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Single-cell metabolic fingerprints discover a
cluster of circulating tumor cells with
distinct metastatic potential

Wenjun Zhang1,7, Feifei Xu1,7, Jiang Yao1, Changfei Mao2, Mingchen Zhu3,
Moting Qian1, Jun Hu1, Huilin Zhong4, Junsheng Zhou4, Xiaoyu Shi1 &
Yun Chen 1,5,6

Circulating tumor cells (CTCs) are recognized as direct seeds of metastasis.
However, CTC countmay not be the “best” indicator ofmetastatic risk because
their heterogeneity is generally neglected. In this study, we develop a mole-
cular typing system to predict colorectal cancermetastasis potential based on
the metabolic fingerprints of single CTCs. After identification of the metabo-
lites potentially related to metastasis using mass spectrometry-based untar-
geted metabolomics, setup of a home-built single-cell quantitative mass
spectrometric platform for target metabolite analysis in individual CTCs and
use of a machine learning method composed of non-negative matrix factor-
ization and logistic regression, CTCs are divided into two subgroups, C1 and
C2, based on a 4-metabolite fingerprint. Both in vitro and in vivo experiments
demonstrate that CTC count in C2 subgroup is closely associated with
metastasis incidence. This is an interesting report on the presence of a specific
population of CTCs with distinct metastatic potential at the single-cell
metabolite level.

Cancer has emerged as a global public health issue and is a leading
cause of death1. For most cancer patients, it is not the primary lesion
that causes death but metastasis2. Among various cancers, colorectal
cancer has a high incidence rate ofmetastasis. Nearly half of colorectal
cancer patients develop metastasis3, which accounts for as many as
90% of colorectal cancer-related deaths4.

To date, much evidence has shown that early and accurate
detection of cancer metastasis is critical for the prognosis and treat-
ment of colorectal cancer patients5. Conventional methods such as
magnetic resonance imaging (MRI) and computed tomography (CT)
have been widely used to detect the incidence ofmetastasis. However,
thesemethods typically can only identifymetastatic lesions larger than

75μm6, hence easily overlooking small lesions and playing only a small
role in early warning and predicting cancer metastasis the first time. In
fact, cancermetastasis is amultistep process that involves local cancer
cell acquisition of migratory potential, followed by cell expansive
growth and migration, and eventually cancer-derived material trans-
portation around the body and arrest at distant sites7.

Among the released cancer-derived materials, a proportion of
circulating tumor cells (CTCs) have the capability to metastasize8,9.
CTCs are a small group of malignant cells that are shed from primary
lesions and carried in the bloodstream7. To date, the number of CTCs
has been recommended as an indicator of metastasis in clinical
practice guidelines and recommendations for some cancers10,11. For
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example, the cutoff value of CTC count for unfavorable prognosis of
metastatic colorectal cancer is ≥3 CTCs/7.5ml. However, increasing
evidence has shown no significant difference inmetastasis status and
clinical outcomebetween patientswith higher and lower CTCcounts.
Thus, the number of CTCs may not be the “best” indicator of meta-
static risk12. Further studies revealed that cancer metastasis is actu-
ally initiated by a subpopulation of CTCs, but not bulk CTCs12,13.
Specifically, only certain CTCs in the population are capable of
metastasis10. Therefore, identification of a CTC subgroup with
metastatic potential may bemore effective than superficial CTC bulk
counting in metastasis prediction and prognosis evaluation of col-
orectal cancer.

The metastatic potential of CTCs is closely related to a variety of
factors, among which their capability to overcome extraneous vari-
ables in the bloodstream is an important one14. This factor is largely
supported by metabolic reprogramming, a hallmark of metastatic
cancer cells15. During metastasis, CTCs could reprogram their meta-
bolism and have an altered metabolic phenotype16. The difference in
CTC metastatic potential may result from the heterogeneity in their
metabolic phenotype13,17. Thus, metabolic profiling of individual CTCs
and characterization of the metabolic fingerprint relative to cancer
metastasis may help distinguish CTCs with metastatic potential and
build a molecular typing system of colorectal cancer at the single-CTC
metabolite level.

Currently, mass spectrometry-based metabolomic analysis has
been broadly applied to identify metabolomic abnormalities. With the
goal of studying the heterogeneity within cells, single-cell mass spec-
trometry has emerged to profile metabolites at single-cell
resolution18,19. However, quantitative information on target metabo-
lites at the single-cell level is usually missing in current studies,
whereas quantification is necessary for monitoring the role of specific
CTCs metabolic phenotype with respect to cell heterogeneity and is
normally performed for marker development and therapeutic target
validation in clinical practice20. Several commonly acknowledged
challenges exist in single-cell quantitative mass spectrometry21,
including (1) controlled extraction of subpicoliter material from the
cell, (2) adjustment of nonbiological variations associated with the
experimental process, and (3) enhancement of repeatability and
sensitivity.

In this study, a molecular typing system of colorectal cancer was
built to predict the incidence of cancer metastasis based on the
metabolic fingerprint of CTCs using a home-built single-cell quantita-
tive mass spectrometry platform (Fig. 1 and Supplementary Fig. 1).
First, a panel of metabolites with differential abundance was identified
by metabolic screening of two pairs of human colorectal cancer cell
lines with different metastatic abilities. Afterward, a single-cell quan-
titative mass spectrometric analysis was developed to measure target
metabolites in individual CTCs from enrolled colorectal cancer
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Fig. 1 | Schematic workflow of circulating tumor cell (CTC) subgrouping and
colorectal cancer metastasis prediction using home-built single-cell quanti-
tative mass spectrometry platform. First, two pairs of colorectal cell lines with
differential metastatic potential were screened using mass spectrometry-based
untargeted metabolomics, and metabolites with differential abundance correlat-
ing with cancer metastatic risk were identified. Then, CTCs were isolated from
colorectal cancer patients. Cellular content was extracted from single CTCs, and

