eq. 6),
which exists for all adaptation-capable CRNs. In contrast to all prior
control theoretic approaches, this alternative viewpoint decomposes
all RPA-capable CRNs into a constellation of linear integral control
problems, each with an associated invariant (i.e. internal model). These
are distributed across well-defined RPA-permissive CRN subnetworks,
corresponding to RPA-permissive topological basis modules®, and
construct an RPA polynomial, p, through the process of invariant
passing (Fig. 7; see also SI Sections S3 and S4).

Invariant passing describes the process by which polynomial
invariants corresponding to adjacent topological features of the CRN’s
overarching network structure are combined so as to systematically
eliminate model variables, and ultimately obtain an RPA polynomial
for each independent subnetwork, corresponding to an RPA-
conferring topological module of the CRN. As illustrated schemati-
cally in Fig. 7a for CRNs of Opposer type, opposer invariants are passed
from the distal opposer node to the proximal opposer node; for CRNs
of Balancer type (Fig. 7b), invariants are passed from the diverter node
to the sequence of balancer nodes within each parallel pathway, cul-
minating at the connector node.

Crucially, we demonstrate that the ability or inability of these
invariants to ‘pass’ within the rowspan of the system is a question of
stoichiometric independence of the individual chemical reactions
contributing to successive invariants. We outline the significance of
this key concept through the analysis of a simple illustrative example
(Fig. 8). In Fig. 8a, we depict a deficiency-one CRN comprising three
interacting molecules, A, B and C, which exhibits RPA (and, more
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Fig. 6 | Deficiency-increasing topological features of RPA-capable CRNs. a An
opposing set, containing multiple interconnected feedback loops involving
opposer nodes (indicated in yellow), all embedded together into the feedback
segment of an Opposer module. As shown, each single opposer cycle contributes a
deficiency of one to the CRN. The interspersed feedback loops that connect the
individual opposer nodes further increase deficiency (SI Section S4.4.2), as

indicated. b A Balancer module, containing multiple feedforward segments
between the diverter molecule (D) and the connector molecule (C). A Balancer
module with just two (incoherent) feedforward segments, without any embedded
feedback loop, has a deficiency of one, as shown. Each additional feedforward
segment increases deficiency by one, as shown. Any feedback loop embedded into
a feedforward segment also increases deficiency by one (not shown).
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system rowspan are passed from the ‘distal’ opposer invariant to the ‘proximal’
opposer invariant. Opposer nodes indicated in yellow. b In CRN subnetworks of
balancer type, polynomial rowspan invariants are passed from the diverter node,
along parallel pathways, to the connector invariant. Balancer nodes indicated in
blue, connector node indicated in green.

specifically, ACR) in the molecule A. It is easy to show (SI Section S3.1)
that this CRN is topologically a Balancer module, where A is the con-
nector, B is the diverter, and C is a balancer. In Fig. 8b, we present a
modified version of this CRN that preserves both its topology and its
deficiency of one. Both CRNs contain an identical connector poly-
nomial in their rowspans. In addition, both CRNs contain a balancer
polynomial in their respective rowspans, as expected. In the original
CRN (Fig. 8a), however, the balancer and connector polynomials are
stoichiometrically independent, in the sense that the variable to be
eliminated in the process of invariant passing (ie. C) derives from
the reactant complex B+ C in the balancer polynomial, and from the
reactant complex C in the connector polynomial. Therefore, the con-
nector polynomial must be multiplied by the concentration of mole-
cule B (a concatenating monomial) in order for the balancer
polynomial to pass to it, and thereby construct the RPA polynomial. By
contrast, the single reactant complex C contributes to both subsidiary
polynomials for the modified CRN (Fig. 8b), guaranteeing their stoi-
chiometric dependence.

