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Amachine learningmodel identifies patients
in need of autoimmune disease testing using
electronic health records
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Anya J. O’Neal 5, Daniel M. Jordan 1,4, Ghislain Rocheleau 1,4,
Girish N. Nadkarni 1,3,4,6, JudyH. Cho 1,3,4,6, Ashira D. Blazer7 &RonDo 1,3,4

Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible
damage if left untreated, yet these patients often endure long diagnostic
journeys before being diagnosed and treated. Machine learning may help
overcome the challenges of diagnosing SARDs and inform clinical decision-
making. Here, we developed and tested a machine learning model to identify
patients who should receive rheumatological evaluation for SARDs using
longitudinal electronic health records of 161,584 individuals from two insti-
tutions. The model demonstrated high performance for predicting cases of
autoantibody-tested individuals in a validation set, an external test set, and an
independent cohort with a broader case definition. This approach identified
more individuals for autoantibody testing compared with current clinical
standards and a greater proportion of autoantibody carriers among those
tested. Diagnoses of SARDs and other autoimmune conditions increased with
higher model probabilities. The model detected a need for autoantibody
testing and rheumatology encounters up to five years before the test date and
assessment date, respectively. Altogether, these findings illustrate that the
clinical manifestations of a diverse array of autoimmune conditions are
detectable in electronic health records using machine learning, which may
help systematize and accelerate autoimmune testing.

SARDs are a heterogeneous group of conditions with autoimmune
dysregulation, such as systemic lupus erythematosus, rheumatoid
arthritis, and inflammatorymyositis, that cause characteristic systemic
and musculoskeletal manifestations1,2. The prevalence of SARDs has
been growing over the last several decades and is a significant burden
on patients, their families, and healthcare systems3–7. Pathogenesis of
SARDs is driven by a complex combination of environmental factors
and genetic predisposition, resulting in heterogeneous clinical

presentations and overlapping syndromes8–10. A lack of healthcare
providers specializing in SARDs contributes to missed or delayed
diagnoses in patients11,12. Consequently, undiagnosed patients endure
long and difficult diagnostic journeys, sometimes taking years if not
decades to receive a diagnosis12–14. During this time, many are mis-
diagnosed with symptoms commonly attributed to anxiety, mental
illness, stress, or lifestyle factors12. Misdiagnosis and delayed diagnosis
of SARDs lead to poorer clinical outcomes and greater mortality14,15.
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In some individuals with SARDs, autoantibodies generated by
plasma cells are key to pathogenesis and detectable for diagnostic
purposes. These autoantibodies can target self-antigens, mark cells for
immune-mediated destruction, impede cellular function, and incite
inflammatory responses that cause tissue injury16. In individuals with
suspected SARDs, serum autoantibody testing can help support a
diagnosis17. For example, anti-citrullinated peptides (anti-CCP) and
rheumatoid factor (RF) antibodies are useful in predicting and diag-
nosing rheumatoid arthritis18,19. When performed by primary care
providers, autoantibody testing can serve as an important first step in
the diagnostic workup that triggers a referral to rheumatology for a
thorough SARD evaluation20,21. These steps are critical for a timely
diagnosis of SARDs and to initiate morbidity- and mortality-reducing
treatment; thus, support for timely diagnosis remains a major unmet
need22,23. A systematic data-driven approach24 to identify individuals
with high suspicion for SARDs who would benefit from autoantibody
testing and rheumatology consultation could improve the diagnosis
and care of patients.

Vital signs, laboratory test results, medications, symptoms, and
other clinical features in EHRs represent a patient’s health profile that
may reveal a need for diagnostic testing of SARDs. Health systems
accruemillions of these clinical data points in the EHR over time; data-
driven approaches with artificial intelligence enable the analysis and
interpretationof this vast dataset25–31.Machine learningmodels trained
on EHR data have recently been shown to accurately predict risk of
coronary artery disease32,33. A similar approach has been used to
prioritize patients for genetic testing26. Given that many SARDs phe-
notypes are expressed in amulti-systemicmanner with variability over
time, longitudinal EHR data could be invaluable for training amodel to
prioritize individuals for testing34. We reasoned that this distinct pat-
tern of immune-driven disease manifestations is indicative of SARDs
and can be detected by analyzing EHRs with machine learning.

Here, we asked whether a machine learning model using long-
itudinal and multimodal EHR data can identify patients with a clinical
profile characteristic of receiving rheumatological evaluation for sus-
pected SARDs. The output of existingmachine learningmodels typically
arrives at the endpoint of the diagnostic workflow (disease diagnosis)24,
predicting case-control labels with inherent biases and inaccuracies
while replacing human decision-making27,35–37. Instead, we applied a
model to decision-making points embedded in the workflow itself25,26,38

(autoantibody testing and rheumatologist involvement) that captures
clinical suspicion of SARDs.We trained and testedourmodel using EHRs
from 161,584 individuals across two institutions with autoantibody and
rheumatology data, and targeted a core group of SARDs comprising
ANCA-associated vasculitis, antiphospholipid syndrome, dermatomyo-
sitis, diffuse and limited cutaneous systemic sclerosis, drug-induced
lupus, mixed connective tissue disease, polymyositis, rheumatoid
arthritis, Sjogren syndrome, and systemic lupus erythematosus. The
model identifiedmore individuals with autoantibodies and autoimmune
disease diagnoses than current clinical standards, and accurately pre-
dicted the need for autoantibody and rheumatologist testing up to 5
years before the actual testing date. This proof-of-concept study and
these findings provide evidence that individuals in need of rheumatic
disease evaluation can be identified systematically by harnessing artifi-
cial intelligence trained on large-scale EHR data.

Results
Study population
After filtering and quality control (Methods), the study population
included 161,584 participants from three cohorts across two institu-
tions (Table 1). The model was trained and validated using EHR data
from 25,062 participants in the BioMe Biobank (BioMe) cohort 1
(median [IQR] age, 60 [24] years; 15,091 [60%] female; 17,958 [72%]
non-European ethnicity), comprising 6171 (25%) individuals who had
received autoantibody testing. An external dataset of 136,522 EHRs

from participants in All of Us (median [IQR] age, 61 [24] years; 85,196
[62%] female; 62,199 [46%] non-European ethnicity) was used for
external testing, including 19,264 (14%) individuals who had been
tested for autoantibodies. An independent dataset of 10,839 EHRs
from participants in BioMe cohort 2 (median [IQR] age, 56 [27] years;
6243 [58%] female; 7383 [68%] non-European ethnicity) was used for
clinical applications of the model. The study was conducted in two
phases: to first train and test themodel using 161,584 participants from
BioMe cohort 1 and All of Us, then secondly to apply the model using
35,901 participants from BioMe cohorts 1 and 2 (Fig. 1a). In all phases,
the model targeted autoantibody tests with high specificity for a par-
ticular SARD2,17–19,39 and not autoantibody tests with low specificity
such as anti-nuclear antibody40.

The presence of autoantibody testing in a patient’s medical his-
tory, regardless of it being positive or negative, indicates a strong
clinical suspicion for SARDs diagnosis16,17,21. We examined the pre-
valence of SARDs diagnoses in the autoantibody-tested group versus
the non-tested group as a validity check. In all three cohorts, the pre-
valence of SARDs diagnoses was greater in the tested group compared
to the non-tested group: 1360 out of 6171 (22%) versus 245 out of
18,891 (1.3%) in BioMe cohort 1 (P < 2.0 × 10−308), 3882 out of 19,264
(20%) versus 3402 out of 117,258 (2.9%) in All of Us (P < 2.0 × 10−308),
and 391 out of 1870 (21%) versus 517 out of 8969 (5.1%) in BioMe cohort
2 (P = 2.9 × 10−95), respectively.