targetmetaboliteswere analyzed using single-cell quantitativemass spectrometry.
A molecular typing system of colorectal cancer was developed to identify meta-
bolic fingerprint correlated with metastasis and to construct a CTC subgrouping
approach to predict the incidenceofmetastasis in colorectal cancer patients at the
single-cell metabolite level. Some graphical elements were created with BioR-
ender.com (accessed on 24 March 2023). UPLC-HRMS ultra-performance liquid
chromatography-tandem high-resolution mass spectrometry.
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patients with no metastasis. Then, the CTCs were classified based on
the proposedmetabolic fingerprint, and the CTC subgroup associated
with cancer metastatic potential was discerned using both in vitro and
in vivo functional assays. This developedmolecular typing systemwas
further tested in a test cohort and an independent prospective cohort.

Results
Metabolic profiling of low- and high-metastatic human
colorectal cancer cell lines
Mass spectrometry-based untargeted metabolomic analysis was per-
formed in two pairs of colorectal cancer cell lines with different
metastatic abilities (Fig. 2a). Each pair of cell lines was comprised of
primary andmetastatic colorectal cancer cell lines (SW480 vs. SW620;
HT-29 vs. COLO 205)22. After quality control, data filtering, and
removal of missing values, a total of 12,350 metabolic features,
including 8721 in positive ion mode and 3629 in negative ion mode,
were detected and used for the subsequent principal component
analysis (PCA). The PCA plots in Supplementary Fig. 3a show a clear
clustering of cell lines, confirming the suitability of using metabolic
features to distinguish phenotypically different cells. Orthogonal par-
tial least-squares discriminant analysis (OPLS-DA) analysis was further
conducted in the two pairs of cell lines, and the cross-validated Q2
(cum) values were 0.725 (negative ion mode), 0.785 (positive ion
mode) for SW480 and SW620 cells and 0.987 (negative ion mode),
0.961 (positive ion mode) for HT-29 and COLO 205 cells, respectively
(Fig. 2b), indicating the good predictive ability of metabolic features.
Significant changes in the level of 2547 (SW480 vs. SW620) and 3606
(HT-29 vs. COLO 205)metabolic features (|Log2FC|> 1, p <0.05, VIP > 1)
were observed, and these features were used for subsequent analy-
sis (Fig. 2c).

Identification of metabolites indicative of metastasis potential
Based on the metabolic features found in the cell dataset, the corre-
sponding metabolites were identified based on their retention time,
accurate mass and MS/MS spectra information. As a result, we anno-
tated these metabolic features to 42 and 41 metabolite molecules
(SW480 vs. SW620 and HT-29 vs. COLO 205), respectively (Supple-
mentary Table 1 and Source Data). The metabolites with differential
abundance are shown in Supplementary Fig. 3b. Among these meta-
bolites, 19 metabolites were shared by the two pairs of cell lines
(Fig. 2d). Interestingly, these metabolites exhibited increased levels in
themetastatic cell lines (i.e., SW620 and COLO 205 cells) compared to
their counterparts (Fig. 2e).

Subsequently, we conducted Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis to identify the most strongly
influenced metabolic pathways using the identified metabolites. The
results indicated that these metabolites were significantly enriched in
six metabolic pathways, centering on amino acid metabolism and
glutathione metabolism (Supplementary Fig. 3c). To further explore
the functional differences of these metabolites, we also performed
metabolite set enrichment analysis (MSEA). As shown in Supplemen-
tary Fig. 3d, the categories with significant enrichment were related to
metabolic pathways involving glutathione metabolism, amino acid
metabolism and the Warburg effect. As tools of knowledge-based
dimensionality reduction, these pathway analyses are often beneficial
to exclude numerous small pathways that are redundant with larger
pathways and complicate interpretation23. Our results also provided
some evidence that dimensionality reduction did not oversimplify the
dataset here (Supplementary Fig. 4). Altogether, a total of 14 meta-
bolites in these pathways were screened out. Their relative abundance
(z-score) in SW480/SW620 and HT-29/COLO 205 cell lines and repre-
sentative metabolic networks are shown in Fig. 2f, g. Correlation ana-
lysis between these metabolites is also shown in Supplementary
Fig. 3e. Owing to the better coverage of these selected metabolites in
negative ion mode, negative ion mode was preferable for cancer

molecular typing in this study, and 14 metabolites were subjected to
single CTC analysis.

Development of a home-built single-cell quantitative mass
spectrometry platform
In this work, a home-built single-cell quantitative mass spectrometric
platform was developed to monitor the 14 identified metabolites in
individual CTCs from enrolled colorectal cancer patients. During
methoddevelopment, three pivotal challenges in single-cell analysis as
described earlier should be carefully addressed.

Referring to the electro-osmotic extraction method reported by
Mirkin’s group, we successfully filled subpicoliter volumes of cellular
contents into nanocapillaries based on electro-osmotic flow24. The
scanning electron microscopy (SEM) images of nanocapillary tips are
shown in Fig. 3a and indicate a ∼100 nm opening. The filled volume V
was estimated from the angleα between the cone element and its axis,
the observed diameter a, and the height of the meniscus h formed
between thehydrophobic electrolyte and the extracted aqueous phase
using the formula V = πa3

3tanα ð 1 + Ltanαð Þ3 � 1Þ, L=h=a. Theoretically, the
value of volume V is mainly dependent on the voltage and the time
applied to the electrodes. In agreement with this speculation, our
results demonstrated a linear relationship of the extracted volume
with the applied voltage and time. Specifically, the volume increases
linearlywith the applied voltage between0V and −4 V at afixed timeof
40 s (Fig. 3b) and increases in proportion to the time in the range of
5–60 s at a fixed voltage of −2 V (Fig. 3b). Correspondingly, the images
of nanocapillary tip after extraction are shown inSupplementary Fig. 5.
Ultimately, an extraction condition of −2 V for 40 s was chosen. The
estimated volume extracted from the cell was ~120 fL.