It is striking to note that the original form of the CRN (Fig. 8a)
eludes the Shinar-Feinberg theorem, even though the CRN exhibits

ACR and has a deficiency of one. It is thereby clear that, even for the
special case of deficiency-one CRNs, the Shinar-Feinberg theorem
cannot provide a comprehensive description of ACR (and hence RPA).
By contrast, the modified form of the CRN (Fig. 8b), with
stoichiometrically-dependent balancer and connector polynomials,
does satisfy the Shinar-Feinberg theorem. With the stoichiometric
dependence of all subsidiary polynomials now delivering the all-
important RPA polynomial to the system’s rowspan, this modified CRN
necessarily contains two non-terminal complexes (A +B, and B) that
differ in the single ACR-exhibiting molecule, A - thereby satisfying the
conditions of Shinar and Feinberg’s theorem.

We illustrate the control diagram corresponding to our decom-
position into a topological hierarchy of linear controllers in Fig. 9 for
the particular case of a single Opposer module, since all Opposer
modules necessarily incorporate an overarching feedback structure,
and are thus easily described using standard control diagrams. In
principle, there should always exist some single nonlinear coordinate
change to extract a single output-driven internal model (Fig. 9a) from
the system’s rate equations, corresponding to a single integral of the
system’s tracking error (Fig. 9b)'®**?, But in our representation, each
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Fig. 8 | Stoichiometric independence of chemical reactions, and its con-
sequences for invariant passing. a A simple CRN which is topologically a Balancer
module (see SI Section S3.1), involving interactions among three molecules: A
(connector), B (diverter), and C (balancer). The connector polynomial (dA/dt) and
the balancer polynomial (dB/dt) are stoichiometrically independent, since the CRN
complexes that contribute the molecule C (which must be eliminated) are ‘C’ for the
connector polynomial, and ‘B + C’ for the balancer polynomial. A concatenating

monomial (B) is therefore required to reconcile the two invariants to construct the
RPA polynomial. b A modified version of the CRN, with identical underlying
topology. In this case the connector polynomial (dA/dt) and the balancer poly-
nomial (dB/dt) are stoichiometrically dependent, since the complex ‘C’ contributes
to both invariants, and is thereby eliminated within the rowspan of the system. As a
consequence, the RPA polynomial resides in the system’s rowspan.
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Fig. 9 | The distribution of internal models into a topological hierarchy. a A
network with a single integral controller. b A standard integral feedback control
diagram, in which the error between the setpoint and sensor for the system is
integrated in a single integral, corresponding to a single internal model. ¢ In CRNs, a
universal description of integral control is obtained by decomposing the internal
model into multiple subsidiary internal models, each corresponding to a linear
coordinate change, and each corresponding to an (algebraically) independent

subnetwork of the CRN, and an associated topological feature of the underlying
network. Here, we depict an Opposer module featuring a three-node opposing set.
d Since all Opposer modules have a feedback architecture, their feedback control
diagram can explicitly incorporate the multiple independent integral-computing
elements. The feedback control diagram shown corresponds to the opposer
module in (c). Opposer nodes are indicated in yellow.
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subsidiary polynomial invariant corresponds to an independent
internal model, each with its own independent setpoint. For a CRN
constituting a three-node opposing set (Fig. 9c), for instance, there will
exist three independent internal models and three corresponding
opposer integrals, each conferring RPA on a different variable (Fig. 9d).
These three independent linear control systems collaborate to confer
RPA on the sensor variable of the CRN, and ultimately, the entire
embedded network.

A general algorithm for adaptation detection in complex CRNs
It is clear from the illustrative example of the EnvZ-OmpR osmor-
egulatory motif (Fig. 3; see also additional CRN examples in SI) that
even for exceedingly simple CRNs, constituting a single RPA module,
the integral-computing polynomial invariants may be deeply con-
cealed within the chemical reaction structures, and cannot generally
be identified by inspection. For this, we introduce here a general
algorithmic method for establishing the RPA capacity of a CRN, which
can identify the subsidiary polynomial invariants automatically - even
for large and/or high-deficiency CRNs, comprising multiple RPA-
promoting topological modules.