Training and validation of a model to predict autoantibody
testing in BioMe cohort 1
We investigated whether a machine learning model could, in a
systematic and high-throughput manner, differentiate between
individuals who had received autoantibody testing and those who
had not in order to capture clinical suspicion of SARDs. Features
provided to the random forest-based model included the presence
or absence of diagnosis codes and medications (binary data), and
values of laboratory results and vitals (continuous data) (Methods).
Diagnosis codes for SARDs and antibody testing (Z01.84) were
removed to mitigate data leakage (Supplementary Table 1), as well
as methotrexate, hydroxychloroquine, and azathioprine. We used a
random sample of 90% of autoantibody-tested individuals and an
equal number of non-tested controls for training (5213 tested and
5213 non-tested), and the remaining 10% of autoantibody-tested
individuals and an equal number of non-tested individuals for vali-
dation (579 cases and 579 controls) iterated 100 times to reduce
sampling bias; performance metrics were reported as the mean and
95% CI across all 100 iterations (Methods). In the validation dataset,
the model predicted autoantibody testing with an area under the
receiver operating curve (AUROC) of 0.93 (95% CI, 0.93–0.93), the
accuracy of 0.89 (95% CI, 0.88–0.89), the sensitivity of 0.90 (95% CI,
0.90–0.90), and specificity of 0.87 (95% CI, 0.87–0.88) (Fig. 1b and
Table 1). The prevalence of autoantibody testing was 23% in the
validation dataset, with a negative predictive value (NPV) of 0.90
(95% CI, 0.89–0.90) and positive predictive value (PPV) of 0.88 (95%
CI, 0.87–0.88). The model was calibrated with a Brier score of 0.061
upon monotonic regression (Fig. 1c). The most important features
comprised symptoms, findings, and markers observed in the
inflammatory response of SARDs, such as temperature, erythrocyte
sedimentation rate, albumin level, white blood cell counts, and
transferrin saturation41 (Supplementary Table 2). Analysis of the
model’s interpretability with SHAP values revealed these features’
contributions to the model’s predictions in the direction expected
with their biological effects (Supplementary Fig. 1).

External testing of the model in All of Us
We sought to test the model in an external cohort from a different
institution consisting of 136,522 participants (19,264 autoantibody-
tested cases and 117,258 non-tested controls) selected with the same
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criteria used for the training and internal validation cohort (Table 1 and
Methods). In this external testing dataset, the model predicted auto-
antibody testing with a similar classification performance as the
internal validation: AUROC of 0.87 (95% CI, 0.87–0.88), accuracy of
0.82 (95% CI, 0.82–0.82), sensitivity of 0.82 (95% CI, 0.82–0.83), and
specificity of 0.82 (95% CI, 0.81–0.82) (Table 2 and Fig. 1b). The pre-
valence of autoantibody testing was 14% and the model demonstrated
a NPV of 0.82 (95% CI, 0.82–0.82) and PPV of 0.82 (95% CI, 0.82–0.82).
The model was calibrated with a Brier score of 0.090 after monotonic
regression (Fig. 1c).

Sensitivity analyses of model
We conducted a series of sensitivity analyses to bolster the validity and
clinical applicability of the model. First, the model was evaluated in a
cohortdesign to guard against temporal biaswhereby itwas trainedon
EHRswith rolled-updiagnosis codes andmedications of participants in
a given year topredict autoantibody testing in the subsequent year and
demonstrated similar performance as the primary model in both the
internal validation and external test cohorts (Supplementary Fig. 2 and
Supplementary Table 3). Second, the model was examined in a non-
biobank cohort of 839,188 individuals from the Mount Sinai Data
Warehouse (MSDW; median [IQR] age, 54 [33] years; 492,662 [59%]
female; 410,613 [49%] non-European ethnicity) with 67,565 (8.1%) who
had received autoantibody testing, and had a comparable perfor-
mance with that in the other datasets (Supplementary Fig. 3 and
Supplementary Table 4). Third, the model was assessed in a subgroup
of individuals less than or equal to 50 years old and showed similar
performance as in the whole population (Supplementary Fig. 4 and
Supplementary Table 5).

Validation in individuals with rheumatology encounter in BioMe
cohort 2
Autoantibody tests are an important diagnostic tool but do not
account for all rheumatic disease assessment in a hospital system. We,
therefore, aimed to validate the model in an independent set of indi-
viduals (BioMe cohort 2) with cases defined as having an encounter
with a rheumatologist (e.g., rheumatology consultation or treatment).
Out of 10,839 participants selected with the same criteria as the
training/internal validation cohort, there were 1564 cases with rheu-
matology encounters and 9275 controls with no evidence of being
seen or treated by rheumatology (Supplementary Table 6 and

Methods). SARDs diagnosis was observed in 416 out of 1564 (27%)
individuals in the rheumatology encounter group versus in 512 out of
9275 (5.7%) in the non-encounter group (P = 3.9 × 10−121). The model
demonstrated a similar classification performance in this rheumatol-
ogy dataset compared to the autoantibody test datasets with an
AUROC of 0.88 (95% CI, 0.88–0.88), accuracy of 0.82 (95% CI,
0.82–0.82), sensitivity of 0.82 (95% CI, 0.82–0.82), and specificity of
0.82 (95% CI, 0.81–0.82) (Supplementary Fig. 6). The prevalence of
rheumatology encounters in the independent dataset was 14% and the
model demonstrated a NPV of 0.82 (95% CI, 0.82–0.82), PPV of 0.82
(95% CI, 0.82–0.82). Calibration was measured with a Brier score
of 0.098.

Validation in individuals with autoantibodies and SARDs
diagnoses
Individuals with autoantibodies and individuals with SARDs diagnoses
were identified among 35,901 participants from BioMe cohorts 1 and 2
(Methods).We evaluated themodel’s ability to detect 2748 individuals
who had autoantibodies corresponding to SARDs and a rheumatology
encounter (Fig. 2a). Themedian probability from themodel output for
this group with autoantibodies was 0.80 (IQR, 0.18) and was greater
than the median probability of 0.38 (IQR, 0.17) in 20,487 controls
without autoantibodies or rheumatology encounters (P < 2.0 × 10−308).
Out of 8498 positive autoantibody tests, the most prevalent were RF
and anti-CCP (rheumatoid arthritis; 2389 positive autoantibody tests
[26% of all positive tests]), anti-Ro and anti-La (Sjogren syndrome; 1391
[15%]), and anti-dsDNA and anti-Smith (systemic lupus erythematosus;
1367 [15%]). Across all SARDs represented by the autoantibodies,
individuals with autoantibodies had higher probabilities than controls.
This ranged from a median probability of 0.78 (IQR, 0.19) for indivi-
duals with anti-Jo-1 and anti-SRP (polymyositis; P = 8.4 × 10−151) to 0.81
(IQR, 0.20) for individuals with lupus anti-coagulant, anti-cardiolipin,
and anti-β2 glycoprotein (antiphospholipid syndrome; P = 9.8 × 10−242).
Thesefindingswere replicated inAll of Us, with probabilities in carriers
of autoantibodies consistently higher than that in controls (Supple-
mentary Fig. 7). In both BioMe and All of Us, individuals with auto-
antibodies had higher probabilities than controls in subgroups
stratified by sex, ethnicity, and education (Supplementary Fig. 5).