To efficiently reduce nonbiological variations during single-cell
analysis, we corrected technical variability using spike-in approach by
normalizing the analyte signal to the signal of stable isotope-labeled
internal standard25, and removedbatcheffects usingCombat function26.
A pre-experiment was performed by sequential extraction of glucose
solution with a concentration of 0.5–10mMand 1mMglucose-d2 as the
internal standard using the extraction conditions optimized above. As
shown in Fig. 3c, the mass response of glucose did not increase pro-
portionally to its concentration; glucose-d2 at the same concentration
had an inconsistent response, confirming the presence of nonbiological
variations. The corresponding MRM chromatograms are shown in
Supplementary Fig. 6. After correction of the variations, a linear
dependence of the glucose/glucose-d2 ratio y on the concentration of
glucose x was observed (y =0.9414x+0.2833, R2 = 0.9718, Fig. 3c).

To improve the sensitivity and repeatability of the mass spectro-
metry platform, MRM transitions of 14 target metabolites were all
optimized. Among these metabolites, alanine has only one reliable
MRMtransition in negative ionmode. Ultimately, 13 targetmetabolites
were selected, and two MRM transitions with the best signal-to-noise
(S/N) ratioweremonitored for eachmetabolite. TheirMRM transitions
are summarized inSupplementary Table 2. Quantitative informationof
the target metabolites was obtained by integrating the areas in the
MRM transitions of target metabolites and internal standard. Using 5%
bovine serum albumin (BSA) as surrogate matrix, LOD (the limit of
detection), LLOQ (the lower limit of quantification) and linear range of
each metabolite were determined (Supplementary Table 3). Calibra-
tion curves of the target metabolites were obtained (Fig. 3d). We also
evaluated accuracy and precision of the method by measuring the
response of the target metabolites at LLOQ as quality control (Sup-
plementary Table 3). Notably, the intraday variations ranged from 8.2
to 18.1% and the interday variations ranged from 8.2 to 17.5%, meeting
the general validation criteria27. This result also confirmed that the
nonbiological variations were well reduced and good reproducibility
was achieved.

The optimized single-cell quantitative mass spectrometry
method was then applied for cell analysis. Images of capillary
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insertion and cellular extraction are shown in Fig. 3e. The collected
MRM chromatogram from a single cell is also indicated (Fig. 3f). We
further determined the levels of 13 target metabolites in cultured
cells. Among these metabolites, eleven of them had apparent MS
signal. After sample size estimation, 50 cells were analyzed for each
cell line (Fig. 3g). Large variations with relative standard deviation

(RSD) of ~60.0% in the same type of cells were observed. These
variations were much larger than the nonbiological variations,
reflecting cell heterogeneity even in genetically identical cells,
which may be caused by differences in the stage of cell cycle at
which a cell was captured28. Moreover, the nonbiological variations
were significantly lower than the variations in the two pairs of cells
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altogether (85.6% for SW480 and SW620 cells, 90.9% for HT-29 and
COLO 205 cells), which were more representative of the cells in real
samples. Therefore, it is reasonable to expect a larger variation in
individual CTCs.

Discovery of CTC metabolic subgroups
In our study, 208 colorectal cancer patients are enrolled. After CTC
enrichment and identification (Supplementary Figs. 7 and 8), 83
patients were CTC-positive and 125 patients were CTC-negative,
among which 75 CTC-positive patients and 115 CTC-negative
patients were followed up for 2 years. In these 75 patients, we ran-
domly selected 80% of patients (60) as the training cohort and the
remaining 20% of patients (15) as the test cohort (Fig. 4a). The pri-
mary clinical characteristics and biomarker levels of the patients are
shown in Supplementary Table 4. In the training cohort, the
detected number of CTCs ranged from one to six per 15ml of blood,
distributed as 1 (3.3%), 2 (6.7%), 3 (30.0%), and ≥4 (60.0%). There
was a significant difference in the total CTC count between the non-
metastasis group (3 (3–4)) and metastasis group (4 (4–5)), repre-
sented by the median value (the first quartile IQ1- the third quartile
IQ3) (p = 0.0207). In the test cohort, 1 (0.0%), 2 (20.0%), 3 (46.7%)
and ≥4 (33.3%) were detected. A significant difference between the
non-metastasis group andmetastasis group was also observed, with
a p of 0.0473.

The levels of 11 target metabolites were determined in each
CTC using single-cell quantitative mass spectrometry developed
above. The abundance of 11 metabolites in single CTCs was
observed and is presented in Fig. 4b. In Supplementary Fig. 9, we
also depicted the concentration distribution of each metabolite.
Taking glutathione as an example, its concentration in individual
CTCs ranged from 0.22 to 4.33mM, with intrapatient RSD up to
124.3%, again confirming a more significant heterogeneity within
CTCs from the same patient. Notably, the time from blood collec-
tion to picking and analysis of cells (~2 h) did not affect the stability
of the target metabolites significantly in this study (Supplemen-
tary Fig. 10).