Our method is a direct consequence of the fact that the RPA
polynomial of any adaptation-capable CRN is a function of two vari-
ables, thereby converting the question or RPA capacity to a well-
defined elimination problem. This elimination problem corresponds
geometrically to the projection of the system onto just two variables
(one RPA-capable, and one RPA-incapable) - a task that can accom-
plished via computation of the Grdbner basis of
<Sfr...fp>=hf1+ .. +h,flheR[xy, ... x,]} with suitable mono-
mial ordering (see SI Section S5). Remarkably, although the problem of
computing a Grébner basis (e.g. by Buchberger’s algorithm®) for
general systems of polynomials is well-known to be NP-Hard, the
special almost-linear structure of RPA capable CRNs (as described
above, see also SI Section S4) allows any RPA-capable CRN to yield to
this approach in polynomial time.

Although this method can be applied with any choice of two
variables — one RPA-capable and one non-RPA-capable - we provide
guidance in our Sl on the decomposition of CRNs into independent
subnetworks that can be analyzed individually as to their RPA-
capacity, and for which particularly judicious choice of two vari-
ables can be made. In fact, analysis of deficiency in such indepen-
dent subnetworks can confirm the inability of a CRN to exhibit RPA,
if such is the case, since large and complex CRNs may otherwise
require a long (and potentially indeterminate) timeframe for the
algorithm to terminate. We provide a fully analyzed example of a
non-RPA-capable CRN, to illustrate these principles, in SI Sec-
tion S4.5. Moreover, the fact that the RPA polynomial is a function of
(at most) two variables provides additional opportunities for com-
putational efficiency via the choice of a fast elimination ordering on
monomials - e.g. a block monomial ordering, involving two blocks
(one for the two variables, and the other for the remaining variables
to be eliminated). We provide full details of this method, along with
code in the open-source software Singular (www.Singular.uni-kl.de)
in our Supplementary Information (see Sl Section S5), where we also
provide a selection of fully-annotated illustrative examples. This
code can readily be applied to any CRN.

Discussion

Identification of a definitive test for the capacity of a network of che-
mical reactions to exhibit RPA has been the subject of a long quest, and
most attempts have considered only the special case of RPA known as
Absolute Concentration Robustness (ACR). These diverse attempts
have drawn from a range of different mathematical frameworks, which
can be broadly divided into two main categories: the chemical reaction
network theory (CRNT) viewpoint>**?, and the engineering control
theory viewpoint'™,

The pinnacle of CRNT approaches is the Shinar-Feinberg theorem?
which identifies a sufficient condition for ACR in CRNs of deficiency
one*?. It is now well known that most CRNs in nature have a deficiency
much greater than one and the Shinar-Feinberg theorem is silent on
all such CRNs. In addition, the Shinar-Feinberg theorem cannot reveal
the setpoint of any ACR-exhibiting molecules as a function of system
rate constants, nor how the existence of ACR corresponds to the
presence of integral control. Karp et al.**, developed an alternative
systematic method to identify ‘complex linear’ polynomial invariants,
which require only linear combinations of the mass-action equations
of a CRN. Using this method, the two subsidiary polynomial invariants
given in Fig. 3¢ could be identified in an ad-hoc manner. But without
recognizing these two invariants as a balancer invariant and a con-
nector invariant, and the general relationship of such invariants to an
RPA polynomial, this approach cannot make the crucial connection to
the essential structure that characterizes all possible RPA-capable
CRNs, and provides no connection to integral control in any such
systems.

From the control theory viewpoint, Yi et al.” use general linear
models to demonstrate the necessity for integral control in all robust
asymptotic tracking problems (such as RPA) and extract the internal
model for the well-known Barkai-Leibler model of bacterial
chemotaxis” by ad-hoc (linear) algebraic manipulations. Gupta and
Khammash* provide a universal characterization, and an explicit
integral control implementation, for CRNs with the special property
known as maxRPA, where the system setpoint can only depend on two
biochemical rate parameters. Moreover, a recent systematic algebraic
method developed by Cappelletti et al.> can now identify the capacity
for RPA in any mass-action CRN for which an RPA polynomial exists in
the rowspan of the system. This method explicitly identifies the pre-
sence of integral control in all such CRNs, and also reveals the system’s
setpoint as a function of biochemical rate constants, but is silent on
any CRN requiring a nonlinear coordinate change to reveal an
internal model.