Since not all individuals with autoantibodies will have disease17–21,
we further assessed the model’s performance to identify 2026 indivi-
duals with a clinical diagnosis of SARDs (Fig. 2b). The median

Table 1 | Summary of participant demographics and health system interactions

Trait BioMe Biobank cohort 1 All of Us BioMe Biobank cohort 2

Autoantibody
tested (n = 6171)

Not tested
(n = 18,891)

Autoantibody tested
(n = 19,264)

Not tested
(n = 117,258)

Rheumatology
encounter (n = 1564)

No rheumatology
encounter (n = 9275)

Age, median
(IQR) years

62 (20) 60 (25) 62 (21) 61 (24) 59 (23) 55 (28)

Male, n (%) 1816 (29) 8155 (43) 5589 (29) 45,737 (39) 570 (30) 402 (45)

Ethnicity, n (%)

African 1731 (28) 4805 (25) 4003 (21) 12,703 (20) 368 (20) 1512 (17)

European 1438 (23) 5666 (30) 10,747 (56) 34,276 (54) 458 (24) 2998 (33)

Hispanic 2544 (41) 6615 (35) 3212 (17) 11,633 (18) 784 (42) 2819 (31)

Other 458 (7.4) 1805 (9.6) 1302 (6.8) 4628 (7.3) 260 (14) 1641 (18)

Interactions with health system

Unique ICD-10 codes,
median (IQR)

66 (70) 31 (42) 109 (105) 56 (62) 61 (52) 29 (31)

Duration, median
(IQR) years

11 (5.6) 9.2 (6.5) 14 (12) 9.1 (9.4) 7.1 (2.6) 5.6 (4.7)

Encounters,
median (IQR)

106 (143) 41 (72) 168 (221) 75 (104) 76 (87) 31 (45)

Ethnicity, self-reported ethnicity; Other, self-reported ethnicity other than the listed ones, ICD-10, International Classification of Diseases 10, Duration, length of the electronic health record.
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probability from the model was greater for individuals with a SARDs
diagnosis (0.81; IQR, 0.22) compared to 32,979 controls without a
SARDs diagnosis or autoantibody test (0.35; IQR, 0.23)
(P < 2.0 × 10−308). Out of 2691 SARDs diagnoses, the most prevalent
were diagnoses of rheumatoid arthritis (923 [34%]), systemic lupus
erythematosus (601 [22%]), and Sjogren syndrome (357 [13%]). Prob-
abilities were higher across all SARDs compared to controls, ranging
from amedian probability of 0.77 (IQR, 0.25) for individuals diagnosed
with dermatomyositis (P = 1.7 × 10−29) to 0.88 (IQR, 0.23) for individuals
diagnosed with limited cutaneous systemic sclerosis (P = 1.3 × 10−16). In
All of Us, these results were similar with greater probabilities for
diagnosed individuals compared to controls (Supplementary Fig. 7).
Individuals with SARD diagnoses had greater probabilities than con-
trols in subgroups stratified by sex, ethnicity, and education in both
BioMe and All of Us (Supplementary Fig. 5).

We then sought to determine the fraction of individuals with
potentially diagnosable SARDs detected by the model as com-
pared to current clinical practice, and the number of undiagnosed
individuals that could be identified. Potentially diagnosable
SARDs was defined as individuals carrying autoantibodies specific
for SARDs evidenced by a positive autoantibody test (Methods).

This included 6684 out of 35,901 (19%) of participants with auto-
antibodies. The fraction and number of individuals with an auto-
antibody was calculated at different probability thresholds. The
fraction of potentially diagnosable individuals grew with
increasing probability thresholds to a maximum of 86% for higher
probability thresholds (Fig. 2c). In addition, there were tens of
thousands of potentially undiagnosed individuals (had not been
tested for autoantibodies despite high EHR suspicion for SARDs)
in the population who the model suggested may benefit from
autoantibody testing (Fig. 2d). At a probability threshold of ≥0.5,
4838 individuals had not been tested for autoantibodies, of whom
51% (2463 individuals) would be expected to carry an autoanti-
body based on the model that could lead to a rheumatology eva-
luation and/or diagnosis. At an even higher threshold of ≥0.9, 15
individuals had not been tested, of whom 87% (13 individuals)
would be expected to harbor autoantibodies. These trends were
similarly observed in All of Us: 46% of non-tested individuals
(12,262 individuals) would be expected to carry autoantibodies at
a threshold of ≥0.5 and 95% of non-tested individuals (18 indivi-
duals) would be expected to carry autoantibodies at a threshold of
≥0.8 (Supplementary Fig. 7).

Fig. 1 | Model performance to predict autoantibody testing using electronic
health records (EHRs) in validation and external test datasets. a Schematic of
studydesigndepicting ahypothetical individual who receivedautoantibody testing
and had a rheumatology encounter; EHR data preceding the test or encounter date

is collected as input to themachine learningmodel.b, c Performancemetrics in the
validation dataset from BioMe Biobank (BioMe cohort 1) and the external test
dataset from All of Us.
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Diverse autoimmune conditions captured by the model
Several autoimmune conditions were not included in the training of
our model because they are not SARDs or an autoantibody test would
not be an appropriate or informative modality for their diagnosis. To
evaluate our hypothesis more extensively, we assessed the model’s
capacity to identify individuals diagnosed with a wide array of 18
autoimmune conditions not part of the original training set (Methods).
These were selected on the basis of the representation of different
body systems and prevalence in the population, and clinical pre-
sentation that is readily analyzable in the EHR. A total of 6200 indivi-
duals across BioMe cohorts 1 and 2 had a clinical diagnosis of at least
one autoimmune condition. The model predicted two- to five-fold
more cases of autoimmune conditions compared to that expected
with the population rate of testing at different probability thresholds
(Fig. 3a). For instance, 2774 (45%) cases of autoimmune conditions had
a probability ≥0.5,while just 20%of the populationwouldbe tested for
autoantibodies at this threshold, yielding a 2.3-fold increase in identi-
fied cases. The model increased the yield of cases the most at this
probability threshold for polyarteritis nodosa, with 15 out of 18 (83%)
cases detected (a 4.3-fold increase in identified cases). The prevalence
of autoimmune conditions rose with increasing probabilities from a
mean of 1.0% among individuals with a probability less than0.1 to 3.9%
among individuals with a probability equal to 1 (Fig. 3b).

Prediction of need for future autoantibody testing and
rheumatologist referral
The final objective of the study was to determine the possibility of
using the model for prescreening of individuals who need autoanti-
body testing and rheumatology referrals in advance of their SARDs
assessment date (Methods). Using 35,901 individuals from BioMe
cohorts 1 and 2, we trained and assessed fivemodels inwhich EHR data
was restricted to 0.5, 1, 3, and 5 years prior to the first date of the
autoantibody testing. Individuals in need of autoantibody testing were
successfully identified up to 5 years earlier by themodels, with AUROC
ranging from 0.91–0.93 and accuracy ranging from 0.86–0.89 (Fig. 4a
and SupplementaryTable 7). Analogously, fivemodelsweredeveloped
and evaluated with EHR data restricted to 0.5, 1, 3, and 5 years prior to
the first date of an encounter with a rheumatologist. The models
demonstrated strong predictive performance with AUROC ranging
from 0.92–0.94 and accuracy ranging from 0.85–0.93 (Fig. 4b and
Supplementary Table 5). These results indicate that symptoms and
findings suspicious for SARDs present years earlier than when they are
tested22,23,34, and that a predictive model can accurately prescreen
these individuals to receive timely diagnostic assessment.

Discussion
SARDs encompass a diverse set of conditions each with distinct phe-
notypic manifestations; yet, they collectively share patterns of
immune-driven symptoms and findings42–45 that we hypothesized can
be identified in EHR data. Machine learning can analyze vast amounts
of complex clinical data, but its clinical translation to rheumatology is
in a nascent stage46. In the present proof-of-concept study, we used
machine learning trained on EHRs to quantitatively and systematically

capture clinical suspicion of SARDs, which is the main indication for
autoantibody testing and rheumatology referral17–21. Importantly, the
model was validated on a diverse, real-world population of individuals
in three cohorts from two institutions.