To preserve the heterogeneous characteristics of CTCs during
modeling, we applied an unsupervised learning algorithm—non-
negativematrix factorization (NMF) coupledwith logistic regression to
divide total CTCs into groups based on the quantitative level of target
metabolites in the training cohort. After calculating cophenetic cor-
relation coefficients (Supplementary Fig. 11), the optimal number of
cell subgroups was 2 (Fig. 4c). Four metabolites (glutamic acid, lactic
acid, aspartic acid andmalic acid) were identified as important factors,
and the risk score of each CTC was calculated. An optimal cutoff value
of 0.420 was selected using the Youden index (Fig. 4d). Using the
4-metabolite fingerprint classifier, the CTCs were divided into two
subgroups, C1 (<cutoff) and C2 (≥cutoff). The abundance of 4 meta-
bolites inC1 andC2 subgroups is shown in Supplementary Fig. 12. Total
CTC count and C1 CTC count, C2 CTC count of each patient in the
training cohort are summarized in Supplementary Table 5.Meanwhile,

an support vector machine (SVM)-based machine learning method29

was tested, and the detailed information is shown in Supplementary
Tables 6 and 7. The unsatisfactory performance of this method may
result from its hypothesis assuming the homogeneity of CTCs in each
patient.

Correlation of CTC subgroups with colorectal cancer
metastatic risk
Taking the incidence of metastasis during the follow-up into account,
no significant association was observed between colorectal cancer
metastatic risk and the clinical characteristics and common cancer
biomarker levels of the patients, such as age, sex, Duke, grade of dif-
ferentiation, carcinoembryonic antigen (CEA), carbohydrate antigen
19-9 (CA 19-9) in the training cohort (Fig. 4e). However, higher total
CTC count (p =0.0207), lower C1 CTC count (p <0.0001), and higher
C2 CTC count (p <0.0001) were associated with metastatic risk
(Fig. 4f). According to theYouden indexusingROCcurves (Fig. 4g), the
optimal cutoff values were 3 for total CTC count, 1 for C1 CTC count
and 1 for C2 CTC count. The patients with a total CTC count/C2 CTC
count higher than the cutoff value and a C1 CTC count lower than the
cutoff value were considered unfavorable (i.e., had a greater tendency
to metastasize) (Fig. 4e). Among these three classifiers, a total CTC
count of 3 yielded a sensitivity, specificity and accuracy of 57.6%, 81.5%
and 68.3%, respectively. The area under the ROC curve (AUC) was only
0.681, clearly pointing out the presence of false-positives and false
negatives in predicting the incidence of metastasis with total CTC
count. Comparatively, a C2 CTC count of 1 yielded a sensitivity, spe-
cificity, accuracy and AUC with the highest quality of 78.8%, 96.3%,
86.7% and 0.927, respectively, suggesting its predictive ability. This
finding was also confirmed by univariate and multivariate logistic
regression analyses involving CTC counts, clinical characteristics and
biomarker levels (Supplementary Table 8).

To further validate the performance of the 4-metabolite finger-
print classifier, we applied it to the test cohort. The results indicated
that 53 CTCs could also be separated into two subgroups (Fig. 5a),
and the distributions of C1 CTC count and C2CTC count in individual
colorectal cancer patients are clearly shown in Fig. 5b. Consistent
with the training cohort, there was no significant association of
metastatic risk with the clinical characteristics and biomarker levels,
total CTC count and C1 CTC count of the patients. The C2 CTC count
played a significant role (Fig. 5c) and achieved good sensitivity,
specificity, accuracy and AUC (Fig. 5d). It is deserved tomention that
57.9% (33/57) of metastatic patients were accurately predicted in all
the enrolled patients using our molecular typing system. The false-
positive and false-negative rates of metastasis were 19.0 and 6.1% in
CTC-positive patients. Interestingly, 20.9% (24/115) patients in CTC-
negative group also developed metastasis. Because our molecular
typing system was not used for these patients, the inflated false-
negative rate was probably due to the limitation of the currently
available CTC enrichment method30,31 and thus the overcounting in
CTC-negative patients.

Fig. 2 | Metabolic profiling of colorectal cell lines with differential metastatic
potential by mass spectrometry-based untargeted metabolomic analysis.
a Schematic pipeline of metabolic screening (upper) and steps for refining the
potentialmetabolites (lower).bOPLS-DAplots of individual cells of SW480/SW620
and HT-29/COLO 205 in negative and positive ion modes (R2X(cum) = 0.705,
R2Y(cum) = 0.952, Q2(cum) = 0.725 and R2X(cum) = 0.679, R2Y(cum) = 0.994,
Q2(cum) = 0.987 in negative ion mode for SW480/SW620 and HT-29/COLO 205;
R2X(cum) = 0.426, R2Y(cum) = 0.869, Q2(cum) = 0.785 and R2X(cum) = 0.632,
R2Y(cum) = 0.996, Q2(cum) = 0.961 in positive ion mode for SW480/SW620 and
HT-29/COLO205). cVolcanoplots ofmetabolite abundance in SW480/SW620cells
andHT-29/COLO205cells. The red and cyandots represent significantly increased/
decreased metabolic features (|Log2FC | >1, p <0.05, VIP > 1). d The intersection of
the metabolites with significantly differential abundance obtained from the two

pairs of cell lines (SW480 vs. SW620, HT-29 vs. COLO 205). e Heatmap of the
relative abundance (Log10 transformation) of the shared metabolites with differ-
ential abundance in the two pairs of cells (n = 9). f Z-score plot of 14 representative
metabolites with differential abundance in SW480/SW620 cells and HT-29/COLO
205 cells (n = 9 independent experiments). Data are presented as median with
interquartile range and points are colored by assigned cell type. g Metabolic net-
work of representative altered metabolites. Some graphical elements in (a) and
(g) were created with BioRender.com (accessed on 24 March 2023). UPLC-HRMS
ultra-performance liquid chromatography-tandem high-resolution mass spectro-
metry, FC fold change, VIP variable important in projection, KEGG Kyoto Ency-
clopedia of Genes and Genomes, MSEA metabolite set enrichment analysis, MRM
multiple reaction monitoring.
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Finally, the association of the discovered metabolic phenotype
with the metastatic potential of cells was validated from a functional
aspect. Treatment of cells with four metabolites significantly pro-
moted cell metastasis, as shown by transwell assay32 (Supplementary
Fig. 13). Moreover, we established two cell lines from CTCs in C1
and C2 subgroups individually. In agreement with previous reports33,