Until now, general strategies for identifying an internal model via
nonlinear coordinate transformations have remained elusive, and
specific nonlinear maps have been identified only for exceedingly
simple RPA-capable CRNs'. Although a single nonlinear diffeo-
morphism that maps the original model variables to a special block
form - thereby explicitly revealing a single internal model - should
always exist in principle’®*, even in models for which no feedback
loops are present®?’ (see Fig. 1b), the identification of such a nonlinear
map in even the most complex special cases cannot, of itself, clarify the
general principles that unify all possible RPA-capable chemical reac-
tion structures.

By contrast, our approach identifies a well-defined nonlinear
map - distinct from the coordinate transformations considered in
previous control theoretic approaches®' - between the reaction
rates of the individual molecules, f;, ... f,, and a key CRN invariant
known as the RPA polynomial. This transformation holds for all RPA-
capable CRNs, and constitutes a geometric projection of the full set
of molecular concentrations onto a particular subset of the model
variables, comprising one RPA-capable molecule and one non-RPA-
capable molecule (recognizing that all RPA-capable networks
require a minimum of one such variable to constitute the
adaptation®*). The innovative leap that we make from this mathe-
matical cornerstone is to show that this nonlinear map can always
be decomposed into a constellation of linear maps, each existing
within a topological hierarchy* associated to the CRN’s underlying
flow of biochemical information, and each corresponding to an
independent linear control problem. The integrals that are for-
mulated by these independent subsidiary control systems thereby
collaborate to confer RPA on one or more molecules in the CRN. Our
approach unifies both the control theory and CRNT viewpoints, and
extends prior results on the macroscale topologies* of RPA-capable
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networks to the microscale level of intermolecular interactions
within CRNs. The space of RPA-capable CRNs that we identify in this
way extends our current understanding of the intricate biochemical
interactions that support RPA beyond simple special cases that have
been considered in previous work - deficiency-one ACR-capable
CRNs?, ACR-capable CRNs with a linear constrained integral
controller’, maxRPA networks®, etc. - to a truly general framework
that can encompass all forms of RPA, in any CRN.

The combination of a definitive algebraic condition with the
special almost-linear structure of the underlying control system
provides the essential ingredients for a simple algorithmic test for
RPA capacity, that is applicable even to large, high-deficiency CRNs.
The only algorithmic method capable of handling CRNs of arbitrary
deficiency prior to this work was the necessary condition for ACR
identified by Eloundou-Mbebi et al.”® Being a necessary condition,
the Eloundou-Mbebi method can identify a collection of molecules
that certainly couldn’t exhibit ACR (and therefore RPA), and
thereby reduces the number of molecules that must be analyzed in
detail for their ACR (RPA) capacity, eg. via extensive numerical
simulation. But the Eloundou-Mbebi method is unable to identify,
definitively, which molecules do exhibit ACR (RPA) since it fails to
capture the essential structural characteristics common to all RPA-
capable networks. Indeed, the Eloundou-Mbebi method char-
acteristically overestimates the space of molecules that could
potentially exhibit ACR/RPA quite significantly”. For the
deficiency-two model of the EnvZ-OmpR phosphorelay (Fig. 2), for
instance, all nine species satisfy the Eloundou-Mbebi condition,
even though only pOmpR can actually exhibit ACR/RPA (as we can
easily prove by the method we present here). And in common with
other CRNT-based approaches, the Eloundou-Mbebi condition
makes no connection to integral control, and cannot identify the
setpoint of any RPA-capable species as a function of biochemical
parameters.