Autoantibody testing and evaluation by rheumatologists are cri-
tical for the proper diagnosis and clinical care of SARDs; however, their
use and access are often limited and delayed22,23,47,48. One potential
solution presented here is to use a data-driven model to prescreen
individuals who need autoantibody testing and rheumatological con-
sultation, prioritizing those with clinical suspicion for SARDs. This
precision medicine approach would facilitate judicious use of auto-
antibody testing in certain individuals, in agreement with Choosing
Wisely recommendations49. Different time windows of data to predict
futureneed for testingwere evaluated, namely all pastmedical records
in the primary analysis and 1-year windows in sensitivity analyses, and
are important to consider for implementation of themodel as a clinical
tool. Notably, the model demonstrated external validity and port-
ability with good performance in an external cohort from a different
institution and an independent non-biobank cohort at Mount Sinai. At
increasing probability thresholds, the model revealed up to 86% of
individuals with an EHR profile representative of a need for SARDs
assessment, but had not received any testing or notation of SARDs in
their records. Appropriate and timely testing can lead to an earlier and
more accurate diagnosis of SARDs, thereby reducing underdiagnosis
and improving care12–15,47,48. Furthermore, individuals with clinical sus-
picion for SARDs and rheumatological diseases had high numbers of
clinical encounters, indicating the large impact of these conditions on
patients, providers, and the healthcare system in line with previous
studies50,51. Among individuals who eventually received a serological or
rheumatological evaluation, the model predicted the need for their
evaluation up to 5 years earlier, thus potentially abbreviating what
would otherwise be an extensive diagnostic delay. Translation of this
model to clinical settings has the potential to aid the diagnostic
workflow of physicians by suggesting rheumatological assessment for
individuals and accelerating testing and referrals.

The model increased the yield of individuals with autoantibodies
and individuals with clinically diagnosed SARDs. Higher probability
thresholds enabled the detection of large proportions of individuals
harboring autoantibodies; for example, around 80% for probability
≥0.8. Carriers of autoantibodies corresponding to different SARDs had
considerably greater probabilities than controls without any auto-
antibodies; similarly, probabilities for individuals diagnosed with
SARDs greatly exceeded that for controls without SARDs. Consistent
performance of the model across a wide array of autoantibodies and
diseases underscores a shared phenotypic signature42–45 among var-
ious SARDs that is detectable by artificial intelligence. This approach
also identified a subset of individuals with a high probability but no
rheumatological testing or SARDs diagnosis who may be under-
diagnosed. Ultimately, the aim of this machine learning strategy is to
improve diagnostic outcomes, not solely to increase testing, for more
individuals. In this vein, we trained themodel using EHRs of individuals
who were tested for autoantibodies, a key diagnostic tool, but also
tested its generalizability to identify cases of other autoimmune

Table 2 | Performance of machine learning model to identify individuals who received autoantibody testing in the validation
and external test datasets

Dataset Total n Autoantibody tes-
ted, n (%)

AUROC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

NPV (95% CI) PPV (95% CI) F1 score

Validation (BioMe
cohort 1)

25,062 5792 (23) 0.93
(0.93 − 0.93)

0.90
(0.90 − 0.90)

0.87
(0.87 − 0.88)

0.89
(0.88 − 0.89)

0.90
(0.89 − 0.90)

0.88
(0.87 − 0.88)

0.89
(0.88 − 0.89)

External test
(All of Us)

136,522 19,264 (14) 0.87
(0.87 − 0.88)

0.82
(0.82 − 0.83)

0.82
(0.81 − 0.82)

0.82
(0.82 − 0.82)

0.82
(0.82 − 0.82)

0.82
(0.82 − 0.82)

0.83
(0.82 − 0.82)

n number, AUROC area under the receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value.
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conditions. Themodel showed consistent performancewith 18 diverse
autoimmune conditions not included in its training dataset, further
supporting the hypothesis that a phenotypic profile of numerous
immune-driven traits manifesting over time is a hallmark of auto-
immune diseases and that models that can recognize this have
extensive applicability.

A major objective of the study was to augment the detection of
individualswith SARDs. In all datasets, a large shareofparticipantswho
had autoantibody tests or encounters with rheumatologists had a
SARDs diagnosis. It was possible to have trained the model on this
narrower subgroup of participants; however, we avoided this

approach owing to three key considerations. First, we sought to cap-
ture clinical suspicion of SARDs, which represents the primary indi-
cation for autoantibody testing or rheumatology consultation. Using
these outcomes enabled the model to draw on the clinical gestalt of
physicians rather than be trained to predict diagnosis codes with
inherent biases andmisclassifications46. Second, this approach allowed
the model to be placed within the diagnostic toolkit of physicians
instead of simply generating an output of disease case or control that
bypasses the diagnostic process. Third, the sample sizewas sufficiently
large to develop an accurate and portable model, whereas restricting
to those with certain diagnosis codes would greatly reduce size and
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Fig. 2 | Autoantibodies and SARDs identified in the BioMe Biobank. a Model-
derived probabilities of autoantibody testing for 2748 participants who had auto-
antibodies corresponding to SARDs and a rheumatology encounter (red violin
plots), and 20,487 controls who were not tested for autoantibodies and did not
have a rheumatology encounter (blue violin plot). Median probabilities were
compared in autoantibody-tested and untested individuals with Mann–Whitney’s
U-test. b Probabilities of autoantibody testing for 2026 participants with SARDs
diagnoses (red violin plots) and 32,979 controls without a SARDs diagnosis or
autoantibody test (blue violin plots). Median probabilities were compared in cases
and controls with Mann–Whitney’s U-test. c Fraction of individuals with

autoantibodies identified by the model at increasing probability thresholds. The
dashed line and blue portion of the bar plots represent the baseline fraction of
autoantibodies detected in the population (0.20; 4754 out of 25,062), while the red
portion of the bar plots indicate the excess fraction of autoantibodies identified by
the model at each probability threshold. d Absolute number of individuals who
have not been tested for autoantibodies at increasing probability thresholds; the
red portion of the bar plots represents those expected to carry autoantibodies at
each probability threshold. At thresholds of ≥0.8 and ≥0.9, 66 out of 77 and 13 out
of 15 untested individuals are expected to have autoantibodies, respectively; there
were 0 untested individuals at a threshold of 1.0.
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power. Building a model to predict the probability of SARDs itself
demands more specialized rheumatological evaluation of disease in
individuals, ideally in a prospective manner, which should be endea-
vored in future studies.

Challenges remain for deploying machine learning models such as
the one presented here into the clinical space. The diagnostic perfor-
mance of a testing modality depends on the prevalence of the target
disease, the characteristics of the population being tested, and the
properties of the test itself. The model in this study was trained, vali-
dated, and externally tested using a balanced set of autoantibody-tested
and untested individuals to ensure adequate learning of tested indivi-
duals and reduce bias towards themajority class of untested individuals;
however, this may limit the model’s PPV in situations with a low pre-
valence of autoantibody-tested individuals. Nonetheless, there are

numerous clinical tests with high NPV and low PPV: HIV52,53 and tuber-
culin skin54 tests reliably rule out infection, theGailModel55 estimates the
risk of breast cancer, and computed tomography pulmonary angio-
graphy (CTPA) aids in the diagnosis of pulmonary embolisms56. While
these tests produce false positive results (PPV as low as 2–4% in The Gail
Model55 and 9–15% in CTPA56), they are valuable for screening and
excluding harmful and burdensome diseases. As this was a proof-of-
concept study for detecting and analyzing difficult autoimmune dis-
eases, future studies are needed to evaluate and optimize deployability
in different populations with varying prevalences of the disease.