long term CTC culture (i.e., >6 months) could be established (Sup-
plementary Fig. 14a). Using these derived cells, we further confirmed
that C2 subgroup had a greater proliferative capacity using CCK-8
assay (Supplementary Fig. 14b) and a higher migratory capacity using
transwell assay (Supplementary Fig. 14c). Finally, we constructed a
CTC-derived explant (CDX)33,34. As a result, the mice in C2 subgroup
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showed a more aggressive tumor phenotype as compared to those
in C1 subgroup, with more metastatic foci in lung and liver (Supple-
mentary Fig. 14d, e). In addition, histological dissectionwas carried out
and the result showed the incidence of metastatic tumors (Supple-
mentary Fig. 14f). These in vivo findings provided further evidence for
the association of the metabolic phenotype with the metastatic
potential of CTC subgroups. Therefore, the C2 CTC count classified by
the 4-metabolite fingerprint may be a potential tool for predicting the
incidence of colorectal cancer metastasis.

Prospective clinical study using CTC subgroups classified by
metabolic fingerprinting
In this study, we finally performed a prospective study of 15 color-
ectal cancer patients with no metastasis. Among these patients, five
patients (33.3%) were CTC-positive before the operation, with a
median CTC count of 4/15ml of blood (range 3–5). The basic clinical
information of these five patients is summarized in Supplementary
Table 9.

After target metabolite quantification at the single-CTC level and
extraction of C2 subgroup in each patient, we found that patients 1–3
had a C2 CTC count of 1, while patients 4–5 had a C2 CTC count higher
than the cutoff value and were considered to have the potential for
metastasis (Fig. 6a). During the 2-year follow-up period, patient 4
experienced liver and lung metastasis at month 15, and patient 5
developed lymph node metastasis at month 8, whereas the other 3
patients had no evidence of imaging characteristics of any metastasis.
In addition, no significant correlation was found between cancer bio-
markers, including CEA and CA 19-9, and metastatic risk (Fig. 6b). This
result further validated the reliability of the C2 subgroup classified by
the 4-metabolite fingerprint to predict the incidence of metastasis,
rather than other currently available indices (Fig. 6c).

Discussion
In this study, we initially found 2547 and 3606 significant metabolic
features in the two pairs of cells associated with colorectal cancer
metastasis using mass spectrometry-based untargeted metabolomic
analysis, then identified 14 sharedmetabolites significantly enriched in
metabolic pathway enrichment analyses, further quantified 11 target
metabolites in single CTCs by setting up a home-built single-cell
quantitative mass spectrometry platform, and finally built a
4-metabolite fingerprint classifier of CTCs for predicting colorectal
cancer metastatic risk within 2 years. Using the 4-metabolite finger-
print classifier, CTCs can be divided into two subgroups, C1 and C2,
whichwere functionally evaluatedby several in vitro and in vivo assays.
Patients with more than 1 CTC in the C2 subgroup had a higher inci-
dence of metastasis. After development in the training cohort and
validation in the test cohort and the prospective cohort, the developed
molecular typing system showed a better predictive ability of meta-
static risk than other indices, including total CTC count. On the other
hand, cell grouping results evidently highlighted CTC heterogeneity
even within the same patient. This CTC heterogeneity can be well
discerned with our home-built single-cell quantitative mass spectro-
metry platform.

Todate, cultured cell lines are still goodmodels formetabolomics
studies, given the complexity of establishment, characterization and
culture of patient-derived CTCs35. In the untargeted metabolomic
profiling of colorectal cancer cell lines with differential metastatic
potential, the identified metabolites were concentrated in interactive
metabolic pathways, exhibiting statistically significant alterations that
correlated with the metastatic phenotype. Accordingly, we assembled
a metabolic map depicting these changes in three main pathways:
amino acid metabolism, glutathione metabolism, and the Warburg
effect. Based on this knowledge-based dimensionality reduction,
redundant data can be excluded and data interpretation can be sim-
plified in a biologically meaningful context36. Specifically, the enriched
pathways containing the selected metabolites are fit to some extent
what is known of key adaptive metastatic pathways in this way. As it is
well known, glutathione is composed of glutamic acid and the other
two amino acids by peptide bonds condensation. Glutathione meta-
bolism is closely related with cancer metastasis and metastatic cancer
treatment37. In addition, amino acidmetabolism involving aspartic acid
and glutamic acid can also promote cancermetastasis38. Moreover, the
Warburg effect contributing to enhanced malic acid and lactic acid,
fuels cancermetastasis and canmitigate oxidative stress tohelp cancer
cells to survive the stringent metastatic process39. To investigate the
selected metabolites in these pathways to predict the metastatic
potential of CTCs, they were then subjected to the home-built single-
cell quantitative mass spectrometry platform.

In general, in cell population analysis, single-cell information is
easily overwhelmed in pooled cells40. For CTCs, data from this study
and previous studies both suggested the presence of significant het-
erogeneity in the cell population. Thus, analysis of CTCs at the single-
cell level is more desired and attractive. However, translation from the
macroscopic level to the microscopic level remains a practical and
technical challenge as mentioned earlier. These challenges were well
addressed on our home-built single-cell quantitative mass spectro-
metry platform. First, a single cell is typicallymicrometer-sized and has
a volume in the picoliter range. It is normally difficult to extract cellular
contents from a single cell with minimal perturbation. To date, several
methods have been developed to collect single-cell material41,42, for
example, micro-sampling technique coupled with mass spectrometry
in single-cell metabolomic studies43–45, single-cell analysis of drug
distribution46–48, and etc. In this study, electro-osmotic extraction
using a finely pulled nanocapillary tip enabled the withdrawal of a
subpicoliter volume of cellular contents. The extracted volume can be
controlled by varying the applied voltage and time between the
working electrode and the reference electrode. Second, untargeted
metabolomic profiling at the single-cell level has been previously
reported49. However, these studies often focused on chemical char-
acterization, provided semiquantitative information, and suffered
from unsatisfying repeatability50. In comparison, mass spectrometry-
based targeted analysis could be a quantitative tool in single-cell
analysis because of its high sensitivity, good reproducibility and
remarkable quantification capability51, whichmay bemore compatible
with clinical practice for marker development and therapeutic target
validation20. Third, the only major concern of the single-cell