Although RPA-conferring CRN structures are known to be quite
subtle®>**, the framework we present here delineates the fundamental
principles fully. Only a complete and truly general picture of the
integral control problem in CRNSs, as we present here, can demarcate
the evolutionary trajectories along which complex adaptation-capable
biological networks can arise from simpler building blocks, and pro-
vide a roadmap for either preserving or disrupting the RPA property in
natural, diseased or synthetic networks through design alterations or
pharmacological interventions.

The quest to uncover the fundamental design principles that
constrain complex signaling networks in nature to implement bio-
logically important functions is considered to be one of the most
important and far-reaching grand challenges in the life sciences®’.
On the basis of the present study, along with our earlier topological
study at the network macroscale®, RPA currently stands alone as a
keystone biological response for which there now exists a universal
explanatory framework - one that imposes strict and inviolable
design criteria on arbitrarily large and complex networks, and one
that now accounts for the subtleties of intricate intermolecular
interactions at the network microscale. These universal RPA-
permissive design principles now represent a launching-point for
future explorations of more complex phenotypes - including some
classes of embryonic patterning problems, for instance, where
integral control is known to play a role in promoting adaptation of
segmentation boundaries to variations in organism size'". The
identification of universal design principles for many other complex
phenotypes, such as Turing patterns”*** and multistability/
switching-responses***, is likely to prove more challenging - due, in
part, to the central role of equilibrium stabilities, or instabilities, in
generating these responses. These grand challenges remain open,
and we hope that our study will inspire bold new mathematical
thinking in these vitally important directions.

Methods

For the purposes of obtaining the greatest possible generality and
universality, we define RPA from the most general possible viewpoint
in this study. In particular, we consider a CRN to exhibit RPA in the
concentration, x, of some network molecule (directly or indirectly
subjected to some disturbance or perturbation) exactly when x
maintains a constant steady-state value, ¢, for all steady-states of the
system. The setpoint, ¢, is a function of some subset of CRN para-
meters. Moreover, the CRN exhibits RPA (in x) in response to any
perturbation or disturbance that leaves the collection of setpoint
parameters unaltered (see SI Section S1). We make no assumptions a
priori as to which type(s) of network perturbation or disturbance
might affect a particular CRN, nor do we impose any restrictions on
which (or how many) parameters determine the setpoint.

In our Supplementary Information (SI), we provide full details of
all mathematical theorems that support our results, along with their
corresponding proofs. The central result of our study, the Two-
Variable Kinetic Pairing Theorem (Theorem 1), is discussed fully, and
proved, in SI Section S1, along with a full discussion of the RPA poly-
nomial - the fundamental object at the heart of Theorem 1 - in addi-
tion to a range of other essential concepts, such as CRN deficiency,
partitions of CRN reactions into algebraically independent subsets/
subnetworks, matrix decomposition of CRN mass-action equations,
and boundary variables. The second pivotal result of this study con-
cerns the nature of the nonlinear transformation (of the CRN rate
equations) required to yield the all-important RPA polynomial, and the
fact that this transformation is always decomposable into a topological
hierarchy of linear maps (and hence, linear integral controllers, and
their associated internal models). Our analysis (SI Sections S2, S3, S4)
highlights the crucial notion that the deficiency of the CRN funda-
mentally controls the formation of polynomial invariants that are
obtainable through linear coordinate changes. All theorems related to
these concepts are discussed in detail, along with their corresponding
proofs and a set of fully-analyzed illustrative examples (SI Section S4)
and annotated Singular code (SI Section S5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

No datasets were generated or analyzed during this study.

Code availability

All code used for the analysis of illustrative CRN examples in this study
is provided in the Supplementary Information (SI) file. See SI Section S5
for fully annotated code listings, as well as complete listings of code
output for all examples considered in this study. All code is written in
the open-source software Singular (www.singular.uni-kl.de). Detailed
guidance on running this code, and adapting the code to the analysis
of any CRN, is provided in SI Section S5.
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