There were several limitations to the study. First, machine
learning methods including random forest may be sensitive to
overfitting; however, we observed minimal evidence of overfitting
as the validation and external test datasets had similar high

●●●
●

●
●●

●

●

0.03

0.10

0.30

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of population above probability threshold

F
ra

ct
io

n
 o

f 
ca

se
s 

ab
ov

e 
p

ro
b

ab
ili

ty
 t

h
re

sh
o

ld

All
Addison's disease
Ankylosing spondylitis
Autoimmune hepatitis
Crohn's disease
Giant cell arteritis
Glomerulonephritis
Graves' disease
Hashimoto's thyroiditis
Multiple sclerosis
Myasthenia gravis
Optic neuritis
Polyarteritis nodosa
Psoriasis
Rheumatic mitral valve disease
Sarcoidosis
Type 1 diabetes
Ulcerative colitis
Vitiligo

● ● ●
● ● ● ●

● ● ● ●

0.01

0.1

1

10

100

[0
, 0

.1)

[0
.1,

 0.
2)

[0
.2,

 0.
3)

[0
.3,

 0.
4)

[0
.4,

 0.
5)

[0
.5,

 0.
6)

[0
.6,

 0.
7)

[0
.7,

 0.
8)

[0
.8,

 0.
9)

[0
.9,

 1) [1
)

Probability strata

P
re

va
le

n
ce

 o
f 

d
is

ea
se

a b

Fig. 3 | Model performance in capturing diverse autoimmune conditions.
a Fraction of cases diagnosed with one of 18 autoimmune conditions above a
probability threshold on a base-10 logarithmic scale versus the fraction of indivi-
duals that are tested for autoantibodies at the equivalent probability threshold. The
dashed line marks the fraction of tested individuals above each probability
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individuals with autoimmune conditions detected by the model and the greatest
fraction of the population tested. b Prevalence of autoimmune conditions on a
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[0, 0.1) through 1.
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Fig. 4 | Prediction of future autoantibody and rheumatological testing.
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EHR data were restricted to 0, 0.5, 1, 3, and 5 years prior to the testing or encounter
date for participants who had autoantibody testing or a rheumatologist encounter,
respectively.
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AUROC. Second, participants were restricted to ≥20 years of age
with ≥1 year of EHR data to ensure adequate longitudinal data for
the model, which prevented analysis of autoimmune conditions
with an earlier age of onset. Third, diagnosis codes were parsed
from EHRs and misclassification of codes is possible57. Fourth,
while the generalizability of the model was assessed with 18
autoimmune conditions not included in the SARDs training data-
set, the model was better able to capture cases of conditions with
SARDs-like systemic or pain-predominant features (e.g., poly-
arteritis nodosa and sarcoidosis) as opposed to less similar con-
ditions (e.g., vitiligo). Fifth, the study was retrospective and
opportunistic in nature, examining existing EHR data from two
biobanks. This led to imbalanced counts of cases and controls,
with greater numbers of controls. We mitigated bias due to this
imbalance by selecting equal numbers of cases and controls in the
training and testing of the model. Prospective studies are needed
to further validate the utility of the model to guide changes in
clinical care and outcomes of patients.

In summary, we provide an innovative machine learning frame-
work to sift through large-scale multimodal data contained in the
EHRs of health systems to identify individuals who should receive
serological testing and rheumatologist evaluation, premised on an
important hypothesis that presentation of immune-driven phe-
notypes over time is characteristic of SARDs. We demonstrate that
the model can predict the need for different modalities of rheu-
matological testing, both serological autoantibody tests and
rheumatologist consultation, with consistent performance across
different datasets and institutions. The model not only stratifies
the risk of autoimmune conditions, but also provides an unpre-
cedented opportunity to accelerate and systematize diagnostic
testing of SARDs that are often missed or delayed in patients.

Methods
Study design and population
We conducted a study to train, validate, and externally test a
machine learning model predictive of rheumatic disease testing
using clinical features extracted from the EHR of three cohorts
across two institutions (Fig. 1a). The model was adapted from a
previous model32 that predicted CAD risk using EHR data. First,
we trained and validated the model using 25,062 EHRs from one
cohort in the BioMe Biobank, and externally tested the model on
136,522 EHRs from All of Us. Second, we applied the model to
clinical outcomes of prediction of rheumatology encounters,
detection of autoantibodies and autoimmune conditions, and
prediction of future rheumatological testing in 35,901 partici-
pants from two cohorts in the BioMe Biobank. The study proto-
cols were approved by the Institutional Review Board at the Icahn
School of Medicine at Mount Sinai (GCO#07-0529; STUDY-11-
01139) and informed consent was obtained for all participants.
Analyses of All of Us were completed according to the All of Us
Code of Conduct and all participants provided informed consent;
reported results comply with the All of Us Data and Statistics
Dissemination Policy and are presented in groups of at least 20
individuals. The study adhered to the principles of the Declara-
tion of Helsinki.

The BioMe Biobank comprises a longitudinal cohort of over
65,000 individuals of African, European, Hispanic, and other self-
reported ethnicities recruited from outpatient centers in the Mount
Sinai Health System across New York City from 2007 onwards58, with
follow-up until 2019. Participants are representative of the commu-
nities served and are unselected for particular traits or diseases. All
individuals consented to provide biological andDNA samples linked to
de-identified EHRs, which contain clinical, laboratory, and demo-
graphic information. Participants at least 20 years of age with at least 1
year of EHR data and three documented clinical encounters were

selected to ensure cases and controls had sufficient EHR data59,60 for
training and evaluating the model (Supplementary Fig. 8). The model
was subsequently externally tested in All of Us, a prospective cohort of
over 490,000 participants as of May 2022 of diverse self-reported
ethnicities who were enrolled at participating healthcare sites across
the United States from 2017 onwards61. Individuals provided informed
consent including for sharing EHRs, completed health questionnaires,
and underwent a physical exam and biospecimen collection upon
enrollment. Participants were selected with the same criteria as in the
BioMe Biobank (Supplementary Fig. 8).

Electronic health record (EHR) data sources
De-identified EHR data were analyzed from the BioMe Biobank and All
of Us. The BioMe Biobank sources its data from the Mount Sinai Data
Warehouse (MSDW), which uses the Observational Health Data Sci-
ences and Informatics (OHDSI) collaborative’s Observational Medical
Outcomes Partnership (OMOP) Common Data Model (CDM). OMOP
CDM provides a standardized structure for observational data, com-
mon representation of terminologies, vocabularies, coding schemes,
and standard analytic routines1. For each domain of OMOP CDM, non-
standard vocabularies are mapped to standard vocabularies (e.g.,
International Classification of Diseases version 10ClinicalModification
[ICD-10-CM] mapped to SNOMED-CT in the Condition domain). The
standard vocabularies include SNOMED-CT for the Condition domain,
RxNorm for the Drug domain, and LOINC for the Measurement
domain. Clinical data are extracted from Mount Sinai’s Epic Caboodle
database, transformed to the OMOP CDM format, and loaded to the
MSDW database with refreshes occurring daily. Further information
about MSDW and its data sources can be found at https://labs.icahn.
mssm.edu/msdw/data-sources/. All of Us also uses the OMOP CDM
structure for its participants’ EHR data, including SNOMED-CT condi-
tions, RxNorm drugs, and LOINC measurements. The consistent
ontologies and data schemes across BioMe Biobank and All of Us
enabled the direct application of the machine learning model derived
in BioMe Biobank to All of Us. Further information about All of Us and
its data sources can be accessed at https://www.researchallofus.org/
data-tools/methods/.

Identification of individuals with autoantibody tests and
rheumatology encounters
We identified participants who had received at least one of two mod-
alities of rheumatological assessment: autoantibody testing and
rheumatology encounter. First, we mined EHRs for the presence of
serological testing of autoantibodies corresponding to one of 11 dif-
ferent SARDs (Supplementary Table 1). Tested individuals had at least
one autoantibody test and non-tested controls did not have any
autoantibody tests. We included tests for autoantibodies with high
specificity for a particular SARD2,17–19,39, while excluding tests for
autoantibodies with low specificity, such as anti-nuclear antibody40.
Results for tests were noted as negative or positive in the EHR, with the
latter result used to identify individuals carrying autoantibodies. Sec-
ond, we searched EHR encounters and medication datasets for the
presence of a rheumatology encounter, defined as documentation in
clinical notes of being seen by a rheumatologist (“consult to rheuma-
tology” in the encounters dataset) or treated by a rheumatologist (“per
rheumatology” order in the medications dataset). Controls were
defined as having no evidence of a rheumatology encounter and no
clinical suspicion of SARDs noted in their EHR encounters or past
medical history (e.g., mentions of autoantibody tests, rheumatic dis-
eases, or autoimmune diseases).