Fig. 3 | Development of a home-built single-cell quantitative mass spectro-
metry platform. a SEM image of the nanocapillary tip (left: front view,middle: side
view, right: model of the tip for volume estimation). The data are representative of
six independent experiments with similar results. b Dependence of the extracted
volume on extraction time at −2 V (left) and extraction voltage in 40 s (right). The
shaded error bands indicate 95% confidence intervals. c Mass response of target
metabolite in single-cell quantitative mass spectrometry. After extracting 1mM
glucose-d2 as the internal standard and glucose at a concentration in the range of
0.5–10mM, the mass response of glucose did not increase proportionally in the
concentration, while a linear dependence of the intensity ratio of glucose and
glucose-d2 on glucose concentration was observed (n = 3 replicates at each

concentration). Data are plotted asmean ± SEM. The error bars of glucose intensity
are presented over the histogram for clarity. The shaded error bands indicate 95%
confidence intervals. d Calibration curves of 11 target metabolites. The curves were
constructed by plottingMS signal ratio ofmetabolite and internal standard against
concentration of calibration standards. The shaded error bands indicate 95% con-
fidence intervals. e Bright-field image of a nanocapillary tip inserted into the cell
and cellular extraction. Experiments were repeated six times with similar results.
f A typical MRM chromatogram of target metabolites at the single-cell level.
g Heatmaps of the relative abundance (Log10 transformation) of the target meta-
bolites in single SW480/SW620 cells and HT-29/COLO 205 cells (n = 50).
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quantitative mass spectrometry platform is that it can be sensitive to
nonbiological variations, including both technical variability arising
through technical effects and confounding factors amongwhich batch
effect experienced between biological replicates is perhaps the most
obvious one26. After careful optimization of the platform, non-
biological variations were well reduced and good repeatability and
sensitivity were achieved.

During the metabolic data analysis of single CTCs or even in the
whole work, inclusion of cell heterogeneity in data mining may be the
most challenging part. Theoretically, there are two aspects that should
be considered: (1) direct use of machine learning methods based on
cell homogeneity may be problematic; (2) an unsupervised CTC clus-
tering method may be needed to distinguish the contribution of spe-
cific CTC characteristics to metastatic potential. In this work, the
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methods using either total CTC count or metabolic profile showed
poor predictive performance, as long as cell homogeneity was
assumed. To incorporate cell heterogeneity into our data, we
employed an unsupervised clustering method, NMF, which is an effi-
cient machine learning approach for cell grouping52. Indeed, this
clustering method has been applied in previous studies using hetero-
geneous data53. Finally, two subgroups of CTCs were found by NMF,
primarily with four metabolites. Among these 4 metabolites, glutamic
acid is in glutathione metabolism pathway, glutamic acid and aspartic
acid are closely related to amino acid metabolism, and glutamic acid,
malic acid and lactic acid are in the Warburg effect54.

Using this 4-metabolite classifier, the number of CTCs in the
C2 subgroup was significantly associated with metastatic risk. Positive
results were also obtained in the test and prospective cohorts. The

prediction performance of our molecular typing system was better
than that of total CTC count or metabolite profile only and better than
that of clinical indices. Indeed, the four metabolites have been pre-
viously reported to participate in cancer metastasis. For example,
glutamic acid is amajor bioenergetic substrate for proliferating cancer
cells and actively modulates cancer cell metastasis through regulating
metabolic pathways55. Previous reports have also shown that glutamic
acid level was markedly elevated in metastatic cancer patients56.
Aspartic acid is also closely relevant to metastatic events occurring
in vivo57 and intracellular synthesis of aspartic acid played a large role
in metastasis of colorectal cancer cells58. Lactic acid is a product of
glycolysis (also known as the Warburg effect under aerobic condition)
capable of promoting oncogenic progression and cancer metastasis59.
Furthermore, malic acid can contribute to the Warburg effect and was

Fig. 4 | Discovery of CTCmetabolic fingerprints based on abundance of target
metabolites in single CTCs to predict colorectal cancer metastasis potential.
a Clinical characteristics and biomarker levels of enrolled CTC-positive colorectal
cancer patients. b Representative abundance of 11 target metabolites in single
CTCs. c NMF clustering of single CTCs. Based on the obtained cophenetic corre-
lation coefficients shown in Supplementary Fig. 11, K = 2 was considered as the
preferred cluster and d risk score plot of single CTCs. The risk score was con-
structed as follows: Log10(risk score/(1-risk score)) = −(0.932 × abundance of glu-
tamic acid) + (3.967 × abundance of malic acid)− (0.166 × abundance of aspartic
acid)− (1.822 × abundance of lactic acid)− 3.694. Obviously, all CTCs could be split
into two groups: low risk (risk score <0.420) andhigh risk (risk score≥0.420) based
on the cutoff value using the Youden index. e Correlation of patient metastasis
status (metastasis vs. non-metastasis) with clinical characteristics and biomarker
levels, and the number ofCTCs in cell subgroups (C1 CTCcount, C2CTC count, and