Clinical features from the EHR included in the model
Both categorical and continuous data from the EHR were used as
clinical features for the model in the BioMe Biobank. Only clinical
feature data before the date of the first instance of autoantibody
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testing were used for cases of autoantibody tests and before the date
of the first instance of a rheumatology encounter for cases of rheu-
matology encounters. Age was defined by the date of the most recent
entry of included clinical feature data. Categorical features were
derived from a total of 14,695 unique ICD-10 diagnosis codes (ICD-9
codeswere converted to ICD-10 in 2016) and27,802medications in the
EHR, and were coded as presence or absence of the feature. Diagnosis
codes corresponding to SARDs (Supplementary Table 1) and common
SARD medications (hydroxychloroquine, methotrexate, and aza-
thioprine) were removed to prevent data leakage and circularity in the
model. Diagnosed cases of SARDs had at least one corresponding
diagnosis code, while controls did not have any corresponding diag-
nosis codes. Continuous features included 105 laboratory measure-
ments and 9 vital traits. Continuous features with >60%missing values
were removed and participants missing >60% of the remaining con-
tinuous features were excluded as quality control for accurate impu-
tation. The removed participants had a short duration in the biobank
(median, 3.9 years [IQR, 7.3]) and few clinical encounters (median, 6
[IQR, 11]); theirmedian agewas 49years (IQR, 40); 41%weremales, 33%
European, 21% African, 27% Hispanic, and 10% other ethnicities. The
remaining values of continuous features were imputed with a random
forest-based algorithm via missForest (version 1.4)62. Multiple entries
were collapsed as the median value for each participant. Highly cor-
related continuous features (Pearson’s correlation coefficient >0.90)
were removed; the feature with the highest overall correlation to all
features was discarded whenever two features were highly correlated.
After feature selection (see next subsection, “Building and evaluating
themodels”), 22 ICD-10 diagnosis codes, 37medications, 61 laboratory
results, and eight vital traits were used to train the machine learning
model (Supplementary Table 9).

We externally tested the model in All of Us using EHR data that
were also restricted to entries before the date of the first instance of
autoantibody testing. Continuous features and participants with >60%
missing values were removed, and the remainder of the values were
imputed using the aforementioned random forest-based algorithm.

Building and evaluating the models
We implemented a random forest-based machine learning
system32,63 using clinical features contained in the EHR to predict
rheumatological testing (Fig. 1a and Supplementary Fig. 9). The
workflow was repeated 100 times to reduce sampling bias. A
training dataset was generated during each iteration with a ran-
dom sample of 90% of cases (autoantibody-tested individuals)
and an equivalent number of controls (non-autoantibody-tested
individuals). A balanced validation dataset included the remain-
ing 10% of cases and an equivalent number of controls. Feature
selection was completed on the training dataset with the Boruta
function from the Boruta package (version 7.0.0)64 and applied to
the validation dataset to decrease model complexity64 and
increase clinical interpretability of the prediction task27. Features
not selected were discarded from the validation dataset accord-
ingly. Age, sex, and self-reported ethnicity were included in the
model as covariates. Continuous features were scaled and cen-
tered in the training dataset; these metrics were then applied to
the validation dataset. A tenfold cross-validation scheme was
employed in the training dataset to optimize the model’s hyper-
parameters. The resultant model predicted autoantibody testing
status and generated probabilities in the entire population except
individuals used in the training dataset and performance metrics
were presented as the mean and 95% CI across the 100 iterations.
Using this workflow, we subsequently trained 100 new models to
predict autoantibody testing in an external test dataset from All
of Us. Selected features from the BioMe Biobank that were pre-
sent in All of Us were used to train a new model for each iteration.
Each time, the model predicted autoantibody testing status using

all cases and an equal number of randomly sampled controls. The
resulting performance metrics were presented as the mean and
95% CI across all 100 iterations. The same workflow was used to
develop and validate a model that predicted rheumatologist
encounters using EHR clinical features in BioMe Biobank.

We performed several sensitivity analyses. We evaluated the
model in a cohort design to guard against temporal bias65, in which
participant records for a given year were analyzed by the model to
predict autoantibody testing in the following year; the model used
rolled-up features of diagnosis codes (e.g., M19 feature contains any
sublevels such as M19.0, M19.01, M19.011, etc.) and medications (e.g.,
acetaminophen feature contains acetaminophen of different dosages).
We tested the model in a non-biobank cohort of 839,188 participants
from the Mount Sinai health system found in MSDW66. We also tested
the model in a subset of individuals less than or equal to 50 years old,
as this group has a higher prevalence of SARDs. We further assessed
the model in subgroups stratified by sex, ethnicity, and highest edu-
cation level (advanced degree/post-college, college, high school, and
middle/elementary school).

Assessment of diverse autoimmune conditions
Numerous autoimmune conditions were not part of the training
set because they are not SARDs, or autoantibody testing is not
appropriate or informative for their diagnosis. To further validate
the model’s ability to detect autoimmune phenotypic signatures,
we assessed its performance in identifying individuals diagnosed
with a diverse set of 18 autoimmune conditions not included in
the original training set: Addison’s disease, ankylosing spondyli-
tis, autoimmune hepatitis, Crohn’s disease, giant cell arteritis,
glomerulonephritis, Graves’ disease, Hashimoto’s thyroiditis,
multiple sclerosis, myasthenia gravis, optic neuritis, polyarteritis
nodosa, psoriasis, rheumatic mitral valve disease, sarcoidosis,
type 1 diabetes, ulcerative colitis, and vitiligo (Supplementary
Table 10). These were selected because of their diverse repre-
sentation of body systems and prevalence in the health system,
and traits that can be analyzed in the EHR.

Prediction of future autoantibody tests and rheumatology
encounters
We assessed the model’s ability to prescreen individuals in need of
rheumatological evaluation in the future, which could prioritize
those with clinical suspicion of SARDs for testing and potentially
streamline their care. Using 35,901 individuals from BioMe cohorts
1 and 2, we restricted the EHR data of cases—those who had auto-
antibody testing or rheumatology encounter—to 0, 0.5, 1, 3, and 5
years before the date of the first instance of autoantibody testing
or encounter with rheumatologists, respectively. All EHR data were
included for controls. These temporally restricted datasets were
supplied as inputs to the same models and subjected to the same
training and validation workflow as in the primary analysis. For
each temporally restricted model, performance metrics were
reported as the mean and 95% CI across all 100 iterations of the
workflow.

Statistical analysis
Differences in categorical variables were evaluated with a two-sided
unpaired Fisher’s exact test and continuous variables were assessed
with Welch’s t-test and Mann–Whitney U-test. Models to predict
autoantibody testing and rheumatology encounters were assessed
with AUROC, sensitivity, specificity, accuracy, PPV, NPV, and F1 score
using the pROC package (version 1.16.2)67. Linear and logistic regres-
sion were used to test the association of model probabilities with
continuous and categorical outcomes, respectively. Regression mod-
els were adjusted for age (defined at the date of last encounter), sex,
body mass index, and self-reported ethnicity, unless otherwise stated.
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The significance level was set at 0.05. All statistical tests and plots were
generated with R (version 3.5.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from All of Us is available via application to the Researcher
Workbench at https://workbench.researchallofus.org/login. Further
information regarding the BioMe Biobank and its dataset are available
at https://icahn.mssm.edu/research/ipm/programs/biome-biobank,
and further information regarding the Mount Sinai Data Warehouse
and its dataset are available at https://labs.icahn.mssm.edu/msdw/
data-sources. Access to these data needs to be requested from the
BioMe Biobank and Mount Sinai Data Warehouse. Source data are
provided with this paper.

Code availability
Code for running and analyzing the machine learning model is avail-
able at https://data.mendeley.com/datasets/chg348gtxp/1. All plots
and statistical tests were generated with R (version 3.5.3). Plots were
produced using the pROC (version 1.16.2) and ggplot2 (version 3.3.3)
packages, missing values were imputed via a random forest-based
algorithm using the missForest (version 1.4) package, features were
selected with the Boruta function from the Boruta package (version
7.0.0), and the machine learning model was trained and tested using
the caret (version 6.0.84) and randomForest (version 4.6–14)
packages.

References
1. Haag, H., Liang, T., Avina-Zubieta, J. A. & De Vera, M. A. How do

patients with systemic autoimmune rheumatic disease perceive the
use of their medications: a systematic review and thematic synth-
esis of qualitative research. BMC Rheumatol. 2, 9 (2018).

2. Meroni, P. L. et al. Standardization of autoantibody testing: a para-
digm for serology in rheumatic diseases. Nat. Rev. Rheumatol. 10,
35–43 (2013).

3. Dinse, G. E. et al. Increasing prevalence of antinuclear antibodies in
the United States. Arthritis Rheumatol. 72, 1026–1035 (2020).

4. Rees, F. et al. The incidence and prevalence of systemic lupus
erythematosus in the UK, 1999–2012. Ann. Rheum. Dis. 75,
136–141 (2016).

5. Carter, E. E., Barr, S. G. & Clarke, A. E. The global burden of SLE:
prevalence, health disparities and socioeconomic impact.Nat. Rev.
Rheumatol. 12, 605–620 (2016).

6. Kim, H. et al. An increased disease burden of autoimmune inflam-
matory rheumatic diseases in Korea. Semin. Arthritis Rheum. 50,
526–533 (2020).

7. Kawalec, P. P. & Malinowski, K. P. The indirect costs of systemic
autoimmune diseases, systemic lupus erythematosus, systemic
sclerosis and sarcoidosis: a summary of 2012 real-life data from the
Social Insurance Institution in Poland.Expert. Rev. Pharmacoecon.
Outcomes Res. 15, 667–673 (2015).

8. Anaya, J. M. The diagnosis and clinical significance of poly-
autoimmunity. Autoimmun. Rev. 13, 423–426 (2014).

9. Wang, L., Wang, F.-S. & Gershwin, M. E. Human autoimmune dis-
eases: a comprehensive update. J. Intern. Med. 278, 369–395 (2015).

10. Anaya, J. M. The autoimmune tautology. Arthritis Res. Ther. 12,
1–3 (2010).

11. Mosca, M. et al. Brief report: how do patients with newly diagnosed
systemic lupus erythematosus present? a multicenter cohort of
early systemic lupus erythematosus to inform the development of
new classification criteria. Arthritis Rheumatol. 71, 91–98 (2019).

12. Sloan, M. et al. Medically explained symptoms: a mixed methods
study of diagnostic, symptom and support experiences of patients
with lupus and related systemic autoimmune diseases. Rheumatol.
Adv. Pract. 4, rkaa006 (2020).

13. Johnson, A. E., Gordon, C., Hobbs, F. D. R. & Bacon, P. A. Undiag-
nosed systemic lupus erythematosus in the community. Lancet
347, 367–369 (1996).

14. Wylezinski, L. S. et al. Illuminating an invisible epidemic: a systemic
review of the clinical and economic benefits of early diagnosis and
treatment in inflammatory disease and related syndromes. J. Clin.
Med. 8, 493 (2019).

15. Kernder, A. et al. Delayed diagnosis adversely affects outcome in
systemic lupus erythematosus: cross sectional analysis of the LuLa
cohort. Lupus 30, 431–438 (2021).

16. Suurmond, J. & Diamond, B. Autoantibodies in systemic auto-
immune diseases: specificity and pathogenicity. J. Clin. Invest. 125,
2194–2202 (2015).

17. Xiao, Z. X., Miller, J. S. & Zheng, S. G. An updated advance of
autoantibodies in autoimmune diseases. Autoimmun. Rev. 20,
102743 (2021).

18. Chang, P. Y., Yang, C. T., Cheng, C. H. & Yu, K. H. Diagnostic per-
formance of anti-cyclic citrullinated peptide and rheumatoid factor
in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 19,
880–886 (2016).

19. Sauerland,U. et al. Clinical utility of the anti-CCPassay: experiences
with 700 patients. Ann. N. Y. Acad. Sci. 1050, 314–318 (2005).

20. Ingegnoli, F., Castelli, R. & Gualtierotti, R. Rheumatoid factors:
clinical applications. Dis. Markers 35, 727 (2013).

21. Castro, C. & Gourley, M. Diagnostic testing and interpretation of
tests for autoimmunity. J. Allergy Clin. Immunol. 125, S238 (2010).

22. Meisters, R. et al. EULAR/eumusc.net standards of care for rheu-
matoid arthritis: cross-sectional analyses of importance, level of
implementation and care gaps experienced by patients and rheu-
matologists across 35 European countries. Ann. Rheum. Dis. 79,
1423–1431 (2020).

23. Fitzgerald,A. et al. Relative urgency for referral fromprimary care to
rheumatologists: the priority referral score. Arthritis Care Res. 63,
231–239 (2011).

24. Stafford, I. S. et al. A systematic review of the applications of arti-
ficial intelligence and machine learning in autoimmune diseases.
npj Digit. Med. 3, 1–11 (2020).

25. Adlung, L., Cohen, Y., Mor, U. & Elinav, E. Machine learning in clin-
ical decision making.Med 2, 642–665 (2021).

26. Morley, T. J. et al. Phenotypic signatures in clinical data enable
systematic identification of patients for genetic testing. Nat. Med.
27, 1097–1104 (2021).

27. Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine.N.
Engl. J. Med. 380, 1347–1358 (2019).

28. Li, L. et al. Identification of type 2 diabetes subgroups through
topological analysis of patient similarity. Sci. Transl. Med. 7,
311ra174 (2015).

29. Obermeyer, Z. & Lee, T. H. Lost in thought— the limits of the human
mind and the future of medicine. N. Engl. J. Med. 377,
1209–1211 (2017).

30. Rajkomar, A. et al. Scalable and accurate deep learning with elec-
tronic health records. npj Digit. Med. 1, 1–10 (2018).

31. Topol, E. J. High-performancemedicine: the convergenceof human
and artificial intelligence. Nat. Med. 25, 44–56 (2019).

32. Forrest, I. S. et al. Machine learning-based marker for coronary
artery disease: derivation and validation in two longitudinal cohorts.
Lancet 401, 215–225 (2022).

33. Agrawal, S. et al. Selection of 51 predictors from 13,782 candidate
multimodal features using machine learning improves coronary
artery disease prediction. Patterns 2, 100364 (2021).

Article https://doi.org/10.1038/s41467-023-37996-7

Nature Communications |         (2023) 14:2385 10

https://workbench.researchallofus.org/login
https://icahn.mssm.edu/research/ipm/programs/biome-biobank
https://labs.icahn.mssm.edu/msdw/data-sources
https://labs.icahn.mssm.edu/msdw/data-sources
https://data.mendeley.com/datasets/chg348gtxp/1


34. Goldblatt, F. & O’Neill, S. G. Clinical aspects of autoimmune rheu-
matic diseases. Lancet 382, 797–808 (2013).

35. Ghassemi, M. et al. A review of challenges and opportunities in
machine learning for health. AMIA Jt. Summits Transl. Sci. Proc.
2020, 191–200 (2020).

36. Krause, J. et al. Grader variability and the importance of reference
standards for evaluating machine learning models for diabetic
retinopathy. Ophthalmology 125, 1264–1272 (2018).

37. Loftus, T. J. et al. Artificial intelligence-enabled decision support in
nephrology. Nat. Rev. Nephrol. 18, 452–465 (2022).

38. Slack, W. V., Hicks, P., Reed, C. E. & Van Cura, L. J. A computer-
based medical-history system. N. Engl. J. Med. 274, 194–198
(1966).

39. Ali, Y. Rheumatologic tests: a primer for family physicians.Am. Fam.
Physician 98, 164–170 (2018).

40. Grygiel-Górniak, B., Rogacka, N. & Puszczewicz, M. Antinuclear
antibodies in healthy people and non-rheumatic diseases – diag-
nostic and clinical implications. Reumatologia 56, 243 (2018).