total CTC count) in the training cohort. f Comparison of C1 CTC count, C2 CTC
count and total CTC count between non-metastasis and metastasis groups in the
training cohort. The black line represents the median. The top and bottom of the
box represent the 75th and 25th quartiles while the whiskers represent 1.5× inter-
quartile range. Patientswith non-metastasis,n = 33; patientswithmetastasis, n = 27.
The two-tailed Student’s t test was used to determine statistical significance. Total
CTC count, metastasis group vs. non-metastasis group, p =0.0207; C1 CTC count,
metastasis group vs. non-metastasis group, p <0.0001; C2 CTC count, metastasis
group vs. non-metastasis group, p <0.0001. g ROC analysis of C1 CTC count, C2
CTC count and total CTC count in predicting metastasis in the training cohort.
Some graphical elements in (a) were created with BioRender.com (accessed on 24
March 2023). NMF non-negative matrix factorization, AUC area under curve, CEA
carcinoembryonic antigen, CA 19-9 carbohydrate antigen 19-9.
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found to be significantly enhanced in cancer metastasis60. More
importantly, increasing evidence has revealed an activation of the
Warburg effect16,17 and glutathione metabolism in CTCs17,61. Consistent
with previous observations, the findings of in vitro and in vivo
experiments on cultured cells, CTC-derived cells and CDX model in
this study provided evidence that metabolic phenotype had an influ-
ence on the metastatic potential of cells and also supported the bio-
logical function of four metabolites in cell metastasis to some extent.

However, the underlying metabolic mechanism is still far-
reaching. Follow-up experiments are needed to assign more biologi-
cal meaning to the metabolites and to move toward finding mechan-
isms of colorectal cancer metastasis before clinical translation and
utility, which could include using pathway metabolites, pathway inhi-
bitors and stable isotope labeling as well as flux analysis to reveal
biological function of specificmetabolites62, and performing biopsy of
metastatic lesions in the context of clinical trials to reveal the asso-
ciation ofmetabolic profiles between the tumor at secondary sites and
CTCs in CTC-positive patients, and the tumors at secondary sites
between CTC-positive and CTC-negative patients.

In conclusion,molecular typing at the single-CTCmetabolite level
is a creative step toward a more precise prediction of metastasis
potential in colorectal cancer patients. The realization of this step was
enabled by the successful setup of the home-built single-cell quanti-
tative mass spectrometry platform and the inclusion of cell hetero-
geneity in the prediction model. Although full validation of this CTC
metabolic fingerprint classifier and subsequent CTC subgrouping is
required to elucidate the clinical utility of this molecular typing sys-
tem, and the studies with a higher statistical power such as randomi-
zation studies are required to evaluate this causal relationship, this is
an interesting report that single CTC heterogeneity at the metabolite
level was involved in clinical management. With the maturation of this
approach, molecular typing at the single-cell level may become more
competitive in specific clinical situations and we believe that the clin-
ical relevance of any molecular-typed CTC subgroup with disease
progression and patient outcome will ultimately benefit the real-life
clinical practice. Furthermore, metabolic grouping approach based on
single-cell information may help provide more insight into cancer
research and offer more potential clinical markers and therapeutic
targets. It may also broaden the window of opportunity for modifying
clinical intervention to slow or prevent cancer progression.

Methods
Ethical statement
This study was approved by the Institutional Review Board of Jiangsu
Cancer Hospital and Sir Run RunHospital Affiliated to NanjingMedical
University, Nanjing, China. All the animal experiments were approved
by Institutional Animal Care and Use Committee of NMU and per-
formed according to the ARRIVE guidelines.

Cell sample preparation and mass spectrometry-based
untargeted metabolomic analysis
Two hours before metabolite extraction, the cell culture medium was
replaced with fresh medium. After discarding the medium in each
culture dish, the cells were quickly rinsed twice with cold isotonic
saline (0.9% NaCl (w/v), 4 °C). Water (1.5ml) was added to each dish,
and then the dishes were stored in a freezer (−80 °C) for 20min before
extraction. The cells were completely collected with a cell scraper. A
fraction of the cell lysate (20μl) was subjected to bicinchoninic acid
(BCA) protein assay, and the remaining cell lysate was extracted by the
addition of 4.5ml of methanol containing 3μg of internal standard
(acetaminophen). Finally, the cell lysate in each dishwas transferred to
an Eppendorf tube, vigorously vortexed for 5min, and then cen-
trifuged at 10,000× g for 10min at 4 °C. The supernatant was trans-
ferred to another tube and evaporated to dryness in a refrigerated
CentriVap benchtop vacuum concentrator (Labconco Corporation,

Kansas, USA). The residue was reconstituted with methanol-water
(75:25) and centrifuged twice at 12,000 × g for 15min at 4 °C.

The metabolomic analysis was performed by ultra-performance
liquid chromatography-tandem high-resolution mass spectrometry
(UPLC-HRMS). Chromatographic separation of the metabolites was
carried out on a UPLC Ultimate 3000 system (Dionex, Germering,
Germany) equipped with a Phenomenex Kinetex C18 column
(2.1mm× 100mm, 2.6μm, 100Å). Water (A) and acetonitrile (B), both
containing 0.1% formic acid (v/v), were used as the mobile phases.
Under a flow rate of 0.4ml/min, the cellular metabolites were eluted
with a gradient program as follows: 10% B (0min)→ 30% B (1min)→
95% B (19min)→ 95% B (20min). The column oven temperature was
maintained at 40 °C, and all samples were maintained at 4 °C during
the whole analysis. All samples were analyzed in a randomized fashion
to avoid complications of the injection order. Pooled samples were
used as quality control sample (QC) covering the whole analytical
process. QC sample was injected every 5th cellular sample followed by
a blank (i.e., sample preparation protocol applied to a water sample).