41. Weiss, G. & Schett,G.Anaemia in inflammatory rheumatic diseases.
Nat. Rev. Rheumatol. 9, 205–215 (2013).

42. Szekanecz, Z. et al. Autoinflammation and autoimmunity across
rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 17,
585–595 (2021).

43. Iaccarino, L. et al. Overlap connective tissue disease syndromes.
Autoimmun. Rev. 12, 363–373 (2013).

44. Davies, K., Dures, E. & Ng, W. F. Fatigue in inflammatory rheumatic
diseases: current knowledge and areas for future research. Nat.
Rev. Rheumatol. 17, 651–664 (2021).

45. Cutolo, M. & Smith, V. Detection of microvascular changes in sys-
temic sclerosis and other rheumatic diseases. Nat. Rev. Rheumatol.
17, 665–677 (2021).

46. Kingsmore, K. M., Puglisi, C. E., Grammer, A. C. & Lipsky, P. E. An
introduction to machine learning and analysis of its use in rheu-
matic diseases. Nat. Rev. Rheumatol. 17, 710–730 (2021).

47. Niemantsverdriet, E., Dougados, M., Combe, B. & van der Helm-van
Mil, A. H. M. Referring early arthritis patients within 6 weeks versus
12 weeks after symptom onset: an observational cohort study.
Lancet Rheumatol. 2, e332–e338 (2020).

48. Kvien, T. K. et al. Considerations for improving quality of care of
patients with rheumatoid arthritis and associated comorbidities.
RMD Open 6, e001211 (2020).

49. Yazdany, J. et al. Choosing wisely: the American College of Rheu-
matology’s top 5 list of things physicians and patients should
question. Arthritis Care Res. 65, 329–339 (2013).

50. Samnaliev, M. et al. Health-care utilization and costs in adults with
systemic lupus erythematosus in the United Kingdom: a real-world
observational retrospective cohort analysis. Rheumatol. Adv. Pr. 5,
1–10 (2021).

51. Roodenrijs, N. M. T. et al. Healthcare utilization and economic
burden of difficult-to-treat rheumatoid arthritis: a cost-of-illness
study. Rheumatology 60, 4681–4690 (2021).

52. Kim, S., Lee, J. H., Choi, J. Y., Kim, J. M. & Kim, H. S. False-positive
rate of a ‘fourth-generation’ HIV antigen/antibody combination
assay in an area of low HIV prevalence. Clin. Vaccin. Immunol. 17,
1642–1644 (2010).

53. Antelman, G. et al. Balancing HIV testing efficiency with HIV case
identification among children and adolescents (2-19 years) using an
HIV risk screening approach in Tanzania. PLoS ONE 16,
e0251247 (2021).

54. Zhou, G. et al. Interferon-γ release assays or tuberculin skin test for
detection and management of latent tuberculosis infection: a sys-
tematic review and meta-analysis. Lancet Infect. Dis. 20,
1457–1469 (2020).

55. Tice, J. A. et al. Using clinical factors and mammographic breast
density to estimate breast cancer risk: Development and

validation of a new predictive model. Ann. Intern. Med. 148,
337–347 (2008).

56. Doğan, H., de Roos, A., Geleijins, J., Huisman, M. & Kroft, L. The role
of computed tomography in the diagnosis of acute and chronic
pulmonary embolism. Diagn. Interv. Radiol. 21, 307–316 (2015).

57. Young, J. C., Conover,M.M. & Jonsson Funk, M.Measurement error
and misclassification in electronic medical records: methods to
mitigate bias. Curr. Epidemiol. Rep. 5, 343–356 (2018).

58. Tayo, B. O. et al. Genetic background of patients from a university
medical center in Manhattan: Implications for personalized medi-
cine. PLoS ONE 6, e19166 (2011).

59. Li, R., Chen, Y., Ritchie,M.D. &Moore, J. H. Electronic health records
and polygenic risk scores for predicting disease risk. Nat. Rev.
Genet. 21, 493–502 (2020).

60. Kirby, J. C. et al. PheKB: a catalog and workflow for creating elec-
tronic phenotype algorithms for transportability. J. Am. Med.
Inform. Assoc. 23, 1046–1052 (2016).

61. Denny, J. C. et al. The “All of Us” research program. N. Engl. J. Med.
381, 668–676 (2019).

62. Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric miss-
ing value imputation for mixed-type data. Bioinformatics 28,
112–118 (2012).

63. Liaw, A. & Wiener, M. Classification and regression by randomFor-
est. R. N. 2, 18–22 (2002).

64. Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta
package. J. Stat. Softw. 36, 1–13 (2010).

65. Yuan, W. et al. Temporal bias in case-control design: preventing
reliable predictions of the future. Nat. Commun. 12, 1–10 (2021).

66. Datta, S. et al. FIBER: enabling flexible retrieval of electronic health
records data for clinical predictive modeling. JAMIA Open 4,
ooab048 (2021).

67. Robin, X. et al. pROC: an open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinforma. 12, 1–8 (2011).

Acknowledgements
We thank Liron Marnin at the University of Maryland School of Medicine
for providing inspiration for this study. This work was supported in part
by the Mount Sinai Data Warehouse (MSDW) resources and staff
expertise provided by Scientific Computing and Data at the Icahn
School of Medicine at Mount Sinai. ISF is supported by the National
Institute of General Medical Sciences of the National Institutes of Health
(NIH) (T32-GM007280). RD is supported by the National Institute of
General Medical Sciences of NIH (R35-GM124836) and the National
Heart, Lung, and Blood Institute of the NIH (R01-HL139865 and R01-
HL155915). The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Insti-
tutes of Health.

Author contributions
I.S.F., A.D.B., A.J.O., and R.D. conceived and designed the study. I.S.F.,
B.O.P., A.D., J.K.P., A.J.O., D.M.J., andG.R. performed statistical analyses.
J.H.C. and R.D. provided administrative, technical, andmaterial support.
I.S.F. and R.D. drafted the manuscript. A.B. and R.D. supervised the
study. All authors aided in the acquisition and interpretation of data, and
critical revision of the manuscript. I.S.F and R.D. had access to and
verified all of the data in the study.

Competing interests
R.D. reported receiving grants from AstraZeneca, grants and non-
financial support from Goldfinch Bio, being a scientific co-founder,
consultant andequity holder for PensieveHealth, andbeing aconsultant
for Variant Bio, all not related to this work. G.N.N. reported being a
scientific co-founder, consultant, advisory board member, and equity
owner of Renalytix AI, a scientific co-founder and equity holder for

Article https://doi.org/10.1038/s41467-023-37996-7

Nature Communications |         (2023) 14:2385 11



Pensieve Health, a consultant for Variant Bio, and receiving grants from
Goldfinch Bio and personal fees from Renalytix AI, BioVie, Reata,
AstraZeneca, and GLG Consulting. The remaining authors declare no
competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37996-7.

Correspondence and requests for materials should be addressed to
Ron Do.

Peer review information Nature Communications thanks John Halamka
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-37996-7

Nature Communications |         (2023) 14:2385 12

https://doi.org/10.1038/s41467-023-37996-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
	Results
	Study population
	Training and validation of a model to predict autoantibody testing in BioMe cohort 1
	External testing of the model in All of Us
	Sensitivity analyses of model
	Validation in individuals with rheumatology encounter in BioMe cohort 2
	Validation in individuals with autoantibodies and SARDs diagnoses
	Diverse autoimmune conditions captured by the model
	Prediction of need for future autoantibody testing and rheumatologist�referral

	Discussion
	Methods
	Study design and population
	Electronic health record (EHR) data sources
	Identification of individuals with autoantibody tests and rheumatology�encounters
	Clinical features from the EHR included in the model
	Building and evaluating the models
	Assessment of diverse autoimmune conditions
	Prediction of future autoantibody tests and rheumatology encounters
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