A Q-Exactive mass spectrometer (Thermo Fisher Scientific, Bre-
men, Germany) equipped with an electron spray ionization (ESI)
source was used for MS detection, and both positive and negative ion
modes were employed. MS parameters were set as follows: spray vol-
tage, +3.5 kV for positive and −2.5 kV for negative; capillary tempera-
ture, 300 °C; aux gas flow rate (arb), 13. Vacuum was typically below
5 × 10−10 mbar. A full mass scan (m/z 67–1000) used a resolution of
70,000 with an automatic gain control (AGC) target of 1 × 106 ions and
a maximum ion injection time of 100ms. Data-dependent MS/MS was
acquired in the “Top10” data-dependent mode. For the product ion
scan type, the resolution was set at 17,500, the automatic gain control
target was 1 × 105 ions, and themaximum ion injection time was 50ms.
The eligible precursor ions were fragmented between 15 and 45 nor-
malized collision energies (NCEs) in increments of 15. All operations
and acquisitions were controlled by Xcalibur 2.0.7 (Thermo Fisher
Scientific, Bremen, Germany).

Metabolomic data processing
The raw data obtained from UPLC-HRMS were processed using MS-
DIAL v4.80 software63. Pretreatment procedures were performed,
including peak finding, alignment, filtering and normalization. More
specifically, the peaks that exceeded 10,000 in height were auto-
matically extracted and aligned across the samples. The peaks detec-
ted in less than 80% of samples in all groups64 or that had a maximum
intensity of less than 3-fold S/Nwere removed. Thenoise thresholdwas
estimated by using the average signal across all blank runs. The ion
intensities were normalized by protein amount, internal standard
acetaminophen (m/z 150.0548 for negative ionmode,m/z 152.0701 for
positive ion mode) and pooled sample as quality control65. The
resulting data could be converted to a matrix, which mainly included
the sample name, m/z and adduct type, and normalized ion intensity.
We also imputed the missing values with the 1/10 minimum area value
of peaks.

We applied PCA with SIMCA 14.1 software (Umetrics, Umea,
Sweden) to evaluate the overall distribution of data and check the run
quality. Further OPLS-DA with SIMCA 14.1 software was utilized to
identify themetabolites thatwere significantly different in twopairs of
colorectal cancer cell lines (SW480 vs. SW620 and HT-29 vs. COLO
205). The Log2 fold change (Log2FC) and p were subsequently deter-
mined on the acquired metabolomic data, and the metabolic features
with |Log2FC|> 1.0, p < 0.05, and variable importance in projection
(VIP) value >1 were considered significant. Molecular identification of
the significantly changed metabolites was achieved by comparing the
MS/MS fragmentation spectra of metabolic features against MS-DIAL
internal database or matching the retention time and MS accurate
mass of features to metabolite standards. The intersection of the
identified metabolites with significantly differential abundance
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obtained from the two pairs of cell lines was selected. We then utilized
MetaboAnalyst (http://www.metaboanalyst.ca/) to perform KEGG
pathway analysis and MSEA on the selected metabolites66. The corre-
sponding figures were visualized by the R programming language (R
version 4.0.3).

Capillary preparation for single-cell manipulation
Single-cell manipulation was performed using a pair of nanocapillary
tips and microcapillary holders. The nanocapillaries were pulled from
borosilicate glass capillaries (i.d. = 0.58mm,o.d. = 1mm,withfilament)
with a Sutter P-2000 puller (Sutter Instrument, Novato, USA) to make
the nanospray tips suitable for MS ionization. A two-step pulling pro-
gram was set as follows: HEAT = 350, FIL = 3, VEL = 30, DEL= 220,
PULL =NA; HEAT = 350, FIL = 3, VEL = 40, DEL = 180, PULL= 120. The
prepared nanocapillaries were characterized by SEM (JSM 7800F, JEOL
Ltd., Tokyo, Japan). Themicrocapillaries were pulled from borosilicate
glass capillaries (i.d. = 0.58mm, o.d. = 1mm, with filament) with a
Sutter P-1000 puller (Sutter Instrument, Novato, USA) to make the
microcapillaryholders. The single-steppulling programwas as follows:
HEAT= 520, PUL = 100, VEL = 30, TIME = 250, PRESSURE = 500. The
pulled capillaries were further processed with a Microforge (MF2,
Narishige, Tokyo, Japan) to make the holders ∼1μm open.

Single-cell micro-sampling and single-cell quantitative mass
spectrometry
The microcapillary holder was connected to a microinjector (IM-12,
Narishige, Tokyo, Japan) to fix the suspended CTCs, and the nanoca-
pillary tip was combined with an insulated fixator for cellular extrac-
tion. Both the nanocapillary tip and microcapillary holder were
operated with a motorized micromanipulator system (NTX-N4, Nikon,
Tokyo, Japan) mounted on an inverted microscope (Ti2-U, Nikon,
Tokyo, Japan). An Ag/AgCl wire as the working electrode was inserted
in the nanocapillary tip and connected to an electrochemical station
(CHI 660, CH Instruments, Austin, USA). Another Ag/AgCl wire as the
reference electrode was used to form an electrical loop to introduce
electro-osmosis assisted cellular extraction (Supplementary Fig. 2).
Cellular extractionwas performed followedby sequential extraction of
~120 fL of 1mM isotope-labeled internal standard solution. After sam-
pling, the nanocapillary tip was relocated in front of the mass spec-
trometer inlet with a distance of ~5mm. An AB SCIEXQTRAP 5500MS/
MS system was used in this study for target molecule quantification.
Multiple reaction monitoring (MRM) transitions were optimized for
each analyte. The instrument parameters of mass spectrometry were
as follows: curtain gas (CUR) = 10, ion spray voltage (IS) = −2250,
TEM=0, ion source gas 1 (GS1) = 0 and ion source gas 2 (GS2) = 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics for the metabolites that displayed significant
differences in cells are shown in Supplementary Table 1 and Source
Data. The datasets are available in the Metabolomics Workbench
database under the accession number ST002341. Source data are
provided with this paper.
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